郭嘉明,吳旭東,林詩濤,曾志雄,沈 昊,魏鑫鈺,呂恩利
基于多參數耦合的蓄冷溫控箱冷板對流換熱參數優化
郭嘉明,吳旭東,林詩濤,曾志雄,沈 昊,魏鑫鈺,呂恩利※
(1. 華南農業大學南方農業機械與裝備關鍵技術教育部重點實驗室,廣州 510642;2. 華南農業大學工程學院,廣州 510642)
蓄冷溫控箱利用低溫相變材料儲存冷量,通過緩慢釋放調節并保持箱內溫度,目前仍存在冷量釋放速率無法控制、剩余冷量預測難等問題,而蓄冷板表面對流換熱系數直接影響冷量的釋放速率。針對以上問題,搭建了蓄冷板表面對流換熱系數測量試驗平臺,研究不同環境及蓄冷板參數對表面對流換熱系數的影響。采用二次回歸正交試驗設計方案,探究了蓄冷區進口空氣流速、進口空氣溫度、蓄冷板傳熱面積以及蓄冷板間距對表面對流換熱系數的影響,并對結果進行分析,建立了表面對流換熱系數二階預測模型,獲得影響表面對流換熱系數大小較顯著的因素及較優的參數組合。試驗結果表明:進口空氣溫度和蓄冷板傳熱面積的交互效應最大;通過響應曲面法建立的表面對流換熱系數預測模型,得到最優參數組合為:進口空氣流速4 m/s,進口空氣溫度25 ℃,蓄冷板傳熱面積0.455 m2,蓄冷板間距0.04 m,模型決定系數值為0.927 4,變異系數為5.78%。回歸模型計算結果與試驗結果吻合,最大誤差為3.58%,平均相對誤差為2.69%,表明該模型可以快速、準確地預測不同條件下的蓄冷板表面對流換熱系數。試驗結果為蓄冷溫控箱冷量釋放速率精準調控及剩余冷量預測提供參考。
傳熱;溫度;蓄冷運輸箱;蓄冷板;對流換熱系數;正交試驗;響應曲面法
低溫冷鏈運輸可以有效降低農產品在流通過程中的損耗[1-3]。華南農業大學研制的蓄冷溫控箱利用低谷電制冷,將冷量儲存在蓄冷板中[4-5],在運輸過程中,通過風機引出冷量,使箱內溫度保持在適宜的范圍內[6-7],具有運輸靈活[8]、保溫性能優良[9]、運行可靠[10]等優點,但仍存在冷量釋放速率無法控制、剩余冷量預測難等問題。該溫控箱主要由圍護結構、蓄冷板、控制系統及循環風道組成,箱體內部劃分為保鮮區和蓄冷區。保鮮區與蓄冷區通過循環風道連接,風道內設有風機進行空氣循環。通過風機將蓄冷板冷量引入保鮮區,通過控制風機啟停來調節保鮮區空氣溫度。項目組前期研究[11]表明蓄冷溫控箱單次降溫時長隨著降溫次數增多而增大,說明蓄冷板冷量釋放速率隨保溫時長變化,在蓄冷劑未完全相變的情況下,蓄冷板的冷量釋放速率主要受蓄冷板的表面對流換熱系數影響[12-13]。通過確定蓄冷板的表面對流換熱系數,結合空氣與蓄冷板表面溫差可以計算蓄冷板在特定時間內的冷能釋放量[14],從而獲得剩余冷量。因此準確獲取蓄冷板表面換熱系數可為冷量釋放速率控制和剩余冷量預測提供依據[15]。
目前,國內外關于對流換熱系數測量及預測方法相關研究較廣泛,且建立準確的對流換熱系數模型對預測能耗具有重要意義[16-18]。文獻[19]采用試驗方法對干冰顆粒的對流換熱系數進行了測量,證實了試驗方法的可靠性。文獻[20-21]通過試驗確定了對流換熱系數,提出了Nusselt關聯式,計算結果與相關文獻吻合較好。文獻[22]對錐形量熱計內的試樣在不同熱通量下的對流換熱系數進行了預測,并通過試驗驗證了模型的準確性。對流換熱系數的影響因素較多,如空氣質量流量、空氣溫度[23-24]的變化及換熱板翅片間距[25]等,但針對保鮮用蓄冷板對流換熱系數的研究相對較少,因此有必要對其進行深入研究。
