



摘 要: 為了解決多AGV在動態不穩環境下的無碰撞路徑規劃和系統效率提升的問題,提出了基于時間窗的AGV無碰撞路徑規劃方法。首先建立了多AGV的避碰模型,并結合時間窗模型,將多AGV的無碰撞路徑規劃分為預先規劃和實時規劃兩階段,預先規劃階段進行多AGV無沖突時間窗的計算和最大化系統中AGV的流通量,實時規劃階段通過改變AGV在避碰模型上的占用優先級和局部重規劃的方法進行動態避碰。最后以某智能倉儲為應用案例進行仿真實驗,證明了該算法能有效避免多AGV的碰撞,提高AGV的流通量,同時在動態環境下具有較好的魯棒性和柔性。
關鍵詞: 自動導引車; 時間窗; 路徑規劃; 動態避碰
中圖分類號: TP11"" 文獻標志碼: A
文章編號: 1001-3695(2022)01-009-0054-05
doi:10.19734/j.issn.1001-3695.2021.05.0211
Path planning method for AGV dynamic collisionavoidance based on time window
Sun Maomao, Kuang Bing
(School of Mechanical amp; Electrical Engineering, Guilin University of Electronic Technology, Guilin Guangxi 541000, China)
Abstract: In order to solve the problem of collision free path planning and system efficiency improvement of multi AGV in dynamic unstable environment,this paper proposed a collision free path planning method based on time window for AGV.Firstly,this paper established a multi-AGV collision avoidance model,combined with the time window model,and divided the collision-free path planning of multiple AGV into two stages:pre-planning and real-time planning.In the pre-planning stage,this paper calculated the conflict-free time window of multiple AGV and maximized the circulation of AGV in the system.In the real-time planning stage,this paper used the method of changing the AGV’s occupancy priority on the collision avoidance model and local re-planning to dynamically avoid collisions.Finally,a simulation experiment with a smart warehouse as an application case proves that the algorithm can effectively avoid the collision of multiple AGV,increase the circulation of AGV,and has good robustness and flexibility in a dynamic environment.
Key words: AGV; time window; path planning; dynamic collision avoidance
0 引言
隨著物聯網和工業自動化的快速發展,自動導引車(automated guided vehicle)因其路線靈活、效率高等優點被廣泛應用于智能倉儲、物流運輸等領域中,由多個協同作業的AGV組成的多AGV系統也越來越受到人們的關注,但同時也使得AGV路徑規劃以及實時避碰等研究變得更為復雜[1,2]。
針對多AGV無碰撞路徑規劃的問題,國內外學者做了大量研究。在多AGV路徑規劃中,雙向AGV模型相比于單向AGV模型可以顯著減少總行程、流動時間、機隊規模和對路徑的空間要求,但卻是要求較復雜的控制算法[3]。近年來,由于時間窗方法可以精確計算出各個AGV在其任務路徑中的無碰撞行駛時間,所以被廣泛地應用到多AGV無碰撞路徑規劃的研究中[4~7]。Kim等人[4]最早給出了無沖突最短時間程序(conflict free shortest time procedure,CFTP),在時間窗有向圖上搜索路徑節點的可到達空閑時間窗,實現了無沖突的預測規劃;Smolic-Rocak等人[5]提出了基于時間窗的動態路由方法,通過在新任務路徑上重復進行時間窗的插入、延伸和重疊檢測進行避碰;張中偉等人[6]將等待時間、行駛距離、任務緊急程度作為量化動態優先級的考慮因素,提出了一種基于動態優先級策略的多AGV無沖突路徑規劃方法;梁承姬等人[7]以AGV最短路徑為目標,通過在最短路徑或備選路徑上插入時間窗的方法進行多AGV的無沖突路徑規劃。
