崔帥帥,李啟航,馮朝陽,范積亮
(西安交通燃氣有限責任公司,陜西 西安 710000)
為了應對日益嚴峻的環境污染與國內能源結構調整與提升壓力,對可再生能源的大力扶持已經成為非常重要的能源建設內容。同時,隨著低碳經濟的進一步推進,我國新能源產業進入到一個蓬勃發展與快速推進的時期,電動汽車的普及是我國交通領域重點的車用能源綠色行動。光能是一種普及推廣的可再生能源,我國還需開展光能發電的研究,相關技術已經有了很大的進步。光儲充一體化電站的建設提供了一個非常良好并且有效的途徑,改善光能發電的穩定性同時確保了負載輸出的高效,值得進行大力推廣發展和應用。我國的電網建設在飛速發展,為提升其安全性與可靠性,需要加大相應的電站建設。結合光能發電技術,進行光儲充一體化電站建設,對推進整體電網建設。發展完善國內基礎設施建設工作具有重要作用。
面對零碳目標下新能源+儲能快速規模化發展的新機遇,持續深化技術創新,以更科學合理的系統方案設計進一步挖掘和提升儲能的服務價值,實現儲能與電網從被動適應向主動安全、主動支撐轉變,為構建上下游產業鏈命運共同體、促進儲能產業健康可持續發展提供堅實保障。
光儲充一體化模式就是將光伏發電、儲能電池和充電樁組成一個微電網,利用光伏發電,將電量存儲在儲能電池中,當發電不穩定時,儲能電池將電量供給充電樁使用。充電樁通過光儲充系統,將清潔電源輸送給新能源汽車進行智能化柔性充電[1]。目前,國家大力推進新能源消納,光儲充一體化電站在促進新能源供給消納體系構建和緩解電網壓力方面有著諸多優點。首先,光儲充電站實現了使用可再生能源。利用光伏、儲能為充電站和電動汽車補充清潔電源,符合國家雙碳政策的發展方向,順應發展趨勢。其次,光儲充電站有效減少對電網的沖擊。根據了解,目前市面公共直流快充樁的功率達60 kW以上,大型城市使用這種快充樁將對電網造成沖擊,而光儲充電站中的儲能系統通過削峰填谷平衡大電流對電網產生的沖擊,保護電網穩定運行。最后,光儲充電站為動力電池回收提供途徑。我國正迎來動力電池的退役潮,退役電池可回收作為光儲充電站的儲能電池使用,將動力電池價值最大化同時減少了環境污染。
一般情況下,為滿足充電站的用電需要,在進行整個建設過程中需要建立起一個完整完善的供電系統,并且對應的電力系統還需要與公共電網連接,通過接入電網購電[2,3]。因此,引入并設置光儲充一體化電站建設十分重要,并且進行電站建設時還要考慮充電站整體的占地面積情況。通常,需建設完整的光儲充配電系統,滿足實際用電需要。當整個光儲充一體化電站系統在進行子系統連接時,會采用三相交流母線接入的方式將光伏系統設備線路與存儲系統、設備線路以及充電設備線路進行聯絡,再進行并網設置,從而解決整體集中大功率充電可能帶來的問題,確保整個光儲充電站能夠自己發電并自己用電,完成電能的消耗,實現良好的儲電用電保障功能。
光儲充一體化電站的關鍵技術涵蓋的內容非常廣泛,包括光儲充一體化電站的整體系統與子系統的相關技術、光儲充一體化電站建設過程中需要安裝的各類設備以及光儲充一體化電站建設完成后對整個系統運行情況的全面控制,以保證光儲充一體化電站的穩定運行。
總體來說,光儲充一體化電站的設備主要由光伏設備、儲能設備以及充電設備3個部分組成。
光伏設備是將光能或太陽能轉化為電能的設備,光伏設備本身的電力輸出能力與太陽輻射強度、周圍環境溫度有關[4,5]。光伏發電設備如圖1所示。

圖1 光伏發電設備
儲能設備的設置需要考慮儲能容量的實際配置情況,對應的儲能系統在進行充放電時,需要考慮充放電的周期和充放電的實際效率,并對充放電的上限值和下限值進行控制。儲能設備和儲能系統運行過程中,需要對儲能系統本身的建設成本和效益進行估算,這一過程通常利用儲能設備或儲能系統的使用壽命模型進行預測,由此計算出儲能設備或儲能系統在運行全過程中能夠產生的最終效益。目前來說,最常見的儲能方式之一就是運用電池進行儲能。由于電池本身完成充放電的次數是有限的,應對整體效益進行估算。根據現有技術,電池的充放電循環次數與電池本身的工作環境情況密切相關,并且受充放電的深度影響。影響儲能系統或設備成本的原因就是在日常使用過程中的維護與運營,維護運營工作本身需要成本,而維護和運營工作的成果對儲能系統本身的使用壽命也有比較突出的影響。
光儲充一體化電站系統結構如圖2所示。光儲充一體化電站系統本身在新能源汽車領域應用較多,單獨設置的光伏模塊、儲能模塊以及充電模塊彼此連接并接入統一配電線路,形成一個完整的微電網。對于光儲充一體化電站而言,這樣的微電網需要具備接入整個城市供電系統以及供電線路的基礎功能[6,7]。