本文主要結合蓄冷溫控箱實際需求,根據課題組前期研究基礎和現有試驗條件,搭建了蓄冷板表面對流換熱系數測量試驗平臺,獲取了蓄冷板的表面對流換熱系數變化規律。試驗采用響應曲面法研究了不同進口空氣流速、空氣溫度、蓄冷板間距以及傳熱面積對表面對流換熱系數的影響,建立了表面對流換熱系數二階預測模型,確定了蓄冷板表面對流換熱系數較顯著的影響因素組合,為蓄冷溫控箱的冷源釋放速率精準調控和剩余冷量預測的提高提供依據。
為了提高試驗研究效率,更準確地研究蓄冷板表面對流換熱系數與其影響因素的關系,搭建了蓄冷板對流換熱系數測量試驗平臺,如圖1所示,主要由蓄冷區、制冷組、加熱管、管道風機和溫控器組成。裝置實物圖如圖2所示,平臺支撐結構由鋁合金材料搭建而成。
蓄冷區內部采用0.01 m厚亞克力板粘接而成,尺寸(長×寬×高)為0.7 m×0.2 m×0.2 m,為了減少冷量向環境的散熱損失,外部使用0.05 m厚聚氨酯板圍護保溫[26]。通風管道采用內直徑為0.11 m的PVC材料,外部采用0.05 m厚聚乙烯棉包裹。
蓄冷區進口空氣溫度和蓄冷板表面溫度采用pt100溫度傳感器(粘貼型A級、精度±0.15、測量范圍?60~180 ℃)進行采集,采用無紙記錄儀(SIN-R9600、精度為2%、杭州聯測自動化技術有限公司)記錄傳感器的數值(數據記錄頻率是1次/s),通過存儲器導入計算機進行數據分析。使用調速器控制管道風機(功率6 W、額定轉速6 200 r/min、接管口徑0.11 m)調節管道內空氣流速。通過風速儀(型號Testo 410i、量程0.4~30 m/s、精度±(0.2m/s+2%測量值))對蓄冷區進口空氣流速進行標定(相同風速下對蓄冷區進口截面處五個不同位置進行測量,每次測量誤差在±0.1 m/s視為標定完成),獲得蓄冷區進口流速的范圍是0~4.5 m/s,進口空氣溫度由溫控器(型號PY-SM5、測溫范圍?40~120 ℃)控制制冷機組(功率180 W)和加熱管(功率500 W)實現。試驗采用水作為蓄冷劑。蓄冷劑和保溫材料物性參數如表1所示。

表1 材料物性參數
為了解蓄冷板在強制對流條件下的換熱特性,試驗設置了不同影響因素,如表2所示,考察各因素對蓄冷板表面對流換熱系數的影響。試驗在室內進行,控制環境溫度為(25±1)℃。開啟制冷機組與管道風機,通過風速儀對進口空氣流速值進行標定后,將裝置內部空氣預冷至試驗所需溫度。調節溫控器溫度控制區間,控制制冷機組和加熱管啟閉,使進口空氣溫度穩定(試驗所需溫度±0.3 ℃)。放入完全凍結的蓄冷板(內部中心溫度低于?15 ℃時視為完全凍結,每塊蓄冷板含蓄冷劑約3 kg)進行試驗。每組試驗持續60 min,使用無紙記錄儀記錄數據并存入計算機。每組試驗重復2次,取平均值作為最終結果。
