張 怡,關 晶,徐 凡,梁秀睿,張譽馨,金佳琦,傅繼華
? 藥理與臨床 ?
鹿血晶通過降低腎小管上皮細胞的5-羥色胺合成及降解抑制順鉑誘導的腎損傷
張 怡,關 晶,徐 凡,梁秀睿,張譽馨,金佳琦,傅繼華*
中國藥科大學基礎醫學與臨床藥學學院,江蘇 南京 210009
探討鹿血晶保護腎臟以及抑制順鉑誘導腎損傷的作用機制。人腎小管上皮HK-2細胞設對照組、模型組及鹿血晶(160、400、1000 μg/mL)組和單胺氧化酶A(monoamine oxidase A,MAO-A)抑制劑氯吉蘭(15 μmol/L)組,加入藥物預處理1 h后加入順鉑(20 μmol/L)刺激24 h誘導細胞損傷。雄性ICR小鼠隨機分為對照組、模型組及鹿血晶(0.78 g/kg)組,鹿血晶組預給藥7 d,然后模型組及鹿血晶組ip順鉑(25 mg/kg)誘導腎損傷,繼續治療3 d后處死動物。檢測細胞內丙二醛(malondialdehyde,MDA)、還原型谷胱甘肽(glutathione,GSH)、三磷酸腺苷(adenosine triphosphate,ATP)水平、超氧化物歧化酶(superoxide dismutase,SOD)活性、上清液中腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、白細胞介素-1β(interleukin-1β,IL-1β)水平,以及細胞及小鼠腎組織活性氧(reactive oxygen species,ROS)、5-羥色胺(5-hydroxytryptamine,5-HT)水平;采用熒光探針DCFH-DA、Mito-Tracker Red CMXRos及熒光染料Hoechst 33342分別檢測細胞內ROS含量、定位及細胞凋亡情況;Western blotting法檢測細胞B淋巴細胞瘤-2(B cell lymphoma-2,Bcl-2)、Bcl-2相關X蛋白(Bcl-2 associated X,Bax)、半胱氨酸蛋白酶-3(Caspase-3)、Caspase-9、NADH脫氫酶1(NADH dehydrogenase 1,ND1)、細胞色素B(cytochrome b,CYTB)、ATP合成酶亞單位6(ATP synthase 6,ATP6)、核因子-κB p65(nuclear factor kappa-B,NF-κB p65)、磷酸化NF-κB p65(phosphorylated NF-κB p65,p-NF-κB p65)、抑制子κBα(inhibitor of NF-κB,IκBα)、p-IκBα蛋白表達,細胞及小鼠腎組織色氨酸羥化酶1(tryptophan hydroxylase,Tph1)、芳香簇氨基酸脫羧酶(aromatic amino acid decarboxylase,AADC)、5-HT2A受體(5-HT2Areceptors,5-HT2AR)、MAO-A蛋白表達;采用蘇木素-伊紅(HE)染色檢測小鼠腎組織病理損傷;采用免疫組化法檢測小鼠腎組織Tph1、AADC、5-HT2AR、MAO-A表達。與模型組比較,鹿血晶可抑制HK-2細胞內ROS、MDA及上清液中TNF-α、IL-1β水平(<0.05、0.01),降低細胞內GSH、SOD水平(<0.05、0.01),抑制細胞凋亡。鹿血晶(1000 μg/mL)組與氯吉蘭組的作用效果接近,兩組對順鉑誘導NF-κB p65磷酸化、細胞凋亡激活(Bax、Caspase-3、Caspase-9表達上調及Bcl-2表達下調)、呼吸鏈功能下降(ND1、CYTB、ATP6表達下調及ATP水平降低)的逆轉作用也接近。