張宇婷,耿小凱,任春華,計宏偉
無傘空投儲液罐的高空跌落仿真分析
張宇婷1,耿小凱2,任春華1,計宏偉1
(1.天津商業大學,天津 300134;2.河北金后盾塑膠有限公司,河北 邢臺 054000)
為提高液體類空投物資補給效率,研究橢球型結構的無傘空投儲液罐跌落沖擊地面過程的力學響應。基于歐拉-拉格朗日耦合算法,建立含有內盛物的橢球形儲液罐有限元模型,通過Abaqus CAE仿真跌落得到罐壁材料層為聚乙烯-發泡-聚乙烯在不同厚度比條件下含內盛物跌落的最大等效塑性應變(簡稱最大塑性應變)云圖、應力-時間曲線。不同層間厚度比與儲液罐的最大塑性應變、塑性應變的時間和應變集中區域有密切聯系,當厚度比為1∶2∶1時,罐體達到最大塑性應變的時間短,把手部位出現應變集中現象的概率增大;厚度比為1∶1∶2時,罐體的塑性應變相對降低,抗沖擊能力沒有達到理想優化效果;厚度比為1∶1∶2時,罐體的塑性應變最小,在此情況下能承受的沖擊地面的瞬時速度最大,罐體的結構性能最好。基于此提出了一種結構優化思路,在添加中間發泡層以減輕配重的基礎上,適當增加外層聚乙烯材料的厚度或者使用緩沖性能更好的材料,增加罐壁的緩沖吸能,改善材料結構強度。
無傘空投;儲液罐;有限元模擬;力學響應;等效塑性應變
空投是通過直升機等航空裝置將指定運輸的裝備物資從空中投送到預定地點的過程,是一種方便、快捷、高效的物資運輸方式。空投技術不僅是作戰過程中輸送武器裝備和物資器材的主要方式,也是應對自然災害過程中物資投送的重要保障手段[1—3]。2008年汶川大地震的抗震救災行動中,為迅速實現救援任務,中國軍隊派出大量運輸機和直升機采用空降空投的方式來向災區運送救災物資,保障災區人民的生活和醫療衛生的需求。目前,有傘空投是進行物資裝備運輸的主要投送形式,其具有前期準備工作繁雜、降落傘使用成本高等缺點,造成資源的大量浪費,同時受氣候、地面環境等因素影響,在應對某些自然災害時有傘空投不能及時有效地投送應急物資裝備。隨著包裝防護技術和緩沖材料技術的發展,以及在實際作業中對安全高效的需求不斷提高,無傘空投技術因其包裝簡單、資源利用率高、受環境因素影響小、實施迅捷等特點逐漸受到學者們的重視,成為國內外學者的研究熱點[2—4]。目前,無傘空投的研究主要集中在兩大方面:空投裝備的結構優化[5—6]和研制更加可靠耐用的緩沖裝置[7—12]。
在無傘空投中,橢球形儲液罐廣泛用于液體類應急物資的運輸,文中選用的儲液罐主要材質為高密度聚乙烯,罐壁為3層材料結構,中間材料為發泡結構,用以減輕配重和吸收沖擊能量,罐體表面具有均勻分布的加強肋結構,能夠增加整體的抗沖擊性能。為了驗證無傘空投儲液罐的實用性、有效性和可靠性,需要進行大量的試驗驗證,而進行空投試驗往往需要耗費大量的人力物力,且每次試驗跌落對儲液罐具有一定的破壞性,導致試驗所需的研究成本較高。隨著有限元技術的發展和完善,計算機仿真模擬因其方便可靠的優點逐漸成為研究空投跌落動力學響應的重要研究手段[13—15]。模擬過程采用以下假設進行建模。
1)空投裝備的緩沖完全靠罐體產生,不考慮降落的氣動阻力,沒有附加其他的緩沖裝置。
2)罐體內部各處壓力相同且罐體壁厚均勻。模擬過程中罐體等效為理想化模型,不考慮由于制作工藝帶來的誤差。
3)罐體主要由3層材料組成,且均假設厚度均勻,3層材料總厚度為0.02 m。跌落時視作1個整體,即跌落過程中各部分連接緊密,忽略材料層與層之間連接力的影響。
建模時默認罐體為塑性材料,具有理想塑性行為。文中以橢球形無傘空投儲液罐為研究對象,基于歐拉-拉格朗日耦合方法進行建模,結合Abaqus CAE軟件,在保證總厚度固定的條件下,改變儲液罐3層材料結構的層間厚度比,模擬其跌落力學響應,并進行深入研究,對比分析不同層間厚度比對罐體性能的影響,根據應變分布特征進行彈塑性分析,為有效進行液體類應急物資無傘空投的緩沖包裝設計提供理論參考。
在空投著陸瞬間,罐體受極大的沖擊載荷作用,容易造成較大的變形和塑性硬化,對于結構的強度、緩沖性能、抗沖擊性能等提出來很大的要求。文中對3種層間厚度比的橢球型儲液罐沖擊地面過程進行模擬,并將模擬結果進行對比分析,評價罐體的結構性能。
罐體材質為高密度聚乙烯,采用一體成型的橢球形結構;所有棱角均圓角化,緩解罐體與地面接觸產生的應力集中現象;跌落時罐體的3層結構材料緩沖吸能,無其他緩沖裝置。
罐體包括3層材料[4],其結構見圖1,3層材料結構見圖2。罐壁最外層原料與最內層原料均為高密度聚乙烯(密度為950 kg/m3),內外層聚乙烯材料的基本力學參數見表1。中間緩沖層為發泡材料(密度為166 kg/m3),用來降低罐體總質量并吸收沖擊。在Abaqus模擬前,為保證模擬結果的準確性,在進行中間發泡層的材料定義時,中間層材料的性能依據塑料拉伸性能試驗標準(GB/T 1040.1—2018),通過萬能試驗機進行單軸拉伸試驗測得,直接將處理得到的名義應力應變數據輸入Abaqus材料庫中進行仿真分析,具體參數見表2。
模擬過程中,采用飲用水為主要內盛物,其密度為996 kg/m3,粘度為0.01 Pa·s,體積模量為2.094 GPa。
無傘空投儲液罐跌落模擬采用流固耦合方法,將罐體作為固體域與罐內飲用水作為流體域進行物理場耦合,并利用分離解法求取控制方程,完成流固耦合交界面的數據傳遞。