蓄冷區進口空氣流速標定:將風速儀固定在蓄冷區空氣進口截面處,通過變頻器調節管道風機的頻率,測定蓄冷區進口空氣流速,當風速儀讀數穩定時,視為標定完成。
蓄冷板表面溫度測定:在蓄冷板表面均勻粘貼4個溫度傳感器,取4個溫度的平均值表征蓄冷板表面溫度。
蓄冷區進出口空氣溫度測定:在蓄冷區與管道結合處各布置2個溫度傳感器,取2個溫度傳感器的平均值來表征蓄冷區進出口空氣溫度。
表面對流換熱系數:釋冷過程中,蓄冷板表面以對流換熱為主,采用對流換熱系數表征空氣與蓄冷板之間的熱交換過程[27]。表面對流換熱系數計算如式(1)所示。
響應曲面法適用于分析有交互作用的多影響因素與響應值之間的關系,從而建立多項式回歸模型[28-30]。根據二次回歸正交試驗設計方案進行4因素5水平試驗,分析蓄冷區進口空氣溫度1、進口空氣流速2、蓄冷板傳熱面積3、蓄冷板間距4對蓄冷板表面對流換熱系數的影響。根據前期預試驗的經驗,并結合文獻和試驗條件,1、2和4因素的水平按照參數變化區間Δ進行變化取值,3的Δ通過改變蓄冷板的尺寸進行變化。部分試驗因素如圖3所示,試驗因素水平編碼如表2所示。

表2 試驗因素及水平
使用Design-expert10.0.1軟件對試驗因素進行分析,結果見表3。進行模型方差分析和顯著性檢驗,結果如表4所示。
對表4的試驗結果擬合后得到蓄冷區進口空氣流速(1)、進口空氣溫度(2)、蓄冷板傳熱面積(3)、蓄冷板間距(4)等4個因素與蓄冷板表面對流換熱系數()之間的二次多項式方程為
=306.3?17.21?1.12?1 361.73?230.24?0.212+
68.513?14.314+23+3.524+390.134?
0.512+0.122+1 543.732+2 282.942(2)

表3 試驗設計及結果
由表5可知,上述模型2為0.927 4、校正系為0.878 9、變異系數CV為5.78%,表示回歸關系可以解釋因變量87.89%的變化。模型總體的變異概率小于0.000 1,表明該模型可以較準確表征表面對流換熱系數與進口空氣流速、空氣溫度、蓄冷板傳熱面積和間距的關系。對模型總體進行檢驗,模型的失擬度的變異概率不明顯,表明模型擬合較好,影響因素和表面對流換熱系數之間呈非線性關系。由表4可知,4個因素的影響因子值分別為:進口空氣流速114.34,蓄冷板傳熱面積52.26,進口空氣溫度30.80,蓄冷板間距1.99,其相對數值占比分別為57.34%、26.21%、15.45%、1.00%,可見進口空氣流速對換熱系數的影響比率占一半以上,蓄冷板傳熱面積和進口空氣溫度則分別約占四分之一及六分之一,而蓄冷板間距對換熱系數的影響比率僅為百分之一。由表4可得,根據值越大因素影響越顯著的原理,因素間的交互作用對表面對流換熱系數影響顯著性依次為:13>12。

表4 方差分析及誤差統計
注:影響顯著(<0.05);影響不顯著(>0.05)。
Note: The effect was significant (<0.05); The effect was not significant (>0.05).