以上方法均建立在AGV系統沒有受到突發事件和外界干擾的靜態環境中,對AGV進行預測規劃,均沒有考慮AGV的實時避碰問題,因此在實際應用中不具有魯棒性。針對動態不穩環境下的多AGV無碰撞路徑規劃:劉國棟等人[8]提出了一種兩階段的動態路徑規劃方法,離線階段生成所有站點的候選路徑庫,在線階段根據路徑庫的路徑表和已運行AGV的信息生成無碰撞優化路徑;很多學者在CFTP靜態規劃的基礎上進行了實時避碰的研究[9~11]:Maza等人[9]提出增加實時規劃層的方法,通過嚴格維護CFTP方法給出的每個節點上AGV的通過順序進行實時避碰;賀麗娜等人[10]通過實時改變AGV通過節點的優先級,調整相應節點的AGV通過順序進行實時避碰;喬巖等人[11]通過將當前AGV的通過次序置前,重新排列AGV的通過順序,進行動態不穩環境下多自動導引車的避碰。
綜上,多AGV無碰撞路徑規劃的現有研究通常存在以下問題:僅考慮靜態理想情況下的無碰撞路徑規劃,或針對動態不穩環境提出的實時避碰方法魯棒性差;突發事件的類型考慮不全面;對AGV的運行環境模型一般給出約束,比如忽略路徑節點的空間特性、單向導引路徑、路徑的單AGV占用和特定區域劃分等,很大程度上降低了多AGV系統的優勢性能和總體運行效率。
1 問題描述
多AGV發生碰撞的主要原因:AGV在其任務路徑上的占用時間與其他AGV存在沖突和AGV在實際運行時受到突發事件的影響。將AGV可能發生的突發事件分為兩類[8]:a)暫時性突發事件,如AGV在障礙物前減速,或在車道或在節點上臨時停車充電等;b)永久性突發事件,主要由于AGV的故障長期停車所致。針對這種由突發事件導致的動態不穩環境,多AGV 路徑規劃要求 AGV 控制系統對時間和空間資源進行合理分配,協調所有 AGV 有序運行,從而保證每輛車都能順利且最優地完成運輸任務[8]。
本文對雙向AGV模型作如下規定:
a)設AGV正常行駛速度為v m/s,不考慮加減速、轉彎以及貨物重量對AGV速度的影響;
b)每臺AGV同一時間只能承擔一個新任務,即當前任務完成后才能接收下一任務;
c)根據AGV的行駛速度、剎車距離和避障傳感器的測量誤差等,將AGV的最小安全車距L表示為
L=Kc×(Ls+ts×v)(1)
其中:Ls、ts和Kc分別為AGV的制動距離(m)、系統反應時間(ms)和防撞緩沖系數(取20~50)。
AGV的任務Mi定義如下:
Mi=(AGVk,Si,Gi,Ek,ti,pi)(2)
其中:i為任務編號;k為執行任務的AGV編號;Si和Gi為任務Mi的起始點和目標點;Ek為任務Mi在起始點Si和目標點Gi之間為AGVk規劃的最短路徑集合;ti為任務Mi的開始時刻;pi為任務優先級,用于指定各AGV執行任務的先后順序(pi值越小,任務優先級越高)。
AGV系統環境模型主要用于描述AGV運行環境內各個路徑節點之間的約束關系。本文中的環境模型是基于圖論表示,定義二元組G={N,E}[14]。其中:N是一個頂點集,N={n1,n2,…,ns},元素ni(i=1,2,…,s)是圖G的一個頂點,表示環境模型中的一個路徑節點;E是連接圖G中各個頂點的邊集,E={e1,e2,…,es′}={(ni,nj),ni,nj∈N}。ek(k=1,2,…,s′)稱為路段,表示環境模型中兩個相關路徑節點ni和nj的約束關系。
建立多AGV的系統環境模型G,如下所示:
a)獲取多AGV環境模型內所有路徑節點的坐標,設編號為i的節點為Ni,坐標為Pi。
b)將路段長度作為圖G的權重,根據節點坐標以及節點之間的約束關系,計算得到圖G的帶權重鄰接矩陣GA,GA是一個s階方陣,計算如下:
GA(i,j)=‖Pi-Pj‖2(Ni,Nj)∈E
∞(Ni,Nj)E(3)
其中:GA表示環境模型中兩路徑節點之間的相對位置及連通關系。當兩節點Ni和Nj有路徑連通時,Ni和Nj為相關路徑節點,GA(i,j)為兩節點間實際距離值;當兩節點Ni和Nj無路徑連通時,Ni和Nj為不相關路徑節點,GA(i,j)設為無窮大。
本文采用Dijkstra算法進行路徑規劃,路徑規劃的結果是環境模型G中多個連續路段組成的路徑集合E。設AGVk任務路徑中的第j路段為rj∈Ek(j∈{1,2,…,s},s為AGVk任務路徑Ek中路段的數量)。
4 結束語
動態不穩環境下的多AGV無碰撞路徑規劃一直是多AGV系統研究領域的重要內容,本文旨在解決多AGV的無碰撞路徑規劃和最大化系統資源的利用率,以多AGV避碰模型為基礎,結合時間窗將多AGV的無碰撞規劃分為預先規劃和實時規劃兩階段。在預先規劃階段,進行AGV避碰模型的無沖突時間窗計算和動態調整系統中AGV的流通量,實現了系統中多AGV最大流量的無碰撞行駛。針對動態不穩環境下的突發事件,提出了在實時規劃階段通過改變AGV優先級和重規劃的方法,實現了多個AGV在實際運行中的動態避碰。通過應用案例證明了該算法在動態不穩環境下能夠實時避免多AGV間的碰撞和提高系統中AGV的流通量,但在高密度AGV的運行工況本文尚未涉及,需要進一步深入研究。
參考文獻:
[1]于赫年,白樺,李超.倉儲式多AGV系統的路徑規劃研究及仿真[J].計算機工程與應用,2020,56(2):233-241. (Yu Henian,Bai Hua,Li Chao.Research and simulation on path planning of warehouse multi-AGV system[J].Computer Engineering and Applications,2020,56(2):233-241.)