圖2 光儲充一體化電站系統結構
在進行電站建設的時候,最基礎的就是需要包括光伏系統、儲能系統以及充電系統3個方面。在此基礎上,還要配有相對應的監控系統,監測整個電站的充放電情況,對電站的各項數據進行采集,良好地完成對電站的功率分配工作,確保能夠滿足不同用電設備和用電區域的具體需求。
此外,可以結合現有的自動化技術和信息技術建立一個完整的云端綜合控制管理平臺,對采集到的數據進行綜合性處理、預測與分析,更好地完成整個系統中電力的優化配置與調度工作,準確下達對總系統的控制命令,從而使整個光儲充一體化電站的功能得到完善與提升。
目前比較常見的控制模式主要包括2種,一是并網控制,二是離網控制。如果處在并網控制的狀況下,那么結合上述所提到的云端綜合控制管理平臺了解次日天氣數據與信息及歷史的光伏發電功率、數據情況,結合次日的光伏功率情況對整體發電狀況進行預測,由此下發具體的電力調度曲線情況給各自監控系統,并對光儲充一體化電站電的發電功率進行限制補充以及調整,從而使得整個光儲充一體化電站的發電穩定,并且不會對電網整體的電能穩定性和發電質量造成干擾[8,9]。
而接入的電網本身,由于自然條件和氣候因素變化,加之用電高峰期等問題存在不能夠良好地對整個工業園區進行用電的情況,此時可以考慮切換到一個離網運行模式。采用該模式后,即使外接電網出現了故障,也可以確保整個工廠仍然在有序穩定的進行相應的生產工作,通過對儲電、儲能、光伏發電等設備實際運行功率的調整和聯合,確保最終的發電更加穩定。
通過對光儲充一體化電氣設備的整體系統模型構建,優化整體用電設施設備的資源配置,從而確保整體電站可以獲得最大的凈收益[10,11]。因此,要對設備的整體配置不斷優化,對各項技術進行革新和改進,以確保最終電站建設完成后效益的最大化。
光伏電站本身會對整體電網產生比較明顯的沖擊與影響,這就造成了光伏電站現在的應用情況處在一種自給率低且對光伏電站并網工作存在限制的情況。而單獨的充電設施與裝置比較明顯的特點就是容易在用電高峰時對電網造成波動,這種集中性的充電工作增加了整個電網的運行負擔[12]。總體而言,城市整體的電路系統建設中缺少對大規模充電設施的考慮。如果將充電設備直接進行配網,那么需要對相應的變電氣和線路進行改造,增加整體建設成本。如果建設了光儲充一體化電站,可以在用電量較大的時候通過光儲充電站對設備用電情況進行補充,減少接入電網時可能造成的系統干擾問題,提升企業整體的經濟效益,有助于促進企業的綠色發展,具有非常突出的社會效益。
為了滿足電動汽車充電的穩定性和電站運營成本最低化,運行控制策略原則如下:一是保證電能輸出的穩定性;二是最大程度消納光電能;三是最大限度實現削峰填谷作用;四是降低對電網的沖擊。
根據西安市階梯電價運行原則(見表1),結合運行控制策略原則,設計優化策略。

表1 階梯電價表
根據峰平谷電價的時間段分布進行控制階段的設定,為3級調控方式,具體如下。
(1)在用電谷值期間,其電價成本最低,可由市電進行充電供能并給儲能模塊進行充電作業,保證在平或峰值期間儲能模塊的電量供給。在谷值期間,市電總負荷量也處于低位,在此期間進行供電和儲能充電作業可提高夜間用電量,達到“填谷”的作用。
(2)在平值期間,電價為中等檔次。此時控制策略采取光伏供電預先形式:如果光伏電量能夠滿足電動汽車需求,則單獨供電;如果光伏電量無法滿足電動汽車需求時,則利用儲能設備進行供電(儲能設備電能余量需滿足在高峰期與光伏整體的穩定輸出),仍然不足時需采取市電供電措施。
(3)在峰值期間,電價為最高檔。此時應盡量避免采取市電供電:首先,用光伏進行供電,利用儲能設備進行穩定輸出配合;其次,如果光能源電量將出現缺口時,則應采用儲能設備進行補充,穩定輸出;最后,在二者均無法滿足供電需求時,補充市電進行充電作業。光儲充一體式充電站運行控制如圖3所示。

圖3 光儲充一體式充電站運行控制圖
本文將光伏發電、儲能系統與電動汽車充電站結合,并對光儲充一體式充電站設備、結構、運行策略進行了分析,確立了以運行成本為控制主目標、以儲能底循環電量為輔助目標的運行控制策略。本文在運行控制策略模型中對智能算法進行了初步探索,下一步研究中將引進智能算法體系,實現多目標最優配置,并結合實例數據進行效果驗證,保證控制策略的可行性。