





摘 要: 針對陰陽對優(yōu)化算法(YYPO)在優(yōu)化多峰目標(biāo)函數(shù)時存在收斂速度過快和收斂精度過低等問題,提出了一種融合差分變異策略和高斯分布擾動的D向分割方法改進(jìn)的陰陽對算法MYYPO。首先,MYYPO在算法的分割階段引入了結(jié)合自適應(yīng)變異因子的差分變異操作,以提高候選解的多樣性并增強(qiáng)算法的全局探索能力。其次,利用改進(jìn)的D向分割方法進(jìn)行候選解的更新,提高算法面對高維目標(biāo)函數(shù)的搜索能力。實(shí)驗(yàn)采用CEC2013進(jìn)化大會中的20個測試函數(shù)對各算法的性能進(jìn)行評估。實(shí)驗(yàn)結(jié)果表明,MYYPO在多峰函數(shù)的優(yōu)化上可以獲得更好的收斂精度和更好的全局搜索能力,在大多數(shù)情況下都優(yōu)于標(biāo)準(zhǔn)YYPO和YYPO的其他改進(jìn)算法。最后,將MYYPO應(yīng)用于一個電液位置伺服控制系統(tǒng)的PID參數(shù)優(yōu)化問題,MYYPO也獲得了最好的結(jié)果。
關(guān)鍵詞: 陰陽對算法; 差分變異操作; 高斯分布擾動的D向分割; 多峰目標(biāo)函數(shù)
中圖分類號: TP301.6"" 文獻(xiàn)標(biāo)志碼: A
文章編號: 1001-3695(2022)05-019-1402-08
doi:10.19734/j.issn.1001-3695.2021.11.0465
Improved yin-yang-pair algorithm for solving multi-modal objective functions
Li Dahai, Zhan Meixin, Wang Zhendong
(School of Information Engineering, Jiangxi University of Science amp; Technology, Ganzhou Jiangxi 341000, China)
Abstract: Aiming at overcoming defects of relatively slow convergence speed and low accuracy of yin-yang-pair optimization(YYPO) algorithm when optimizing multi-modal objective functions,this paper proposed a novel enhanced YYPO algorithm,named MYYPO.MYYPO integrated the differential evolution strategy combined with adaptive mutation factor and the D-way splitting mechanism with Gaussian distribution disturbance.At First,MYYPO introduced differential mutation operation in segmentation stage to increase the diversity of candidate solutions largely and therefor improves exploration ability of the algorithm.Secondly,MYYPO adopted an improved D-way splitting approach to generate candidate solutions,and then enhanced its performance in high dimensional objective functions.The experiment selected 20 test functions from the CEC2013 evolution conference as benchmark functions to evaluate the performance of MYYPO,YYPO and several other YYPO algorithms.Experimental results illustrate that MYYPO can achieve higher convergence accuracy and better global search ability on multi-modal functions in most cases.In addition,MYYPO was also applied to solve a PID parameter optimization problem for an electro-hydraulic position servo control system.MYYO has also achieved the best results.