圖1 空投儲液罐結構

圖2 3層材料結構

表1 聚乙烯材料參數
連續性方程見式(1):
(1)
式中:為流體密度;U為質點的速度矢量;x為空間坐標矢量。
動量方程(N-S方程)見式(2):
(2)

表2 中間發泡層材料非線性應力-應變參數值
式中:和為質點的速度矢量;和為空間坐標矢量;M為變形速率張量。
能量方程:
(3)
式中:為熱傳導系數;為流體溫度。
固體控制方程:
(4)
式中:s為固體介質密度;s為固體厚度。流固耦合遵循守恒原則。
為保證計算精度和效率,選用CEL方法進行跌落運動的流固耦合分析。文中所述罐體整體為六面體結構化網格,按照實體內外層的厚度將罐體模型分為3層,均采用拉格朗日單元建模,3層結構的單元類型均為C3D8R,分別進行每層材料的參數定義;液體內盛物采用歐拉單元建模(3D,Eulerian),單元類型為EC3D8R。
流固耦合過程中建立罐體內液體的初始形狀,通過體積分數工具(Volume Fraction Tool)定義歐拉體的初始流域,同時將流體材料賦予給歐拉網格。歐拉體的尺寸設置為500 mm×500 mm×500 mm正方體空間,包圍整個跌落系統,與地面的接觸為顯示通用行為接觸(General contact,Explicit),整體裝配見圖3。整個仿真過程采用顯式動力學(Dynamic Explicit)模塊進行,包括35 937個歐拉單元和115 056個拉格朗日單元。

