999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Extended Binding Number Results on Fractional(g,f,n,m) critical Deleted Graphs

2022-01-07 08:31:36LanMeihuiGaoWei
數學理論與應用 2021年4期

Lan MeihuiGao Wei

(1.School of Information Engineering,Qujing Normal University,Qujing655011,China?2.School of Information Science and Technology,Yunnan Normal University,Kunming650500,China)

Abstract As an extension of the factor,the fractional factor allows each edge to give a real number in the range of0to1,and degree of fraction of each vertex to be controlled within a certain range(determined by the values of functions g and f,corresponding to the upper and lower fractional degree boundary).The score factor has a wide range of applications in communication networks,and the score critical deleted graph can be used to measure the feasibility of transmission when the network is damaged at a certain moment.In this short note,we mainly present some extended binding number conclusions on fractional(g,f,n,m) critical deleted graphs.

Key words Graph Binding number Fractional factor Fractional(g,f,n,m) critical deleted graph

1 Introduction

All graphs considered in this paper are simple and finite.LetGbe a graph with vertex setV(G)and edge setE(G).We denote bydG(v)andNG(v)(simply byd(v)andN(v))the degree and the neighborhood of any vertexvinG,respectively.Letδ(G)=minv∈V(G){d(v)}.ForS?V(G),we denote byG[S]the subgraph ofGinduced byS,and setG?S=G[V(G)S].For two vertex disjoint subsetsS,T?V(G),seteG(S,T)=|{e=uv|u∈S,v∈T}|.Notations and terminologies used but undefined in this paper can be found in[1].

Suppose thatgandfare two integer valued functions defined on vertex set ofGsatisfying0≤g(v)≤f(v)for anyv∈V(G).A fractional(g,f) factor can be considered as a functionhwhich assigns to each edge a number in[0,1]andg(v)≤(v)≤f(v)for each vertexv,whereh(e)is the fractional degree ofvinG.Ifg(v)=aandf(v)=bfor allv∈V(G),then a fractional(g,f) factor is a fractional[a,b] factor.A graphGis called a fractional(g,f,m) deleted graph if for each edge subsetH?E(G)with|H|=m,there exists a fractional(g,f) factorhsuch thath(e)=0for alle∈H.A graphGis a fractional(g,f,n,m) critical deleted graph if the resting subgraph after deletingnvertices fromGis a fractional(g,f,m) deleted graph.

We sayGhas all fractional(g,f) factors ifGhas a fractionalpfactor for eachp:V(G)→N withg(v)≤p(v)≤f(v)for anyv∈V(G).Ifg(v)=a,f(v)=bfor each vertexvandGhas all fractional(g,f) factors,then we say thatGhas all fractional[a,b] factors.A graphGis an all fractional(g,f,m) deleted graph if after deleting anymedge ofGthe remaining graph has an all fractional(g,f) factor.A graphGis an all fractional(g,f,n,m) critical deleted graph if after deleting anynvertices ofGthe remaining graph is an all fractional(g,f,m) deleted graph.Ifg(v)=a,f(v)=bfor eachv∈V(G),then an all fractional(g,f,n,m) critical deleted graph becomes an all fractional(a,b,n,m) critical deleted graph,i.e.,after deleting anynvertices ofGthe remaining graph is still an all fractional(a,b,m) deleted graph.

The following subsection depends heavily on two lemmas which are given by Liu and Zhang[1]and their equivalent description can be found in[3]and[4].We only prove Theorem1.1 since the tricks to prove Theorem1.2 and Theorem1.3 are the same.The main idea and tricks to prove Theorem1.1 are followed from[3]and[4],but we have new techniques here.

2 Proof of Theorem1.1

whereScontains at leastnvertices.

The subsetsSandTare chosen so that|T|is minimum.Clearly,T?=?anddG?S(x)≤b?1for anyx∈T.

The definitions ofl,H′,T0,H,H1,andH2are the same as in[3]and[4].If|V(H)|=0,then from(2.1)we obtain

a|S|≤b|T0|+bl+bn+2m?1

or

which contradicts todG?S(x)≤b?1for anyx∈T.We acquire

a contradiction by|T0|+l≥2.Therefore,we have|V(H)|>0.

Assume thatI1,C1,I(i)for1≤i≤binH1,andI2,C2,Tj,cj,ijfor1≤j≤b?1inH2(as well asWandU)are as the same as defined in[3]and[4].By Lemma3.5 in[4],we get

According to Lemma3.4 in[4],we infer

By the definition ofU,we acquire

LetX=T0∪lKb∪I1∪I2.Then,

wheret0=|T0|.Setbind(G)=B,then we get

By(2.4 ) (2.6 ),we infer

Using

and combining with(2.7),we get

In light of(2.3 ),(2.8 )and(2.2 ),we acquire

We consider two cases oft0+l.