并且,鹿血晶(1000 μg/mL)組可明顯抑制順鉑誘導的HK-2細胞Tph1、AADC、5-HT2AR、MAO-A表達上調以及5-HT含量升高(<0.05、0.01),而氯吉蘭組使5-HT水平進一步升高(<0.01)。熒光探針檢測表明,線粒體是順鉑刺激時HK-2細胞產生ROS的部位,且鹿血晶(1000 μg/mL)組和氯吉蘭組對其有相似的抑制效果。HE染色顯示,順鉑致小鼠腎組織損傷的部位主要在近端腎小管上皮細胞,免疫組化顯示該部位也是Tph1、AADC、5-HT2AR、MAO-A表達上調最明顯的部位。鹿血晶可抑制順鉑誘導的Tph1、AADC、5-HT2AR、MAO-A蛋白表達的上調及腎組織5-HT、ROS含量升高(<0.01)。鹿血晶活性成分抑制順鉑誘導腎損傷的機制可能是直接作用于腎臟近端腎小管上皮細胞,抑制順鉑對細胞Tph1、AADC、5-HT2AR、MAO-A表達的上調,從而抑制細胞的5-HT合成及線粒體5-HT降解,達到抑制線粒體ROS生成、保護呼吸鏈,最終抑制氧化應激、炎癥、細胞凋亡的效果。
鹿血晶;近端腎小管上皮細胞;線粒體;5-羥色胺合成;5-羥色胺降解;活性氧
鹿血為鹿科動物梅花鹿和馬鹿的血液,系名貴中藥。研究表明,鹿血可以增加放化療患者的白細胞,在延緩衰老、增強免疫、抗疲勞、保護腎臟等方面也有明顯療效[1-2],故臨床上常輔助用于腫瘤患者放化療后的康復性治療。常用的廣譜抗腫瘤藥物順鉑[3]可在腎臟的近端腎小管積累而造成急性腎損傷(acute kidney injury,AKI)[4-6],這是臨床上順鉑等化療藥物難以避免的不良反應,而鹿血類產品可以明顯保護腎臟、減輕順鉑對腎臟的損傷作用。本課題組前期研究證實,鹿血類產品——鹿血晶(一種鹿血的冷凍干燥制劑)可保護小鼠腎臟,明顯減輕順鉑誘導的AKI、保護腎功能[7]。
AKI是指患者腎功能在短時間內迅速下降,導致血清肌酐和尿素氮濃度急劇升高,腎臟出現明顯病理損傷[8]的一種臨床表現。研究發現,AKI時腎臟的主要病變區域為近端腎小管上皮細胞,病變細胞的線粒體呼吸鏈受損,導致活性氧(reactive oxygen species,ROS)生成增多,從而使腎組織出現氧化應激、炎癥、細胞凋亡[9-10]。鹿血晶可以保護腎臟并抑制順鉑誘導的腎臟ROS產生、氧化應激、炎癥及細胞凋亡[7]。然而,鹿血中的活性成分保護腎臟、抑制順鉑誘導的ROS產生的作用機制尚不明確。課題組前期研究發現,細胞氧化應激、炎癥的發生與細胞內5-羥色胺(5-hydroxytryptamine,5-HT)在線粒體單胺氧化酶A(monoamine oxidase A,MAO-A)催化下的降解升高密切相關,還牽涉到5-HT合成酶色氨酸羥化酶1(tryptophan hydroxylase-1,Tph1)及芳香族氨基酸脫羧酶(aromatic amino acid decarboxylase,AADC)、5-HT2A受體(5-HT2Areceptors,5-HT2AR)的激活[11-14]。本研究以順鉑刺激人腎小管上皮HK-2細胞,模擬順鉑誘導AKI時對腎小管上細胞的損傷作用,結合順鉑誘導小鼠AKI的動物模型考察鹿血晶對腎臟的保護作用是否與抑制5-HT降解有關,并評估鹿血晶對順鉑誘導HK-2細胞5-HT合成酶、5-HT2AR、MAO-A表達上調的影響,以探究鹿血晶保護腎臟、抑制順鉑誘導AKI的作用機制。
HK-2細胞購自中國科學院細胞庫。
清潔級雄性ICR小鼠,6~8周齡,體質量18~22 g,購自揚州大學比較醫學中心,動物許可證號SCXK(蘇)2017-0007。動物飼養于中國藥科大學藥學動物實驗中心,環境溫度23~26 ℃,濕度50%~55%,12 h晝夜光照交替,自由進食飲水。動物實驗遵循中國藥科大學有關實驗動物管理和使用的規定,符合3R原則。