圖3 流固耦合模型
無傘空投技術屬于中高空物體跌落,跌落過程近似于自由落體。借助Abaqus CAE有限元分析軟件,按照接觸地面不同的瞬時速度值進行儲液罐的跌落仿真分析。跌落過程的模擬需要創建剛性地面部件,地面材質為混凝土,部件類型為均質殼體表面(Deformable Shell Planar),彈性模量為20 GPa,泊松比為0.15,密度為2500 kg/m3。為了分析材料層對儲液罐性能的影響,保持總厚度值不變,改變3層結構厚度值進行模擬,建立內層聚乙烯-中間發泡層-外層聚乙烯厚度比為1∶2∶1(Ⅰ類)、2∶1∶1(Ⅱ類)和1∶1∶2(Ⅲ類)的3種分析工況。
參考彈塑性失效設計準則,以應力下降至強度極限的10%之前最后記錄的數據點對應的應變為材料斷裂標稱應變,罐體等效塑性應變(PEEQ,簡稱最大塑性應變)為:
(5)
罐體材料最大等效塑性應變必須滿足條件:
(6)
式中:ε為材料的最大等效塑性應變;tb為材料的斷裂標稱應變。經計算得到,該類聚乙烯材料斷裂標稱應變為0.1929,對應應力為32.0367 MPa,對應的總應變為0.2141。
現有的儲液罐材料結構的層間厚度比近似為1∶2∶1,首先通過Abaqus CAE軟件對儲液罐的空投過程進行模擬仿真試驗,并提取出儲液罐以不同瞬時速度(9.9,14.0,17.1,19.8,22.1,24.2 m/s)沖擊地面的最大塑性應變和所用時間,詳細結果見表3,儲液罐危險點位置達到最大等效塑性應變時刻云圖見圖4。由表3可知,該時間規律呈線性變化且逐漸降低;同時瞬時沖擊速度與最大塑性應變具有直接聯系,最大塑性應變隨瞬時速度的增加呈遞增關系。同時由等效塑性應變云圖可知,罐體在跌落時,主要變形位置均在罐體底部,整體未發生較大變形或破壞;當沖擊速度為24.2 m/s時,只有局部位置有較大的等效塑性應變,難以出現明顯破損現象,這符合聚乙烯材料的高彈塑性[17]。

表3 Ⅰ類儲液罐的塑性應變參數
在儲液罐沖擊地面過程中,罐體底面將率先接觸地面,應變區域主要集中在底部倒角處。由圖5a可知,為了便于分析3層材料結構的受力情況,在罐體中間截面上作法線′,使其與倒角處曲率半徑重合且過倒角中心點。在直線′上選取位于罐體壁上外層、中層、內層這3個位置的單元節點(單元節點1、單元節點2、單元節點3),在模擬結果中提取各個單元節點以瞬時速度為24.2 m/s沖擊地面情況下的節點應力隨時間的變化情況。罐壁上外、中、內3層材料單元的應力-時間曲線見圖5b。由曲線圖可知,罐體該部位單元節點應力值均未超過屈服極限,內壁單元節點的應力值最高,外壁次之,中間發泡層的應力值最低。這是由于內壁同時受到跌落造成外部沖擊和內部液體流動產生的耦合作用,使得跌落過程中罐體內壁單元的應力值普遍大于外壁單元的應力值。
在不改變總厚度的條件下,為了研究緩沖層厚度對沖擊性能的影響,加大內層厚度,減小中間緩沖層厚度,使其厚度比為2∶1∶1進行跌落模擬。Ⅱ類儲液罐以不同瞬時速度沖擊地面的等效塑性應變云圖見圖6,儲液罐等效塑性應變的詳細參數見表4,其變化規律與2.1節工況下基本相同。塑性應變主要分布在罐體底部與地面接觸位置周圍,隨著沖擊速度增加,等效塑性應變逐漸增大,塑性應變區域增大。相較于2.1節Ⅰ類儲液罐,應變集中現象改善,最大塑性應變增加趨勢減緩,最大塑性應變出現的時間延遲,相同瞬時速度跌落產生的最大塑性應變增大,即允許的跌高降低。