Key words: yin-yang-pair algorithm; differential mutation operation; D-way splitting of Gaussian distribution disturbance; multimodal objective function
0 引言
現(xiàn)實(shí)中的工程優(yōu)化問題往往能轉(zhuǎn)換為求解目標(biāo)函數(shù)的最優(yōu)值問題,例如桁架結(jié)構(gòu)優(yōu)化設(shè)計(jì)[1]、作業(yè)車間調(diào)度[2]等。這些目標(biāo)函數(shù)通常為多峰函數(shù)形式,即目標(biāo)函數(shù)存在多個局部最優(yōu)解[3],其對搜索算法在搜索過程中跳出局部最優(yōu)解的性能有較高的要求,所以針對多峰函數(shù)的搜索算法的改進(jìn)問題一直是該研究領(lǐng)域的熱點(diǎn)。隨著研究的深入,國內(nèi)外學(xué)者逐漸認(rèn)識到采用單一的算法改進(jìn)策略已經(jīng)難以取得滿意的效果,于是各種基于混合改進(jìn)策略的改進(jìn)算法被陸續(xù)提出。這里的混合并不是策略之間的簡單組合,而是利用各種策略的特點(diǎn)進(jìn)行優(yōu)勢互補(bǔ),從而改進(jìn)單一算法解決問題能力不足的問題[4]。同時,研究人員也發(fā)現(xiàn)增強(qiáng)搜索過程中解的多樣性可以使算法既擁有良好的在搜索過程中跳出局部最優(yōu)解的能力,又能保持良好的整體搜索能力[5]。
Qu等人[6]提出了一種局部知情粒子群優(yōu)化(LIPSO)算法。LIPSO沒有使用全局最佳粒子,而是通過多個局部最優(yōu)位置引導(dǎo)粒子在不同的最優(yōu)子空間中搜索,并且使用粒子最近鄰域的局部信息(以歐里幾德距離衡量)指導(dǎo)粒子搜索。實(shí)驗(yàn)結(jié)果表明,使用上述混合改進(jìn)策略的LIPSO算法在30個多峰函數(shù)的測試上能取得比同類算法更優(yōu)越的性能。
Chen等人[7]提出了一種基于分布式個體多峰(DIMP)和兩種新機(jī)制的分布式差分進(jìn)化算法(DIDE)。首先,DIMP策略使每個個體作為分布式單元來跟蹤峰值,這為候選解提供了足夠的多樣性;其次,DIDE融合了生命周期機(jī)制和精英學(xué)習(xí)機(jī)制這兩種新機(jī)制與DIMP協(xié)調(diào)優(yōu)化過程。實(shí)驗(yàn)表明,在混合策略的作用下,對于多峰目標(biāo)函數(shù)DIDE有很強(qiáng)的競爭力。
張英杰等人[3]為了提高克隆選擇算法在多峰函數(shù)優(yōu)化問題中的全局能力,提出了一種混合回溯機(jī)制和記憶庫抗體機(jī)制的新算法。對多峰函數(shù)測試結(jié)果表明,混合策略的新算法對多峰函數(shù)有著更好的優(yōu)化效果。
畢曉君等人[8]提出了一種基于擁擠模型的差分進(jìn)化算法,通過擁擠模型的高群集因子進(jìn)行搜索;算法在搜索的過程中,可以避免取代錯誤,以保持候選解的多樣性。在多峰函數(shù)的優(yōu)化上,新算法獲得了更好的收斂精度和收斂速度。
黃正新等人[9]針對螢火蟲算法(GSO)存在求解多峰函數(shù)時收斂速度慢和尋優(yōu)精度較低的問題,在GSO中融入搜索成功和失敗兩種策略,在算法的每一代中根據(jù)個體的成功或者失敗概率去調(diào)整搜索步長,增強(qiáng)了GSO的自適應(yīng)性。實(shí)驗(yàn)結(jié)果表明,混合策略改進(jìn)之后的算法對于多峰函數(shù)優(yōu)化有著更好的尋優(yōu)精度和搜索效率。
陰陽對優(yōu)化(yin-yang-pair optimization,YYPO)算法是2016年由文獻(xiàn)[10]提出的一種元啟發(fā)式算法,其主要特點(diǎn)是基于兩點(diǎn)進(jìn)行更新,在搜索空間的探索和開發(fā)之間保持平衡,是一種低計(jì)算復(fù)雜度的隨機(jī)算法,但是同時也存在早熟易收斂和尋優(yōu)精度較低等問題。針對以上問題,已有學(xué)者提出了若干改進(jìn)算法[11~15]。相關(guān)改進(jìn)算法主要是針對YYPO的自身優(yōu)化性能不足而提出的,但是對于繼續(xù)提升YYPO算法在多峰函數(shù)的問題上的性能,目前沒有相關(guān)學(xué)者進(jìn)行研究。