Case1t0+l≥1.In this case,byaB≥b2+bn+m??,we haveaB(t0+lb)?b(t0+l)?bn?2m+1≥0.Thus(2.9)becomes

(b?2)(b?j)≥aB?aj?b+j.

Now consider

A contradiction can be obtained by using the similar discussion in[3]and[4].Therefore,whatever|I1|=0,or|I2|=0,or both|I1|≥1and|I2|≥1,we get a contradiction.

Case2t0+l=0.In this case,by(2.9)we acquire

The following discussion is divided into three subcases relying on whetherI1orI2is empty.

Subcase2.1|I1|=0.

We notice that(2.11)becomes Ifa=b,then(b?2)(b?j)?(aB?aj?b+j)≤j?a?bn?2m.Whenj=a?1,it reaches the minimum value?bn?2m?1,and whenj=a?2,it reaches the second minimum value?bn?2m?2.By learning the proof of Lemma2.3 in[1],we know that when choose the maximum independent set,for each connected component,we first select vertex which has minimum degree inG?S.ThusI2contains vertex which has degree at mostb?2inG?S,and furthermore we have(b?2)(b?j)?(aB?aj?b+j)≤j?a?bn?2m≤?bn?2m?2.Ifb≥a+1,then(b?2)(b?j)?(aB?aj?b+j)≤?bn?2m?2 since(a,b)?=(1,2).In all,we get a contradiction to(2.12).

Subcase2.2|I2|=0.

It equals to

which contradicts to|I1|≥1.

Using the similar trick as in Subcase2.2,we deduce a confliction.

In all,the desired conclusion is completely proved.

3 Conclusion and discussion

In this contribution,we extended the result published in“Journal of Ambient Intelligence and Humanized Computing”by Gao et al.[5].Here,we introduce the following open problem.

Problem3.1What is the tight binding number bound(without parameter|V(G)|)for a graph to be fractional(g,f,n,m) critical deleted(resp.fractional(a,b,n,m) critical deleted or all fractional(g,f,n,m) critical deleted)?

主站蜘蛛池模板: 四虎亚洲国产成人久久精品| 国产成人免费手机在线观看视频 | 亚洲国产看片基地久久1024| 91久久精品日日躁夜夜躁欧美| 亚洲一级毛片在线观| 亚洲精品欧美日本中文字幕| 国产亚洲精品97AA片在线播放| 亚洲人成网站日本片| 色婷婷成人| 成人午夜久久| 免费国产无遮挡又黄又爽| www.精品国产| 天天综合天天综合| 亚洲欧美日韩另类在线一| 人妻丰满熟妇av五码区| 久久频这里精品99香蕉久网址| 欧美成一级| 久久国产精品影院| 亚洲欧美在线综合一区二区三区| 亚洲—日韩aV在线| 免费高清自慰一区二区三区| 最新日韩AV网址在线观看| 天天摸天天操免费播放小视频| 精品一区二区无码av| 国产99在线观看| 国产精品浪潮Av| 亚洲中文字幕国产av| a毛片在线| 午夜国产大片免费观看| 午夜激情福利视频| 美女无遮挡免费视频网站| 热久久这里是精品6免费观看| 尤物视频一区| 国产97区一区二区三区无码| 国产chinese男男gay视频网| 怡红院美国分院一区二区| 热伊人99re久久精品最新地| 精品视频一区二区三区在线播| 四虎成人在线视频| 久久大香伊蕉在人线观看热2| 国产成人乱无码视频| 无码高潮喷水在线观看| 无码AV日韩一二三区| 精品夜恋影院亚洲欧洲| 日韩欧美中文在线| 成人在线观看一区| 亚洲国产精品一区二区第一页免| 国产无遮挡裸体免费视频| 国产在线观看人成激情视频| 国产又黄又硬又粗| 丁香婷婷在线视频| 一级香蕉人体视频| 欧美专区日韩专区| 亚洲视频影院| 一本大道无码日韩精品影视| 久草视频精品| 国产成年无码AⅤ片在线| 狠狠综合久久| 成人久久18免费网站| 成人欧美日韩| 毛片一级在线| 3p叠罗汉国产精品久久| 日韩精品高清自在线| 久草中文网| 日韩视频福利| 暴力调教一区二区三区| 2021国产精品自拍| 精品无码日韩国产不卡av| 91精品久久久无码中文字幕vr| 国产性精品| 国产香蕉97碰碰视频VA碰碰看 | 强奷白丝美女在线观看 | 91色老久久精品偷偷蜜臀| а∨天堂一区中文字幕| 丰满的熟女一区二区三区l| 亚洲欧美另类专区| 极品国产在线| 114级毛片免费观看| 毛片免费在线| 波多野结衣中文字幕一区| 亚洲一级毛片| 亚洲日韩国产精品综合在线观看|