圖4 Ⅰ類儲液罐的等效塑性應變云圖

圖5 Ⅰ類儲液罐的單元節點選取與應力-時間曲線

圖6 Ⅱ類儲液罐的等效塑性應變云圖

表4 Ⅱ類儲液罐的塑性應變參數
分析倒角位置的應力變化,見圖7a,在直線′上選取位于罐體壁上外層、中層、內層等3個位置的單元節點(單元節點1、單元節點2、單元節點3)。儲液罐以24.2 m/s沖擊地面時3個單元節點的應力-時間曲線見圖7b。罐體內壁單元節點的應力值最高,外壁次之,中間發泡層的應力值最低。同一位置內層單元應力仍然最大,同時最大應力在2.2 μs時超過材料強度極限。雖然該種材料結構能改善應變集中,但由于中間緩沖層厚度減小,發泡材料的吸能作用降低,使得罐體內壁所受沖擊增大。
在不改變總厚度的前提下,增大內層厚度,減小中間緩沖層厚度,使其厚度比為1∶1∶2進行跌落模擬,所得的等效塑性應變云圖見圖8,并提取出儲液罐以不同瞬時速度沖擊地面的詳細參數,見表5。相較于前2種材料結構罐體的最大塑性應變明顯降低,且均小于斷裂標稱應變。為找出該材料結構下儲液罐塑性應變在彈塑性設計準則范圍內的最大沖擊速度,進一步改變速度值,計算塑性應變和損傷演變分析,當最大塑性應變小于斷裂標稱應變時,所對應的最大沖擊速度值為26.2 m/s。
為了便于分析3層材料結構的受力情況,見圖9a,在直線′上選取位于罐體壁上外層、中層、內層等3個位置的單元節點(單元節點1、單元節點2、單元節點3)。罐體以24.2 m/s速度沖擊地面時3個單元節點的應力-時間曲線見圖9b。由曲線圖可知,當材料層厚度比為1∶1∶2時,同樣是外部節點首先達到應力最大值,內部節點的應力值最大(31.16 MPa),未超過材料屈服極限,且達到最大值的時間明顯延遲。
對比3種材料結構以24.2 m/s速度沖擊地面時的應力相關參數可知,液體空投罐的最大應力、應力變化和應變集中區域與材料層的厚度比有明顯聯系。由圖10可知,從罐體單元達到最大應力值的時間上看,Ⅰ類儲液罐應力在1.0 μs達到最大值,Ⅱ類儲液罐應力在0.9 μs時刻達到最大值,Ⅲ類儲液罐應力在2.5 μs時刻達到最大值;從最大應力值上看,Ⅰ類儲液罐的最大應力為28.99 MPa,Ⅱ類儲液罐的最大應力為36.21 MPa,Ⅲ類儲液罐的最大應力為31.16 MPa,罐體的最大應力值較高。