為進(jìn)一步提升YYPO面對多峰目標(biāo)函數(shù)的性能,本文提出了一種基于融合差分變異策略[16]和高斯分布擾動的D向分割方法的YYPO改進(jìn)算法,稱做MYYPO。標(biāo)準(zhǔn)YYPO算法在分割階段只需利用兩點(diǎn)在一個超球體中產(chǎn)生候選解,采取這樣的方式雖然降低了算法的復(fù)雜度,但是同時也降低了候選解的多樣性,在求解過程中容易陷入局部最優(yōu)。針對以上問題,MYYPO引入了差分變異操作,對分裂階段產(chǎn)生的候選解進(jìn)行擾動,從而增大算法跳出局部最優(yōu)的概率。其次,MYYPO舍棄了分裂階段中單向分割的更新方式,使用高斯分布擾動的D向分割對候選解進(jìn)行更新,使算法對高維復(fù)雜函數(shù)的求解可以獲得更好的尋優(yōu)精度。基于20個性能基準(zhǔn)測試函數(shù)的測試結(jié)果以及對一個PID參數(shù)優(yōu)化問題的實(shí)驗(yàn)結(jié)果表明,MYYPO在多峰函數(shù)優(yōu)化中可以獲得更好的收斂精度和全局搜索能力。
5 結(jié)束語
本文針對標(biāo)準(zhǔn)YYPO算法在多峰目標(biāo)函數(shù)的優(yōu)化問題中存在求解精度低和收斂速度過快等問題,提出了一種融合差分變異策略和高斯分布擾動的D向分割方法的改進(jìn)陰陽對算法MYYPO。MYYPO結(jié)合差分變異策略,極大地提高了算法的全局搜索能力,同時使用改進(jìn)的D向分割進(jìn)行候選解的更新,使算法對于高維問題也有較好的表現(xiàn)。基于20個標(biāo)準(zhǔn)測試函數(shù)的實(shí)驗(yàn)表明,MYYPO算法在多峰函數(shù)中能獲得更佳的收斂速度和尋優(yōu)精度。最后,將MYYPO應(yīng)用于PID參數(shù)優(yōu)化問題。實(shí)驗(yàn)結(jié)果也表明,MYYPO在實(shí)際的工程優(yōu)化問題中也能取得較好的實(shí)際表現(xiàn)。未來將對MYYPO算法作進(jìn)一步改進(jìn),將其推廣到多目標(biāo)優(yōu)化問題上。
參考文獻(xiàn):
[1]Luh G C,Lin Chunyi.Optimal design of truss-structures using particle swarm optimization[J].Computers amp; Structures,2001,89(23-24):2221-2232.
[2]Pérez E,Herrera F,Hernández C.Finding multiple solutions in Job-Shop scheduling by niching genetic algorithms[J].Journal of Intelligent Manufacturing,2003,14(3-4):323-339.
[3]張英杰,毛賜平.面向多模態(tài)函數(shù)優(yōu)化的回溯克隆選擇算法[J].計(jì)算機(jī)應(yīng)用,2012,32(7):1947-1950. (Zhang Yingjie,Mao Ci-ping.Backtracking clonal selection algorithm for multi-modal function optimization[J].Journal of Computer Applications,2012,32(7):1947-1950.)
[4]張新明,涂強(qiáng),康強(qiáng),等.灰狼優(yōu)化與差分進(jìn)化的混合算法及函數(shù)優(yōu)化[J].計(jì)算機(jī)科學(xué),2017,44(9):93-98,124. (Zhang Xinming,Tu Qiang,Kang Qiang,et al.Hybrid optimization algorithm based on grey wolf optimization and differential evolution for function optimization[J].Computer Science,2017,44(9):93-98,124.)
[5]Ji Xinfang,Zhang Yong,Gong Dunwei,et al.Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems[J].IEEE Trans on Evolutionary Computation,2021,25(4):794-808.
