999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A note on Tensor-Matrix based on Einstein product

2022-01-07 08:54:00JINXinXUJinli

JIN Xin, XU Jinli

(College of Science, Northeast Forestry University, Harbin 150080, China)

Abstract: The relationship between matrices and tensor based on Einstein product is investigated. All linear isomorphisms between tensor spaces and matrix spaces preserving Einstein product are obtained. The result generalizes transformations given by Brazell et al (equation (2.5) of [1]).

Keywords: mapping problem; Einstein product; multilinear system; matrix

0 Introduction

For tensorsA=(Ai1…ipk1…kq)∈Tm1×…×mp×n1×…×nq(),B=(Bk1…kqj1…jr)∈Tn1×…×nq×l1×…lr(), the Einstein productA*qBof tensor inAandBis a tensor inC∈Tm1×…×mp×l1×…×lr() defined by

An alternative product of two tensorsA∈Tn1×…×nd() of orderd≥2 andB∈Tn1×…×nd() of orderd≥2 is introduced in references [2-3] and various topics such as the inverse, rank, similarity, the modal-k product and congruence under this product can be found in references [4-6]. For a survey of many interesting topics of tensors, including linear maps of tensor products , refer to references [7-9].

Brazell introduced a class of bijective linear transformationsf[1],

f:Tm1×…×mp×n1×…×nq()→M(m1×…×mp)×(n1×…×nq)()

via

(1)

This mapping is also the matrix unfolding of tensors in signal processing applications, e.g., see reference [10]. It is easy to see that

Tm1×…×mp×n1×…×nq()()

Let Γm,nbe all nonsingular linear transfers fromTm1×…×mp×n1×…×nq() toM(m1×…×mp)×(n1×…×nq)(),and the matrix unfoldingfand tensor foldingf-1depend onm1,…,mp,n1,…,nq.

For allA∈Tm1×…×mp×n1×…×nq(),B∈Tn1×…×nq×l1×…lr(), one can check that

f3(A*qBp)=f1(A)·f2(B)

(2)

wheref1,f2,f3are defined in (1), and·refers to the usual matrix multiplication. In recent years, results of tensor via Einstein product such as multilinear SVD[1], generalized inverse[11]are studied by (1) and (2). A natural question is what are all possible forms of bijective linear transformations satisfying (2).

In this note, we answer this question. For clarity, let

α:[m1]×…×[mp]→[m1×…×mp]
β:[n1]×…×[nq]→[n1×…×nq]
γ:[l1]×…×[lr]→[l1×…×lr]

be bijective maps for allm,n,lwhich are integers greater than or equal to 2. We defineψα,β∈Γm,nby

ψα,β(εi1…ipk1…kq)=Eα(i1…ip),β(k1…kq)

(3)

whereεi1…ipk1…kqis of 1 in (i1…ipk1…kq)-th entry and 0 otherwise andEα(i1…ip),β(k1…kq)is of 1 in (α(i1…ip),β(k1…kq))-th entry and 0 otherwise. Similarly, we can defineψβ,γ∈Γn,landψα,γ=Γm,l.Our main result is:

Theorem1(Main Theorem) Letφ1∈Γm,n,φ2∈Γn,l,φ3∈Γm,l.If

φ3(A*qB)=φ1(A)φ2(B)

for allA∈Tm1×…×mp×n1×…×nq(),B∈Tn1×…×nq×l1×…×lr(), then there exist bijective maps

α:[m1]×…×[mp]→[m1×…×mp],β:[n1]×…×[nq]→[n1×…×nq],γ:[l1]×…×[lr]→[l1×…×lr] and invertible matricesP∈Mm×m(),R∈Mn×n(),Q∈Ml×l()such that

φ1(A)=Pψα,β(A)R

φ2(B)=R-1ψβ,γ(B)Q

φ3(C)=Pψα,γ(C)Q

for allA∈Tm1×…×mp×n1×…×nq(),B∈Tn1×…×nq×l1×…×lr(),C∈Tm1×…×mp×l1×…×lr().

1 The proof of main result

Lemma1Letψα,β,ψρ,γbe defined as (3) andφ3∈Γm,l. If

φ3(A*qB)=ψα,β(A)ψρ,γ(B)

for allA∈Tm1×…×mp×n1×…×nq(),B∈Tn1×…×nq×l1×…×lr(), thenβ=ρa(bǔ)ndφ3=ψα,γ.