圖7 Ⅱ類儲液罐的單元節點選取與應力-時間曲線

圖8 Ⅲ類材料結構儲液罐的等效塑性應變云圖

表5 Ⅲ類儲液罐的塑性應變參數

圖9 Ⅲ類儲液罐的單元節點選取與應力-時間曲線

圖10 3種材料結構的內層單元Mises應力
對比3種儲液罐最大塑性應變達到斷裂標稱應變的跌落高度,Ⅰ類儲液罐所能承受的最大沖擊速度為23.2 m/s;Ⅱ類儲液罐所能承受的最大沖擊速度為22.6 m/s;Ⅲ類儲液罐所能承受的最大沖擊速度為26.2 m/s,很明顯Ⅲ類儲液罐在彈塑性理論范圍內的承載能力和抗沖擊強度最高。
對比3種儲液罐在不同高度跌落的塑性應變數據,可以發現不同層間厚度比與罐體的最大塑性應變、塑性應變時刻和應變集中區域有明顯聯系。從最大塑性應變上看,Ⅰ類儲液罐的最大塑性應變總體上小于其他2種材料結構的最大塑性應變;從達到最大塑性應變時間和應變區域上看,Ⅰ類儲液罐達到最大塑性應變的時間較短,特殊部位容易出現明顯的應變集中現象,Ⅲ類儲液罐達到最大塑性應變的時間最長,其材料結構更好,可利用性更高。綜上所述,適當增加中間緩沖層的厚度能夠在一定程度上吸收跌落產生的沖擊,減小內層應力;適當增加外層聚乙烯的厚度能有效降低罐體塑性應變,提高空投質量。由于把手部位的結構因素,在跌落時容易出現應力集中現象,尤其是當瞬時速度大于24.2 m/s時,此影響較為明顯,因此將把手部位進行面倒圓處理能夠在一定程度上改善結構強度,提高承載能力。
參考上述模擬結果,文中提出從以下幾方面提出結構優化的設計。
1)加縱向肋結構。為減緩罐體變形和內部液體流動造成的局部壓力變大現象,避免液體空投罐在跌落瞬間產生較大變形發生破壞,最直接的方法是采取圓角化過渡、增加局部厚度等措施改良罐體結構。同時由結果云圖顯示,罐體肋部應變值明顯小于其他部位,說明在罐體表面增加圓肋能有效增加罐體結構強度,提高抗沖擊性能,可以考慮在罐體外壁增加縱向肋結構,進一步增強罐體的結構強度。
2)改變3層材料厚度比例。在添加中間發泡層以減輕配重的基礎上,適當增加外層聚乙烯材料的厚度或者使用緩沖性能更好的材料,增加罐壁的緩沖吸能,改善材料結構強度。
利用有限元分析技術對橢球形無傘空投橡膠液體空投罐進行了跌落模擬,通過Abaqus CAE軟件建立了液體空投罐有限元模型,通過設置載荷和邊界條件進行跌落分析,計算出全場的塑性應變分量和特殊節點的Mises應力-時間曲線,首先對現有的儲液罐材料結構進行模擬計算,隨后在保證總厚度不變的條件下改變3層材料厚度進一步模擬,得出以下結論。
1)對模擬結果進行對比分析發現,液體空投罐的3層材料厚度與其塑性應變和應變集中區域有明顯聯系,為液體類物資的無傘空投提供了有效的數據參考。
2)3層材料厚度比為1∶1∶2時罐體的塑性應變最小,在彈塑性理論范圍內能承受的瞬時沖擊速度最大,罐體的結構性能最好。
3)根據模擬結果提出了優化思路,適當增加中間發泡層與外層聚乙烯材料的厚度或者使用緩沖性能更好的材料,增加罐壁的緩沖吸能,改善材料結構強度。
[1] 邵朝俊. 我國重裝空投系統現狀和發展[C]//中國科協2002年學術年會, 2002: 1.
SHAO Zhao-jun.Current Status and Development of China's Heavy Equipment Airdrop System[C]//China Association for Science and Technology Annual Conference 2002,2002: 1.
[2] 趙西友, 王宏, 許濤, 等. 無傘空投緩沖包裝材料及技術研究[J]. 包裝工程, 2016, 37(3): 54-57.
ZHAO Xi-you, WANG Hong, XU Tao, et al. Free Drop Buffering Packing Material and Technology[J]. Packaging Engineering, 2016, 37(3): 54-57.
[3] 王鐵寧, 劉磊. 陸軍裝備物資無傘空投系統設計[J]. 裝甲兵工程學院學報, 2019, 33(2): 5-9.
WANG Tie-ning, LIU Lei. Design of the Army Equipment and Materials Airdrop without Parachute System[J]. Journal of Academy of Armored Force Engineering, 2019, 33(2): 5-9.
[4] 趙西友, 李彥平, 王靜偉, 等. 滾塑無傘空投儲水罐的設計與分析[J]. 中國塑料, 2019, 33(1): 111-115.
ZHAO Xi-you, LI Yan-ping, WANG Jing-wei, et al. A Design and Analysis of Rotationally Molded Water Storage Tank in Free Drop[J]. China Plastics, 2019, 33(1): 111-115.
[5] 易方, 孟浩龍. 新型空投橡膠油囊的設計[J]. 橡膠工業, 2018, 65(10): 1146-1149.
YI Fang, MENG Hao-long. Design of a New Type of Airdrop Rubber Fuel Drum[J]. China Rubber Industry, 2018, 65(10): 1146-1149.
[6] 劉勝祥, 王興業, 徐麗麗, 等. 蜂窩紙板在空投包裝中的應用[J]. 包裝工程, 2016, 37(17): 25-29.
LIU Sheng-xiang, WANG Xing-ye, XU Li-li, et al. Application of Honeycomb Cardboard in Airdrop Packaging[J]. Packaging Engineering, 2016, 37(17): 25-29.
[7] 王新春, 馬大為, 莊文許, 等. 某空投裝備在不同緩沖裝置下的沖擊響應分析[J]. 包裝工程, 2013, 34(13): 47-51.
WANG Xin-chun, MA Da-wei, ZHUANG Wen-xu, et al. Impact Response Analysis of Airdrop Equipment with Different Buffer Device[J]. Packaging Engineering, 2013, 34(13): 47-51.
[8] 許鑫. 沖壓式快速空投緩沖氣囊著陸過程仿真研究[J]. 機械工程與自動化, 2017(2): 59-60.
XU Xin. Simulation Research on Stamping Type Quick Airdrop Airbag Landing Process[J]. Mechanical Engineering & Automation, 2017(2): 59-60.
[9] TUTT B, SANDERS J, MYNENI S. Application of Optimization Software to Aid the Design of an Airbag Decelerator System[C]//17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, California, 2003: 1-8.
[10] 周默涵, 狄長春, 楊玉良, 等. 圓柱筒式空投氣囊緩沖模擬[J]. 包裝工程, 2017, 38(17): 128-132.
ZHOU Mo-han, DI Chang-chun, YANG Yu-liang, et al. Simulation of Cushion Characteristic of Cylindrical Airdrop Airbag[J]. Packaging Engineering, 2017, 38(17): 128-132.
[11] 孫寧國, 李良春. 空投著陸緩沖氣囊研究現狀[J]. 包裝工程, 2017, 38(11): 97-101.