[6]Qu B Y,Suganthan P N,Das S.A distance-based locally informed particle swarm model for multimodal optimization[J].IEEE Trans on Evolutionary Computation,2013,17(3):387-402.
[7]Chen Zonggan,Zhan Zhihui,Wang Hua,et al.Distributed individuals for multiple peaks:a novel differential evolution for multimodal optimization problems[J].IEEE Trans on Evolutionary Computation,2020,24(4):708-719.
[8]畢曉君,王義新.多模態(tài)函數(shù)優(yōu)化的擁擠差分進(jìn)化算法[J].哈爾濱工程大學(xué)學(xué)報,2011,32(2):223-227. (Bi Xiaojun,Wang Yi-xin.Multimodal function optimization using a crowding differential evolution[J].Journal of Harbin Institute of Technology,2011,32(2):223-227.)
[9]黃正新,周永權(quán).變步長自適應(yīng)螢火蟲群多模態(tài)函數(shù)優(yōu)化算法[J].計(jì)算機(jī)工程與應(yīng)用,2012,48(8):43-47. (Huang Zhengxin,Zhou Yongquan.Adaptive glowworm swarm optimization algorithm with changing step for optimizing multimodal functions[J].Computer Engineering and Applications,2012,48(8):43-47.)
[10]Punnathanam V,Kotecha P.Yin-yang-pair optimization:a novel lightweight optimization algorithm[J].Engineering Applications of Artificial Intelligence,2016,54:62-79.
[11]Song Dongran,Liu Junbo,Yang Yinggang,et al.Optimal design of wind turbines on high-altitude sites based on improved yin-yang-pair optimization[J].Energy,2020,193:116794.
[12]Wang Wenchuan,Xu Lei,Chau K W,et al.An orthogonal opposition-based-learning yin-yang-pair optimization algorithm for engineering optimization[J/OL].Engineering with Computers.(2021-01-19).https://doi.org/10.1007/s00366-020-01248-9.
[13]李大海,艾志剛,王振東.IYYPO:一種改進(jìn)的陰陽對優(yōu)化算法[J].計(jì)算機(jī)應(yīng)用研究,2021,38(1):134-139,144. (Li Dahai,Ai Zhigang,Wang Zhendong.IYYPO:improved yin-yang-pair optimization algorithm[J].Application Research of Computers,2021,38(1):134-139,144.)
[14]李大海,劉慶騰,艾志剛.YYPO-SA:一種新的基于YYPO和SA的混合單目標(biāo)隨機(jī)優(yōu)化算法[J].計(jì)算機(jī)應(yīng)用研究,2021,38(7):2018-2024. (Li Dahai,Liu Qingteng,Ai Zhigang.YYPO-SA:novel hybrid single-object optimization algorithm based on yin-yang-pair optimization and simulated annealing[J].Application Research of Computers,2021,38(7):2018-2024.)
[15]許秋艷,馬良,劉勇.基于混沌搜索和錯卦變換的陰陽平衡優(yōu)化算法[J].計(jì)算機(jī)應(yīng)用,2020,40(8):2305-2312. (Xu Qiuyan,Ma Liang,Liu Yong.Yin-Yang-pair optimization algorithm based on chaos search and intricate operator[J].Journal of Computer Applications,2020,40(8):2305-2312.)
[16]Storn R,Price K.Differential evolution:a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359.
[17]毛清華,王迎港.融合改進(jìn)Logistics混沌和正弦余弦算子的自適應(yīng)t分布海鷗算法[J/OL].小型微型計(jì)算機(jī)系統(tǒng).(2021-11-01).http://kns.cnki.net/kcms/detail/21.1106.TP.20211019.1549.006.html. (Mao Qinghua,Wang Yinggang.Adaptive t-distribution seagull optimization algorithm combining improved logistics chaos and Sine-cosine operator[J/OL].Journal of Chinese Computer Systems.(2021-11-01).http://kns.cnki.net/kcms/detail/21.1106.TP.20211019.1549.006.html.)