表5 模型可信度分析
圖4a為表面對流換熱系數預測值與試驗實際值對應關系圖。圖中的斜線表示表面對流換熱系數試驗值與預測值吻合,試驗值集中分布在斜線兩側,說明試驗值與預測模型擬合度較好。圖4b為表面對流換熱系數擬合殘差圖,其目的在于考察觀測數據是否為異常點,若回歸擬合程度低,則殘差值越大,圖中的各個點離斜線距離越遠[31]。從圖4b可以看出,各個點平均分布在斜線兩邊且靠近直線,說明擬合度較好,試驗結果可靠。
各因素對蓄冷板表面對流換熱系數的影響如圖5所示。從圖5可以看出,在試驗因素取值范圍內,隨著進口空氣流速的增大,空氣質量流量增大,蓄冷板表面對流換熱系數呈上升趨勢;隨著進口空氣溫度的增大,蓄冷板表面對流換熱系數呈上升趨勢,由公式(1)可知,分子部分為瞬態熱流量,進口空氣溫度越大,其與蓄冷板表面的溫差越大,故對流換熱系數增大,拐點的出現是由于瞬態熱流量的變化比例與空氣及蓄冷板換熱溫差的變化比例出現了主次原因的轉變;隨著蓄冷板傳熱面積的增加,蓄冷板表面對流換熱系數呈上升趨勢,由于對流換熱系數隨瞬態熱流量的增大而增大,通過改變蓄冷板的尺寸,增大了其傳熱面積,使得空氣與蓄冷板表面熱交換更加充分,從而增大了瞬態熱流量,且瞬態熱流量增大的比例比傳熱面積增大的比例更大。隨著蓄冷板間距的增大,蓄冷板表面對流換熱系數變化趨勢不明顯。由表4可得,根據假設檢驗原理,<0.05說明該因素對模型影響顯著,>0.05說明該因素對模型影響不顯著,所以4個因素中,進口空氣流速的變化對表面對流換熱系數的影響顯著(<0.05),蓄冷板間距影響程度不顯著(>0.05),進口空氣溫度對表面對流換熱系數的影響顯著(<0.05),蓄冷板傳熱面積影響程度顯著(<0.05)。因此,在蓄冷溫控箱調控空氣溫度時,可以通過調節進口空氣流速,選擇合適的進口空氣溫度、蓄冷板傳熱面積,實現蓄冷板表面傳熱系數的控制,從而實現冷量釋放速率的調控[32]。
根據回歸方程繪制圖6所示響應面,分別固定進口空氣流速、進口空氣溫度、蓄冷板傳熱面積、間距其中2個因素,分析另外2個因素及其交互作用對表面對流換熱系數的影響。
由圖6可以看出各因素交互作用對蓄冷板表面對流換熱系數的影響。從圖6a可以看出,在固定進口空氣溫度條件下,蓄冷板表面對流換熱系數隨著進口空氣流速的增大而增大[33]。進口空氣溫度的進一步增加對表面對流換熱系數的影響程度增大,且表面對流換熱系數會隨著空氣溫度升高而上升,這與文獻[34]中獲得的結果接近。
從圖6b可以看出,當蓄冷板傳熱面積一定時,表面對流換熱系數與進口空氣流速成正比;當蓄冷板傳熱面積較小時,進口空氣流速對表面對流換熱系數的影響較小。從圖6d可以看出,當進口空氣溫度一定時,蓄冷板表面對流換熱系數隨著傳熱面積的增加呈先下降后上升的趨勢。當蓄冷板傳熱面積和進口空氣溫度分別為0.404 m2、15 ℃時,表面對流換熱系數值最小。
從響應面波動程度判斷兩因素交互作用對表面對流換熱系數的影響,響應面波動越大,說明該因素對表面對流換熱系數的影響越顯著,響應面波動平緩則相反。從圖6a、6b、6d可以看出進口空氣溫度與進口空氣流速、蓄冷板傳熱面積與進口空氣流速、蓄冷板傳熱面積與進口空氣溫度的交互作用對表面對流換熱系數影響程度較大,其余各組對表面對流換熱系數的影響程度較小。
為驗證試驗的不確定性、可重復性以及得到的蓄冷板表面對流換熱系數回歸模型的預測效果。進行六組驗證試驗,根據回歸模型計算出表面對流換熱系數與試驗值進行對比,如表6所示。以蓄冷板表面對流換熱系數的最大值為指標,通過Design expert軟件分析得到最優參數組合為:進口空氣流速4 m/s,進口空氣溫度25 ℃,蓄冷板傳熱面積0.455 m2,蓄冷板間距0.04 m,在此條件下進行3組(1、2、3號)平行試驗,蓄冷板表面對流換熱系數預測值為49.10 W/(m2·℃),模型預測值與試驗值誤差分別為2.06%、2.09%、3.11%,平均誤差為2.42%;在前者的條件下調整風速為1 m/s進行3組(4、5、6)平行試驗,蓄冷板表面對流換熱系數預測值為34.20 W/(m2·℃),模型預測值與試驗值誤差分別為2.61%、3.58%、2.68%,平均誤差為2.96%。6組試驗最大誤差為3.58%,平均相對誤差為2.69%,試驗結果與預測值基本吻合,驗證了回歸模型的精確性。

表6 模型驗證結果
本文針對蓄冷溫控箱冷量釋放調控等問題,搭建了蓄冷板對流換熱試驗平臺,根據二次回歸正交試驗設計方案進行4因素5水平試驗,采用Design Expert中的Central Composite Design方法分析蓄冷板對流換熱特性,得出了以下結論:
1)通過正交試驗獲得的表面對流換熱系數預測模型模型擬合度良好,模型決定系數值為0.927 4,變異系數為5.78%,表明試驗設計是可行的。對模型進行了試驗驗證,6組試驗最大誤差為3.58%,平均相對誤差為2.69%,表明該模型具有較高的精度,能夠很好的用于蓄冷板表面對流換熱系數的預測。
2)根據方差分析及模型參數可知,4個因素的影響因子分別為:進口空氣流速114.34,蓄冷板傳熱面積52.26,進口空氣溫度30.80,蓄冷板間距1.99,其相對數值占比分別為57.34%、26.21%、15.45%、1.00%。4個因素中,進口空氣流速的變化對表面對流換熱系數的影響程度較大,蓄冷板間距影響程度較小。蓄冷板表面對流化熱系數隨著進口空氣流速、空氣溫度、蓄冷板傳熱面積的增加呈上升趨勢,隨著蓄冷板間距的增加,蓄冷板表面對流換熱系數的變化趨勢不明顯。交互項中,進口空氣流速與溫度、進口空氣流速與蓄冷板傳熱面積對蓄冷板表面對流換熱系數有顯著影響。
研究結果表明,進口空氣流速、進口空氣溫度和蓄冷板傳熱面積是影響蓄冷板表面對流換熱的關鍵因素,兩兩交互作用也會產生較大的影響。結論可為蓄冷溫控箱的冷量釋放速率精準調控和剩余冷量預測的提高提供參考。值得討論的是,對于其他蓄冷系統或裝置,只需將以上影響因素的數值輸入到本文建立的對流換熱系數模型即可獲得對應的蓄冷板對流換熱系數。因此,本文研究結果具有普遍適用性,能為相關蓄冷系統冷量釋放控制提供依據。另外,空氣濕度、運輸振動可能也會對蓄冷板表面對流換熱系數產生影響,課題組將對此進行深入研究。
[1] Han Jiawei, Zuo Min, Zhu Wenying, et al. A comprehensive review of cold Chain logistics for fresh agricultural products: Currentstatus, challenges, and future trends[J]. Trends in Food Science & Technology, 2021 109: 536-551.
[2] 鐘曉峰,廖軍,周炯,等. 我國鐵路冷藏運輸裝備技術現狀及發展探[J]. 軌道交通裝備與技術,2020(6):1-3.
Zhong Xiaofeng, Liao Jun, Zhou Jiong, et al. Status and development of refrigerated transport equipment in Chinese Railway[J]. Rail Transportation Equipment and Technology, 2020(6): 1-3. (in Chinese with English abstract)
[3] 袁春蘭. 基于物聯網技術的果蔬冷鏈物流實時監測系統研究[J]. 無線互聯科技,2020,17(19):155-156.
Yuan Chunlan. Research on real-time monitoring system of cold chain logistics of fruit and vegetable based on Internet of things[J]. Wireless Internet Technology, 2020, 17(19): 155-156. (in Chinese with English abstract)
[4] Tassou S A, De-Lille G, Ge Y T. Food transport refrigeration : Approaches to reduce energy consumption and environmental impacts of road transport[J]. Applied Thermal Engineering, 2008, 29(8): 1467-1477.
[5] 劉廣海,吳俊章,Foster A,等. 多溫蓄冷車設計與車內溫度場分析[J]. 農業機械學報,2019,50(4):309-316.
Liu Guanghai, Wu Junzhang, Foster A, et al. Design of multi-temperature cold storage vehicle and analysis on temperature field in vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 309-316. (in Chinese with English abstract)
[6] 范中陽,劉升,武衛東,等. 蓄冷板擺放方式對冷鏈宅配過程的影響[J]. 制冷技術,2017,37(6):51-54.