鹿血晶凍干粉末(批號L190504)購自蘇州紅冠莊國藥股份有限公司;順鉑購自上海阿拉丁生化科技股份有限公司;氯吉蘭購自上海CSN公司;DMEM低糖培養基購自美國Hyclone公司;胰蛋白酶購自美國Gibco公司;胎牛血清購自上海Excell公司;丙二醛(malondialdehyde,MDA)、超氧化物歧化酶(superoxide dismutase,SOD)、還原型谷胱甘肽(reduced glutathione,GSH)、三磷酸腺苷(adenosine triphosphate,ATP)檢測試劑盒購自南京建成生物工程研究所;ROS、5-HT、腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)、白細胞介素-1β(interleukin-1β,IL-1β)ELISA試劑盒購自上海酶聯生物科技有限公司;BCA試劑、Hoechst 33342染料、ROS熒光探針DCFH-DA、Mito-Tracker Red CMXRos購自上海碧云天生物科技有限公司;Tph1抗體購自美國SAB公司;抑制子κBα(inhibitor kappa Bα,IκBα)、核因子κB p65(nuclear factor kappa B p65,NF-κB p65)及其磷酸化抗體、B細胞淋巴瘤-2(B-cell lymphoma-2,Bcl-2)抗體、Bcl-2相關X蛋白(Bcl-2 associated X protein,Bax)抗體購自沈陽萬類生物科技有限公司;5-HT2AR抗體、半胱氨酸蛋白酶-3(Caspase-3)抗體、Caspase-9抗體購自美國Santa公司;GAPDH抗體、AADC抗體、MAO-A抗體、NADH脫氫酶1(NADH dehydrogenase 1,ND1)抗體、細胞色素B(cytochrome B,CYTB)抗體、ATP合成酶亞單位6(ATP synthase 6,ATP6)抗體購自武漢三鷹生物科技有限公司;HRP標記的山羊抗兔IgG抗體、HRP標記的山羊抗小鼠IgG抗體購自Biosharp生物科技有限公司。
Infinite M2000 Pro全波長酶標儀(德國Tecan公司);IX51型熒光倒置顯微鏡(日本Olympus公司);TS2-S-SM型倒置熒光顯微鏡(日本Nikon公司);5200 Multi全自動化學發光系統(上海天能有限公司);1300型生物安全柜、Forma II型水套式CO2恒溫培養箱(美國Thermo Fisher Scientific公司)。
2.1.1 HK-2細胞培養 HK-2細胞用含青霉素、鏈霉素及10%胎牛血清的DMEM低糖培養基,于37 ℃、5% CO2細胞培養箱中培養,細胞融合度達60%~80%傳代。
2.1.2 鹿血晶對順鉑誘導的HK-2細胞ROS、MDA、GSH水平、SOD活性及上清液中TNF-α、IL-1β水平的影響 取處于對數生長期的HK-2細胞,以5×104/mL接種于6孔板,培養12 h。通過MTT實驗確定不同質量濃度的鹿血晶對HK-2細胞活力的影響,然后設置對照組、模型組及鹿血晶(160、400、1000 μg/mL)組和氯吉蘭(15 μmol/L)組。實驗時,稱取1 g鹿血晶凍干粉末,溶于20 mL PBS溶液,于超凈臺中用0.22 μm孔徑的濾器濾過除菌,即得無菌的鹿血晶母液(50 mg/mL),以培養基稀釋至所需濃度。各給藥組加入相應藥物預處理1 h,模型組和各給藥組再加入順鉑(20 μmol/L)處理24 h;對照組加入不含藥物的無血清培養基處理24 h。收集細胞,按照試劑盒說明進行MTT實驗或檢測ROS、MDA、GSH水平和SOD活性;收集上清液,按照試劑盒說明檢測TNF-α、IL-1β水平。