[2]羅強,王海寶,崔小勁,等.動態環境下改進人工勢場法的倉儲機器人自主導航系統研究[J].計算機應用研究,2020,37(3):745-749,762. (Luo Qiang,Wang Haibao,Cui Xiaojin,et al.Research on autonomous navigation system of warehousing mobile robot based on improved artificial potential field method in dynamic environment[J].Application Research of Computers,2020,37(3):745-749,762.)
[3]Egbelu P J,Tanchoco J.Potentials for bi-directional guide-path for automated guided vehicle based systems[J].International Journal of Production Research,1986,24(5):1075-1097.
[4]Kim C W,Tanchocoj J.Operational control of a bidirectional automated guided vehicle system[J].International Journal of Production Research,1993,31(9):2123-2138.
[5]Smolic-Rocak N,Bogdan S,Kovacic Z,et al.Time windows based dynamic routing in multi-AGV systems[J].IEEE Trans on Automation Science and Engineering,2009,7(1):151-155.
[6]張中偉,張博暉,代爭爭,等.基于動態優先級策略的多 AGV 無沖突路徑規劃[J].計算機應用研究,2021,38(7):2108-2111. (Zhang Zhongwei,Zhang Bohui,Dai Zhengzheng,et al.Multi-AGV conflict-free path planning based on dynamic priority strategy[J].Application Research of Computers,2021,38(7):2108-2111.)
[7]梁承姬,沈珊珊,胡文輝.基于路段時間窗考慮備選路徑的AGV路徑規劃[J].工程設計學報,2018(2):200-208. (Liang Chengji,Shen Shanshan,Hu Weihui.AGV path planning considering alternative paths based on time window of road section[J].Chinese Journal of Engineering Design,2018(2):200-208.)
[8]劉國棟,曲道奎,張雷.多AGV調度系統中的兩階段動態路徑規劃[J].機器人,2005,27(3):210-214. (Liu Guodong,Qu Daokui,Zhang Lei.Two-stage dynamic path planning for multi-AGV scheduling system[J].Robot,2005,27(3):210-214.)
[9]Maza S,Castagna P.A performance-based structural policy for conflict-free routing of bi-directional automated guided vehicles[J].Computers in Industry,2005,56(7):719-733.
[10]賀麗娜,樓佩煌,錢曉明,等.基于時間窗的自動導引車無碰撞路徑規劃[J].計算機集成制造系統,2010,16(12):2630-2634. (He Lina,Lou Peihuang,Qian Xiaoming,et al.Conflict-free automated guided vehicles routing based on time window[J].Computer Integrated Manufacturing Systems,2010,16(12):2630-2634.)
[11]喬巖,錢曉明,樓佩煌.基于改進時間窗的AGVs避碰路徑規劃[J].計算機集成制造系統,2012,18(12):2683-2688. (Qiao Yan,Qian Xiaoming,Lou Peihuang.Improved time window based on collision-free automated guided vehicle system routing[J].Computer Integrated Manufacturing Systems,2012,18(12):2683-2688.)
[12]Diestel R.Graph-theory[J].Mathematical Gazette,2000,173(502):67-128.