Fan Zhongyang, Liu Sheng, Wu Weidong, et al. Effect of laying modes of cold plates on cold chain delivery process[J]. Chinese Journal of Refrigeration Technology, 2017, 37(6): 51-54. (in Chinese with English abstract)
[7] 伍景瓊,韓春陽,賀瑞. 生鮮食品冷鏈配送相關理論研究綜述[J]. 華東交通大學學報,2016,33(1):45-54.
Wu Jingqiong, Han Chunyang, He Rui. Theoretical research review of cold chain distribution for fresh food[J]. Journal of East China Jiaotong University, 2016, 33(1): 45-54. (in Chinese with English abstract)
[8] 羅大偉,宋海燕,吳迪. EPP保溫箱溫度場的數值模擬及試驗驗證[J]. 包裝與食品機械,2020,38(3):45-50.
Luo Dawei, Song Haiyan, Wu Di. Numericalsimulation and experimental verification of temperature field of EPP incubator[J]. Packaging and Food Machinery, 2020, 38(3): 45-50. (in Chinese with English abstract)
[9] 張秋玉,臧潤清,劉升,等. 可裝卸式蓄冷保溫箱冷鏈運輸效果[J]. 制冷學報,2017,38(6):105-110.
Zhang Qiuyu, Zang Runqing, Liu Sheng, et al. Effect of cold chain transportation on assemble-able cold-storage incubator[J]. Journal of Refrigeration, 2017, 38(6): 105-110. (in Chinese with English abstract)
[10] 謝如鶴,唐海洋,陶文博,等. 基于空載溫度場模擬與試驗的冷藏車冷板布置方式優選[J]. 農業工程學報,2017,33(24):290-298.
Xie Ruhe, Tang Haiyang, Tao Wenbo, et al. Optimization of cold-plate location in refrigerated vehicles based on simulation and test of no-load temperature field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 290-298. (in Chinese with English abstract)
[11] 李斌,沈昊,郭嘉明,等. 無源蓄冷控溫運輸箱設計與試驗[J]. 農業機械學報,2020,51(9):358-365.
Li Bin, Shen Hao, Guo Jiaming, et al. Design and test of passive cold storage temperature control box[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 358-365. (in Chinese with English abstract)
[12] 丁亞軍,徐晶,丁凡,等. 圓柱鋰電池表面自然對流換熱系數仿真估算[J]. 電源技術,2020,44(9):1256-1259.
Ding Yajun, Xu Jing, Ding Fan, et al. Simulation and estimation of natural convection heat transfer coefficient on surface of cylindrical lithium ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(9): 1256-1259. (in Chinese with English abstract)
[13] 邢小龍,蒲文灝,戴亞東,等. 輸送LNG的真空保溫管道的換熱研究[J]. 能源化工,2020,41(5):48-53.
Xing Xiaolong, Pu Wenhao, Dai Yadong, et al. Study on the heat dissipation of vacuum insulation pipe for conveying LNG[J]. Energy Chemical Industry, 2020, 41(5): 48-53. (in Chinese with English abstract)
[14] 呂恩利,沈昊,劉妍華,等. 蓄冷保溫箱真空隔熱蓄冷控溫傳熱模型與驗證[J]. 農業工程學報,2020,36(4):300-306.
Lv Enli, Shen Hao, Liu Yanhua, et al. Heat transfer model for vacuum insulated thermal cooling storage temperature control and verification in cold storage incubator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 300-306. (in Chinese with English abstract)
[15] 黃光勤,楊小鳳,盧軍. 夜空輻射器的換熱特性及應用研究[J]. 建筑科學,2016,32(6):123-128.
Huang Guangqin, Yang Xiaofeng, Lu Ju. Study on the heat transfer characteristic and application of nocturnal radiator[J]. Building Science, 2016, 32(6): 123-128. (in Chinese with English abstract)
[16] Samy Iousef, Hamid Montazeri, Bert Blocken, et al. Impact of exterior convective heat transfer coefficient models on the energy demand prediction of buildings with different geometry[J]. Building Simulation, 2019, 12(5) : 797-816.
[17] Hazim B. Awbi. Calculation of convective heat transfer coefficients of room surfaces for natural convection[J]. Energy & Buildings, 1998, 28(2): 219-227.