ProofSuppose (i1…ip)∈[m1]×…×[mp],(j1…jr)∈[l1]×…×[lr]and(k1…kq)∈[n1]×…×[nq]. Sinceφ3is bijective, we obtain

0≠φ3(εi1…ipj1…jr)=φ3(εi1…ipk1…kq*qεk1…kqj1…jr)

=ψα,β(εi1…ipk1…kq)ψρ,γ(εk1…kqj1…jr)

=Eα(i1…ip),β(k1…kq)Eρ(k1…kq),γ(j1…jr)

=δβ(k1…kq),ρ(k1…kq)Eα(i1…ip),γ(j1…jr)

Thusβ(k1…kq)=ρ(k1…kq) for all (k1…kq)∈[n1]×…×[nq], that isβ=ρa(bǔ)nd

φ3(εi1…ipj1…jr)=Eα(i1…ip),γ(j1…jr)=ψα,γ(εi1…ipj1…jr)

Hence,φ3=ψα,γ.

Conclusion1Letψα,β,ψβ,γandψα,γbe defined as (3), then

for allA∈Mm×n(),B∈Mn×l().

ProofThe conclusion follows from

Lemma2(Theorem 3.3 of reference [12]) Supposeφ:Mm×n()→Mm×n() is a linear transformation such that

rankφ(A)=k?rank(A)=k

wherek≤min{m,n}. Then there exist invertible matricesP∈Mm×m(),R∈Mn×n() such that

φ(A)=PAR,?A∈Mm×n()

orm=n≥2

φ(A)=PATR,?A∈Mm×n()

Lemma3Supposeg1,g2,g3are bijective linear transformations onMm×n(),Mn×l(),Mm×l(), respectively. If

g3(AB)=g1(A)g2(B)

for allA∈Mm×n(),B∈Mn×l(),C∈Mm×l(). Then there exist invertible matricesP∈Mm×m(),R∈Mn×n(),Q∈Ml×l() such that

g1(A)=PAR,?A∈Mm×n()

g2(B)=R-1BQ,?B∈Mn×l()

g3(C)=PCQ,?C∈Mm×l()

ProofFirstly, we prove thatg1preserves maximal rank onMm×n() in both directions.

Case 1:m≤n. We chooseA∈Mm×n() with rank(A)=m, Then

{AB:B∈Mn×l()}=Mm×l()

Sinceg3is bijective,g3(AB)=g1(A)g2(B) can run over all the matrices inMm×l(). Thus, rank(g1(A))=m. Contrarily, if rank(g1(A))=m, theng1(A)g2(B)=g3(AB) can be an arbitrary matrix inMm×l(). Due to the bijectivty ofg3,ABcan be an arbitrary matrix inMm×l(), and hence, rank(A)=m.

Case 2:m>n. We chooseAwith rank(A)=nand suppose rank(g1(A))≠n. Then there existsX1≠X2∈Mn×l() such that

g1(A)X1=g1(A)X2

Sinceg2is bijective, we obtainB1≠B2∈Mn×l() such thatg2(Bi)=Xi,i=1,2.It follows from

g3(AB1)=g1(A)g2(B1)=g1(A)X1=g1(A)g2(B2)=g3(AB2)

and the bijectivity ofg3thatAB1=AB2. By the assumption of rank(A)=n, we can getB1=B2, a contradiction. Contrarily, if rank(g1(A))=nand rank(A)

g1(A)g2(B1)=g3(AB1)=g3(AB2)=g1(A)g2(B2)

Note that rank(g1(A))=n, henceg2(B1)=g2(B2). Sinceg2is bijective,B1=B2is contradictory.

By Lemma 2, there exist invertible matricesP∈Mm×m() andR∈Mn×n() such that

g1(A)=PAR, ?A∈Mm×n()

(4)

orm=n≥2

g1(A)=PATR, ?A∈Mm×n()

(5)

Similarly, we can prove thatgpreserves maximal rank onMn×l() in both directions, and hence , there exist invertible matricesS∈Mn×n(),Q∈Ml×l() such that

g2(B)=SBQ, ?B∈Mn×l()

(6)

orn=l≥2

g2(B)=SBTQ, ?B∈Mn×l()

(7)

We next prove that (4) and (6) are the only cases, others will not happen.

If (5) and (6) hold, letA=Eii,B=Ej1,i,j∈[n],RS=U=(uij)n×n. It follows from

δijg3(Ei1)=g3(EiiEj1)=PEiiUEj1Q=uijPEi1Q

thatuij=0,?i≠j. SetA=E12,B=E21, then

0≠g3(E11)=PE21diag(u11,…,unn)E21Q=0

which is a contradiction.