[18]Zhao Fuqing,Du Songlin,Lu Hao,et al.A hybrid self-adaptive invasive weed algorithm with differential evolution[J].Connection Science,2021,33(4):929-953.
[19] Zhang Jingqiao,Sanderson A C.JADZE:adaptive differential evolution with optional external archive[J].IEEE Trans on Evolutionary Computation,2009,13(5):945-958.
[20]Meng Zhenyu,Pan J S,Tseng K K.PaDE:an enhanced differential evolution algorithm with novel control parameter adaptation schemes for numerical optimization[J].Knowledge-Based Systems,2019,168:80-99.
[21]李靜.差分進(jìn)化算法與引力搜索算法的改進(jìn)[D].西安:陜西師范大學(xué),2018. (Li Jing.Differential evolution algorithm and improvement of gravitational search algorithm[D].Xi’an:Shaanxi Normal University,2018.)
[22]Punnathanam V,Kotecha P.Adaptive yin-yang-pair optimization on CEC 2016 functions[C]//Proc of IEEE Region 10 Conference.Pisca-taway,NJ:IEEE Press,2016:2296-2299.
[23]陳長倩,慕曉冬,牛犇,等.結(jié)合高斯分布的改進(jìn)二進(jìn)制灰狼優(yōu)化算法[J].計(jì)算機(jī)工程與應(yīng)用,2019,55(13):145-150. (Chen Changqian,Mu Xiaodong,Niu Ben,et al.Improved binary grey wolves optimization algorithm combined with Gaussian distribution[J].Computer Engineering and Applications,2019,55(13):145-150.)
[24]陳雷,尹鈞圣.高斯差分變異和對數(shù)慣性權(quán)重優(yōu)化的鯨群算法[J].計(jì)算機(jī)工程與應(yīng)用,2021,57(2):77-90. (Chen Lei,Yi Junsheng.Whale swarm optimization algorithm based on Gaussian diffe-rence mutation and logarithmic inertia weight[J].Computer Engineering and Applications,2021,57(2):77-90.)
[25]Liang Jing,Qu B Y,Suganthan P N,et al.Problem definitions and evaluation criteria for the CEC2013 special session on real-parameter optimization,201212[R].Zhengzhou:Zhengzhou University,2013.
[26]張新明,姜云,劉尚旺,等.灰狼與郊狼混合優(yōu)化算法及其聚類優(yōu)化[J/OL].自動化學(xué)報.(2022-02-15).https://doi.org/10.16383/j.aas.c190617. (Zhang Xinming,Jiang Yun,Liu Shangwang,et al.Hybrid coyote optimization algorithm with grey wolf optimizer and its application to clustering optimization[J/OL].Acta Automatica Sinica.(2022-02-15).https://doi.org/10.16383/j.aas.c190617.)
[27]Yao Jianyong,Jiao Zongxia,Ma Dawei,et al.High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties[J].IEEE/ASME Trans on Mechatronics,2014,19(2):633-641.
[28]Has Z,Rahmat M F,Husain A R,et al.Robust position tracking control of an electro-hydraulic actuator in the presence of friction and internal leakage[J].Arabian Journal for Science and Engineering,2014,39:2965-2978.
[29]Yuan Haibo,Na H C,Kim Y B.Robust MPC-PIC force control for an electro-hydraulic servo system with pure compressive elastic load[J].Control Engineering Practice,2018,79:170-184.
[30]Chen Qiang,Tan Ying,Li Jie,et al.Decentralized PID control design for magnetic levitation systems using extremum seeking[J].IEEE Access,2018,6:3059-3067.
[31]Fan Yuqi,Shao Junpeng,Sun Guitao.Optimized PID controller based on beetle antennae search algorithm for electro-hydraulic position servo control system[J].Sensors(Basel),2019,19(12):2727.