[18] Dos Santos Gerson H, Taborda Guilherme A C, Lima Luiz E M. Numerical assessment of convective heat transfer coefficients in buildings conditioned by parallel split systems[J]. Arabian Journal for Science and Engineering, 2020, 45(11): 8945-8953.
[19] Garcia Gutierrez L M, Hernández Jiménez F, Cano Pleite E, et al. Experimental evaluation of the convection heat transfer coefficient of large particles moving freely in a fluidized bed reactor[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119612.
[20] Patkavak Mert, Demir Hakan. An experimental study for determination of convective heat transfer coefficients on cooling monofilament[J]. International Journal of Heat and Mass Transfer, 2020, 149(23): 119255.
[21] Antonio P, Alessio S, Cecilia G. Convection heat transfer coefficients in thermoacoustic heat exchangers: An Experimental Investigation[J]. Energies, 2019, 12(23) : 4525.
[22] Das M K, Tariq A, Panigrahi P K, et al. Estimation of convective heat transfer coefficient from transient liquid crystal data using an inverse technique[J]. Inverse Problems in Science and Engineering, 2005, 13(2): 133-155.
[23] 時國華,余丹,蔣可,等. 強制對流空浴式深冷翅片管氣化特性研究[J]. 低溫與超導,2020,48(12):13-18.
Shi Guohua, Yu Dan, Jiang Ke, et al. Study on vaporization characteristics of forced draft cryogenic finned tube heated by air[J]. Cryogenics& Superconductivity, 2020, 48(12): 13-18. (in Chinese with English abstract)
[24] Lao Jiewei, Fu Qianmei, Wang Weilong, et al. Heat transfer characteristics of printed circuit heat exchanger with supercritical carbon dioxide and molten salt[J]. Journal of Thermal Science, 2021,30(3):880-891.
[25] Roy K, Das B. Convective heat transfer from an inclined isothermal fin array: A computational study[J]. Thermal Science and Engineering Progress, 2020, 17: 100487.
[26] 魯瑞榮,高晴. 寒冷地區建筑保溫結構節能設計研究[J].建筑與預算,2020(6):42-44.
Lu Ruirong, Gao Qing. Study on energy saving design of building insulation insulation structure in cold area[J]. Building and Budgetig, 2020(6): 42-44. (in Chinese with English abstract)
[27] 李建立,劉孟然,許明明,等. 板狀相變蓄冷單元快速釋冷特性實驗研究[J]. 北京石油化工學院學報,2019,27(1):14-18,23.
Li Jianli, Liu Mengran, Xu Mingming, et al. Experimental study of quick cold-release characteristic of plate-shaped phase change cold-storage units[J]. Journal of Beijing Institute of Petrochemical Technology, 2019, 27(1): 14-18, 23. (in Chinese with English abstract)
[28] Swain G, Singh S, Sonwani R K, et al. Removal of Acid Orange 7 dye in a packed bed bioreactor: Process optimization using response surface methodology and kinetic study[J]. Bioresource Technology Reports, 2021, 13: 100620.
[29] 鄒舒暢,蘇工兵,邵運果. 基于離散元法的苧麻莖稈分離裝置仿真優化與試驗[J]. 中國農機化學報,2017,38(1):60-67.
Zou Shuchang, Su Gongbing, Shao Yunguo. Simulation optimization and experiment of separation device for ramie stalks based on discrete element method[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(1): 60-67. (in Chinese with English abstract)
[30] 安靜,周龍濤,賈悅,等. 新疆油田含油污泥破乳-離心脫水工藝優化[J]. 環境工程學報,2021,15(8):2721-2729.
An Jing, Zhou Longtao, Jia Yue, et al. Process optimization of demulsification and centrifugal dewatering of oily sludge in Xinjiang oilfield[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2721-2729. (in Chinese with English abstract)
[31] 何為,薛衛東,唐斌. 優化試驗設計方法及數據分析[M].北京:化學工業出版社,2012:99-102,170-176.
[32] 王方,付一珂,范曉偉,等. LNG重卡無相變換熱冷量利用空調系統設計[J]. 低溫工程,2016(1):64-68.