2.1.3 鹿血晶對順鉑誘導的HK-2細胞凋亡的影響 按“2.1.2”項下方法分組并處理細胞,棄去培養液,用熒光染料Hoechst 33342染色,采用熒光顯微鏡(激發波長350 nm、發射波長460 nm)DAPI通道(藍色熒光)觀察細胞凋亡情況。
2.1.4 鹿血晶對順鉑誘導的HK-2細胞IκBα、p-IκBα、NF-κB p65、p-NF-κB p65、Bax、Bcl-2、Caspase-3、Caspase-9、ND1、CYTB、ATP6、5-HT2AR、Tph1、AADC和MAO-A蛋白表達的影響 設置對照組、模型組、鹿血晶(1000 μg/mL)組和氯吉蘭(15 μmol/L)組,按“2.1.2”項下方法處理細胞,收集細胞。加入含蛋白酶抑制劑和磷酸酶抑制劑的IP裂解液,于 ?80 ℃裂解,12 000 r/min離心,取上清液。采用BCA蛋白定量試劑盒測定蛋白質量濃度,加入上樣緩沖液稀釋蛋白樣品,100 ℃沸水浴5 min使蛋白變性。蛋白樣品經十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳分離,轉至PVDF膜,于牛血清白蛋白中封閉,分別加入IκBα、p-IκBα、NF-κB p65、p-NF-κB p65、Bax、Bcl-2、Caspase-3、Caspase-9、ND1、CYTB、ATP6、5-HT2AR、Tph1、AADC、MAO-A、GAPDH抗體,4 ℃孵育過夜,TBST洗滌;加入HRP標記的山羊抗兔IgG抗體(1∶20 000)或HRP標記的山羊抗小鼠IgG抗體(1∶80 000)抗體,室溫孵育,TBST洗滌后置ECL發光液中顯色,采用全自動化學發光系統觀察并拍照,Image J軟件分析條帶灰度值。
2.1.5 鹿血晶對順鉑誘導的HK-2細胞ATP和5-HT含量的影響 設置對照組、鹿血晶(1000 μg/mL)組、氯吉蘭(15 μmol/L)組、模型組、順鉑+鹿血晶(1000 μg/mL)組和順鉑+氯吉蘭(15 μmol/L)組,按“2.1.2”項下方法處理細胞,收集細胞,按照試劑盒說明書檢測細胞ATP含量。
設置對照組、模型組、鹿血晶(1000 μg/mL)組和氯吉蘭(15 μmol/L)組,按“2.1.2”項下方法處理細胞,收集細胞,按照試劑盒說明書檢測細胞5-HT含量。
2.1.6 鹿血晶對順鉑誘導的HK-2細胞內ROS含量及定位的影響 設置對照組、模型組、鹿血晶(1000 μg/mL)組和氯吉蘭(15 μmol/L)組,按“2.1.2”項下方法處理細胞,棄去細胞培養液,用ROS熒光探針DCFH-DA、線粒體熒光探針Mito-Tracker Red CMXRos染色,采用激光共聚焦顯微鏡(ROS:激發波長488 nm,發射波長525 nm;線粒體:激發波長568 nm,發射波長579 nm)觀察細胞內ROS及線粒體表達。
2.2.1 動物分組、造模與給藥 ICR小鼠隨機分為對照組、模型組和鹿血晶(0.78 g/kg)[13]組。鹿血晶組ig藥物,對照組和模型組ig 0.5%羧甲基纖維素鈉(CMC-Na),2次/d,連續7 d;禁食不禁水12 h后,模型組和鹿血晶組ip順鉑(25 mg/kg)誘導腎損傷,對照組ip 0.9%氯化鈉溶液。造模后各給藥組ig藥物,2次/d,連續3 d。給藥結束后眼框取血,小鼠脫頸椎處死,取兩側腎臟。
2.2.2 鹿血晶對AKI小鼠腎組織病理變化的影響 取小鼠腎組織,于10%福爾馬林中固定,梯度乙醇脫水,經無水乙醇和二甲苯處理使組織透明;石蠟包埋后切片(厚5 μm),進行蘇木素-伊紅(HE)染色,于顯微鏡下觀察并拍照。