If (4) and (7) hold, letA=E1i,B=Ejj,i,j∈[n],RS=U=(uij)n×n. It follows from

δijg3(E1j)=g3(E1iEjj)=PE1iUEjjQ=uijPE1jQ

thatuij=0,?i≠j. SetA=E12,B=E21, then

0≠g3(E11)=PE12diag(u11,…,unn)E12Q=0

Similarly, one can prove that (5), (7) will not happen.

Next , we assume that (4), (6) hold. LetRS=U=(uij)n×n. TakingA=E1i,B=Ej1,i,j∈[n], we obtain

δijg3(E11)=g3(E1iEj1)=PE1iUEj1Q=uijPE11Q

Hence

uij=0,?i≠j

and

ujj=u11,?j∈[n]

Therefore we haveRS=λI, for someλ≠0. ReplaceQbyλ-1Q, It follows from (4) and (6) that

g1(A)=PAR, ?A∈Mm×n()

and

g2(B)=R-1BQ, ?B∈Mn×l()

Hence

g3(Eij)=g3(Ei1E1j)=PEijQ, ?i∈[m],j∈[l]

We get

g3(C)=PCQ, ?C∈Mm×l()

for anyA∈Mm×n(),B∈Mn×l().

By Lemma 3, there exist invertible matricesP∈Mm×m(),R∈Mn×n(),Q∈Ml×l() such that

g1(A)=PAR,?A∈Mm×n()

g2(B)=R-1BQ,?B∈Mn×l()

g3(C)=PCQ,?C∈Mm×l()

and the theorem follows.

Domestic studies on linear preserving problem began in 1989[13], for more research on preserving problem and tensor refer to references [14-17] and their references.

主站蜘蛛池模板: 青草娱乐极品免费视频| 亚洲美女操| 欧美日韩中文国产| 国产靠逼视频| 久久精品女人天堂aaa| 一级爱做片免费观看久久| 中文字幕久久波多野结衣| 午夜国产理论| 亚洲欧美另类视频| 在线高清亚洲精品二区| 国产jizzjizz视频| 亚洲天堂区| 这里只有精品在线| 欲色天天综合网| 毛片网站免费在线观看| 国产在线98福利播放视频免费| 91久久精品日日躁夜夜躁欧美| 亚洲精品第一页不卡| 国国产a国产片免费麻豆| 久久免费精品琪琪| 国内熟女少妇一线天| 久久综合久久鬼| 久草青青在线视频| 国产96在线 | 亚洲精品视频网| 国产美女一级毛片| 91精品国产福利| 五月激激激综合网色播免费| 亚洲AV无码一二区三区在线播放| 国产精品分类视频分类一区| 国产区福利小视频在线观看尤物| 亚洲最大在线观看| 成人午夜天| 亚洲国产清纯| 国产精品微拍| 欧美激情首页| 青青草国产免费国产| 欧日韩在线不卡视频| 国产一区二区三区日韩精品 | 制服丝袜国产精品| 亚洲综合狠狠| 国产资源免费观看| 日韩无码黄色网站| 99热国产在线精品99| 91久久偷偷做嫩草影院精品| 中文字幕在线播放不卡| 久草视频精品| 亚洲一区波多野结衣二区三区| 免费国产黄线在线观看| 国产精选自拍| 精品国产免费第一区二区三区日韩| 国产成人精品在线| www亚洲天堂| 在线观看免费国产| 国产成人成人一区二区| 又爽又黄又无遮挡网站| 婷婷综合缴情亚洲五月伊| 精品久久久久无码| 成年人视频一区二区| 国产真实二区一区在线亚洲| 亚洲综合九九| 国产精品国产三级国产专业不| 亚洲欧美一区二区三区图片| 五月天综合网亚洲综合天堂网| 亚洲成人77777| AV网站中文| 免费看黄片一区二区三区| 在线观看国产精品日本不卡网| 激情无码视频在线看| 亚洲日韩AV无码一区二区三区人| 一级一级一片免费| 亚洲人成网站观看在线观看| 国产精品污视频| 久久永久视频| 国产sm重味一区二区三区| 亚洲成a人片7777| 2019国产在线| 成人精品视频一区二区在线| 激情亚洲天堂| 五月天香蕉视频国产亚| 免费人成网站在线观看欧美| 亚洲欧洲免费视频|