SUN Ning-guo, LI Liang-chun. Research Status of Airdrop Landing Buffer Airbag[J]. Packaging Engineering, 2017, 38(11): 97-101.
[12] XU Xin. Design and Analysis of Auto-Inflatable Air-Drop Cushion Airbag[J]. Mechanical Engineering & Automation, 2015, 6: 87-88.
[13] 楊佳, 趙春玲, 計宏偉, 等. 塑料和鋼塑復合包裝桶高溫堆碼強度模擬[J]. 包裝工程, 2015, 36(15): 87-90.
YANG Jia, ZHAO Chun-ling, JI Hong-wei, et al. Simulation Analysis of High Temperature Stacking Strength for Palstic and Steel-Plastic Bucket[J]. Packaging Engineering, 2015, 36(15): 87-90.
[14] 劉永輝, 張銀. 基于有限元分析的洗衣機跌落沖擊仿真及改進設計[J]. 振動與沖擊, 2011, 30(2): 164-166.
LIU Yong-hui, ZHANG Yin. Dropping Simulation and Design Improvement of a Washing Machine Based on FE Analysis[J]. Journal of Vibration and Shock, 2011, 30(2): 164-166.
[15] 張曉川, 任春華, 計宏偉, 等. 危險品包裝用桶的跌落仿真分析[J]. 包裝工程, 2016, 37(19): 116-120.
ZHANG Xiao-chuan, REN Chun-hua, JI Hong-wei, et al. Dropping Simulation Analysis of Dangerous Goods Packaging Buckets[J]. Packaging Engineering, 2016, 37(19): 116-120.
[16] 李亞飛, 孫小杰, 任月慶, 等. 滾塑用V-0級阻燃交聯聚乙烯的制備及其性能研究[J]. 塑料工業, 2020, 48(8): 30-33.
LI Ya-fei, SUN Xiao-jie, REN Yue-qing, et al. Preparation and Properties of V-0 Grade Flame Retardant Crosslinked Polyethylene for Rotational Molding[J]. China Plastics Industry, 2020, 48(8): 30-33.
Simulation Analysis of Liquid Storage Tank for Free Drop
ZHANG Yu-ting1, GENG Xiao-kai2, REN Chun-hua1, JI Hong-wei1
(1.Tianjin University of Commerce, Tianjin 300134, China; 2.Hebei Jinhoudun Plastic Cement Co., Ltd., Xingtai 054000, China)
The work aims to study the mechanical response of the liquid storage tank with ellipsoidal structure for free drop during the process of falling and hitting the ground, in order to improve the replenishment efficiency of liquid airdrop supplies. Based on the coupling Euler-Lagrange algorithm, a finite element model of ellipsoid liquid storage tank was established. The drop process of the tank with different thickness ratios of polyethylene-foam-polyethylene was simulated by ABAQUS CAE to obtain the maximum equivalent plastic strain cloud diagram and stress-time curve. The thickness ratio between different layers is closely related to the maximum plastic strain, the time of plastic strain and the strain concentration area of the storage tank. When the thickness ratio is 1∶2∶1, the time to reach the maximum plastic strain is the shortest and the probability of strain concentration at the region for handle is increased. When the thickness ratio is 1∶1∶2, the plastic strain of the tank body is relatively reduced, but the impact resistance does not reach the ideal optimized situation. When the thickness ratio is 1∶1∶2, the plastic strain is the smallest, the maximum instantaneous speed is the highest, and the property of the tank structure is the best. Based on these, a structural optimization idea is proposed. On the basis of adding a middle foam layer to reduce the weight, appropriately increasing the thickness of the outer polyethylene material or using a material with better cushioning performance can increase the buffer energy absorption of the tank wall and improve the strength of the material structure.
free drop; liquid storage tank; finite element simulation; mechanical response; equivalent plastic strain
TB485.1
A
1001-3563(2022)01-0066-09
10.19554/j.cnki.1001-3563.2022.01.009
2021-08-18
天津市應用基礎與前沿技術研究計劃重點項目(14JCZDJC34600)
張宇婷(1997—),女,天津商業大學碩士生,主攻無傘空投包裝防護設計及有限元模擬。
計宏偉(1964—),男,天津商業大學教授、博導,主要研究方向為運輸包裝。