2.2.3 免疫組化法檢測鹿血晶對AKI小鼠腎組織5-HT2AR、Tph1、AADC和MAO-A蛋白表達的影響 取各組小鼠腎組織,石蠟包埋后切片(5 μm厚),進行免疫組化染色:石蠟切片脫蠟封閉后,分別加入Tph1、AADC、5-HT2AR和MAO-A抗體,4 ℃孵育過夜;洗滌后滴加生物素標價的IgG抗體,37 ℃靜置30 min;洗滌后加入HRP標記的鏈霉素卵白素工作液,37 ℃孵育15 min;洗滌后滴加DAB顯色液避光顯色,蘇木精復染,中性樹脂封片,于顯微鏡下觀察并拍照。
2.2.4 Western blotting法檢測鹿血晶對AKI小鼠腎組織5-HT2AR、Tph1、AADC和MAO-A蛋白表達的影響 取各組小鼠腎組織,加入含蛋白酶抑制劑和磷酸酶抑制劑的RIPA裂解液,按“2.1.4”項下方法提取蛋白并檢測5-HT2AR、Tph1、AADC、MAO-A蛋白表達。
2.2.5 鹿血晶對AKI小鼠腎組織5-HT和ROS含量的影響 取各組小鼠腎組織,按照試劑盒說明檢測5-HT和ROS含量。
MTT實驗結果顯示(圖1),20 μmol/L順鉑刺激HK-2細胞24 h,細胞活力仍可達到對照組的43%,可用于后續研究。而預先加入鹿血晶(160、400、1000 μg/mL)或MAO-A抑制劑氯吉蘭(15 μmol/L)處理1 h后再同時加入順鉑處理細胞24 h,不僅不會使細胞活力進一步下降,反而可輕度提高細胞活力(細胞活力提高10%~20%)。因此,以上述劑量進行后續研究。

與對照組比較:*P<0.05 **P<0.01;與模型組比較:#P<0.05 ##P<0.01,下圖同
如表1所示,與對照組比較,模型組細胞內ROS、MDA水平明顯升高(<0.01),SOD活力、GSH水平明顯降低(<0.01),上清液中TNF-α、IL-1β水平顯著升高(<0.01);與模型組比較,各給藥組細胞內ROS、MDA水平明顯降低(<0.01),SOD活力、GSH水平明顯升高(<0.01),上清液中TNF-α、IL-1β水平顯著降低(<0.01),且鹿血晶3個劑量組間也有明顯差異(<0.05、0.01),成劑量相關性;鹿血晶(1000 μg/mL)組的作用效果與氯吉蘭組接近。表明鹿血晶及氯吉蘭均可明顯抑制順鉑誘導的HK-2細胞ROS生成、氧化應激反應及炎癥因子分泌。

表1 鹿血晶對順鉑誘導的HK-2細胞ROS、MDA、GSH水平、SOD活性及上清液中TNF-α、IL-1β水平的影響(, n = 4)
與對照組比較:**<0.01;與模型組比較:##<0.01;與鹿血晶(160 μg·mL?1)組比較:△△<0.01;與鹿血晶(400 μg·mL?1)組比較:▲<0.05▲▲<0.01
**< 0.01control group;##< 0.01model group;△△< 0.01deer blood crystal (160 μg·mL?1) group;▲< 0.05▲▲< 0.01deer blood crystal (400 μg·mL?1) group
如圖2所示,與對照組相比,模型組細胞核的Hoechst 33342熒光藍染明顯變亮,提示順鉑刺激使HK-2細胞出現凋亡;給予鹿血晶和氯吉蘭后,細胞的Hoechst 33342熒光藍染亮度明顯降低,且鹿血晶的作用呈劑量相關性,而鹿血晶(1000 μg/mL)組的作用效果與氯吉蘭組接近。因此后續以1000 μg/mL鹿血晶研究其抑制順鉑誘導細胞損傷的作用機制。