Wang Fang, Fu Yike, Fan Xiaowei, et al. Study on heavy truck air conditioning system utilizing LNG cold energy based on heat exchange without phasechange[J]. Cryogenics, 2016(1): 64-68.(in Chinese with English abstract)
[33] Jundika C K, Benitta A C, Agus P S. Laminar convective heat transfer in helical tube with twisted tape insert[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119309.
[34] Selvam C, Solaimalai Raja R, Mohan Lal D, et al. Overall heat transfer coefficient improvement of an automobile radiator with graphene based suspensions[J]. International Journal of Heat and Mass Transfer, 2017, 115: 580-588.
Parameter optimization on convective heat transfer of cold plate for cold storage temperature control box based on multi-parameter coupling
Guo Jiaming, Wu Xudong, Lin Shitao, Zeng Zhixiong, Shen Hao, Wei Xinyu, Lyu Enli※
(1.,,,510642,; 2.,,510642,)
A transport container with a controlled temperature was developed, where the temperature was regulated using low-temperature phase-change materials. The cold energy was first stored in low-temperature phase-change materials and then released when the temperature in the container was out of target range under an intelligent control system. However, there were still some issues that need to be solved, such as the difficulties in controlling the release rate of cold energy, the prediction of remaining cold energy during the transportation work. The release rate of cold energy depended directly on the convective heat transfer coefficient between the surface of the cold storage plate and the ambient air. In this study, an experimental platform was developed to investigate the influence of different environments and parameters of cold storage plates on the convective heat transfer coefficient between the cold storage plate surface and the ambient air. A quadratic regression orthogonal experiment was adopted to clarify the coupling effects among the factors, including the air velocity and temperature at the entrance of the cool storage area, heat transfer area of the cold storage plate, and the space between them on the surface convective heat transfer coefficient. After that, the experimental data were analyzed. A second-order prediction model of surface convective heat transfer coefficient was built that the relationships between the influence factors and the surface convective heat transfer coefficient and the factors with significant effects were obtained, as well as the optimal values of such factors. Consequently, there was the most significant interaction between the entrance air temperature and the heat transfer area of the cold storage plate. The prediction model of surface convective heat transfer coefficient built by response surface method presented a higher accuracy, where the best combination of parameters was velocity=4 m/s, temperature=25 ℃, area=0.455 m2, spacing=0.04 m, and the determination coefficient value was 0.927 4 and the coefficient of variation was 5.78%. The calculated results of such regression model were in good agreement with the experimental, with the maximum error of 3.58% and an average relative error of 2.69%, indicating that such model can be used to quickly and accurately predict the convective heat transfer coefficient between the surface of cold storage plate and the ambient air under different conditions. The finding can provide accurate control on the release rate of cold energy in the temperature phase-change materials, and the prediction of remaining cooling energy for transport containers with controlled temperature.
heat transfer; temperature; cold-storage container; cold storage plate; convection transfer rate; orthogonaltest; response surface method
郭嘉明,吳旭東,林詩濤,等. 基于多參數耦合的蓄冷溫控箱冷板對流換熱參數優化[J]. 農業工程學報,2021,37(19):228-235.doi:10.11975/j.issn.1002-6819.2021.19.026 http://www.tcsae.org
Guo Jiaming, Wu Xudong, Lin Shitao, et al. Parameter optimization on convective heat transfer of cold plate for cold storage temperature control box based on multi-parameter coupling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 228-235. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.19.026 http://www.tcsae.org
2021-06-15
2021-09-28
廣東省省級農業科技創新及推廣項目(2020KJ101);廣東省自然科學基金項目(2020A1515010967);農產品保鮮物流共性關鍵技術研發創新團隊(2020KJ145);廣東省重點領域研發計劃資助(2019B020225001);國家自然科學基金項目(31901736,31971806);廣州市農村科技特派員項目(GZKTP201921)
郭嘉明,博士,副教授,研究方向為果蔬冷鏈物流技術與裝備,Email:jmguo@scau.edu.cn
呂恩利,博士,副教授,研究方向為農業工程。Email:enlilv@scau.edu.cn
10.11975/j.issn.1002-6819.2021.19.026
S229
A
1002-6819(2021)-19-0228-08