如圖3所示,與對照組比較,模型組細胞NF-κB p65、IκBα磷酸化水平顯著升高(<0.01),Bax、Caspase-3、Caspase-9蛋白表達水平顯著升高(<0.01),Bcl-2蛋白表達水平顯著降低(<0.01),提示順鉑刺激使HK-2細胞NF-κB炎癥信號通路及細胞凋亡通路激活。與模型組比較,各給藥組NF-κB p65、IκBα磷酸化水平顯著降低(<0.01),Bax、Caspase-3、Caspase-9蛋白表達水平顯著降低(<0.01),Bcl-2蛋白表達水平顯著升高(<0.05)。

圖2 鹿血晶對順鉑誘導的HK-2細胞凋亡的影響 (×400)

圖3 鹿血晶對順鉑誘導的HK-2細胞IκBα、p-IκBα、NF-κB p65、p-NF-κB p65、Bax、Bcl-2、Caspase-3、Caspase-9蛋白表達的影響(, n = 3)
如圖4所示,與對照組比較,模型組細胞呼吸鏈蛋白ND1、CYTB及ATP6蛋白表達水平明顯降低(<0.05、0.01),細胞內ATP含量明顯降低(<0.01),提示順鉑可明顯損傷HK-2細胞線粒體呼吸鏈功能、抑制ATP合成;與模型組比較,各給藥組均可顯著抑制順鉑對呼吸鏈功能的破壞作用(<0.05、0.01),使ND1、CYTB、ATP6蛋白表達及細胞內ATP含量恢復到接近對照組水平,且鹿血晶和氯吉蘭的作用效果接近。

圖4 鹿血晶對順鉑誘導的HK-2細胞ND1、CYTB、ATP6蛋白表達及ATP含量的影響(, n = 3)
如圖5所示,與對照組相比,模型組細胞內5- HT2AR、Tph1、AADC及MAO-A蛋白表達水平明顯升高(<0.01),5-HT含量升高(<0.01)。如圖6所示,經DCFH-DA熒光探針染色,還檢測到細胞內ROS含量明顯升高;通過細胞內ROS、線粒體熒光探針雙定位,發現順鉑誘導HK-2細胞ROS產生的部位為線粒體,兩者定位重疊,提示順鉑刺激使HK-2細胞內5-HT合成酶、5-HT2AR、MAO-A同時激活,使細胞內5-HT含量及線粒體5-HT降解、ROS產生同時增多。

圖5 鹿血晶對順鉑誘導的HK-2細胞5-HT2AR、Tph1、AADC、MAO-A蛋白表達及細胞內5-HT含量的影響(, n = 3)
與模型組比較,鹿血晶組細胞內5-HT2AR、Tph1、AADC及MAO-A蛋白表達水平明顯降低(<0.01),5-HT含量降低(<0.01),但氯吉蘭使細胞內5-HT含量進一步升高(<0.01);鹿血晶及氯吉蘭組均降低細胞內及線粒體內ROS含量,且二者作用相似。提示,鹿血晶、氯吉蘭對順鉑誘導的HK-2細胞5-HT降解、線粒體ROS產生的抑制作用是相同的;但鹿血晶還可抑制5-HT合成酶及5-HT2AR的上調、抑制5-HT合成,而氯吉蘭不僅不能抑制5-HT合成使細胞內5-HT含量降低,反而使細胞內5-HT含量進一步升高。

圖6 鹿血晶對順鉑誘導的HK-2細胞內ROS含量及定位的影響(×1000)
腎組織切片HE染色(圖7)表明,與對照組相比,模型組小鼠腎小球周圍腎小管(即近端腎小管)發生明顯病變,出現腎小管上皮細胞脫落、壞死、空泡化,管形破壞;與模型組比較,鹿血晶組小鼠近端腎小管破壞明顯減輕。

圖7 鹿血晶對AKI小鼠腎組織病理變化的影響 (×400)
如圖8所示,腎組織切片免疫組化檢測顯示,與對照組比較,模型組小鼠腎組織Tph1、AADC、5-HT2AR、MAO-A蛋白表達水平顯著(<0.01),且蛋白表達量最高的細胞為近端腎小管上皮細胞,與腎組織的病變部位一致,腎組織5-HT、ROS含量也明顯升高(<0.01);與模型組比較,鹿血晶組腎組織Tph1、AADC、5-HT2AR、MAO-A蛋白表達水平明顯降低(<0.01),5-HT和ROS含量明顯降低(<0.01)。

A-免疫組化法檢測腎組織5-HT2AR、Tph1、AADC、MAO-A表達 (×400) B-Western blotting法檢測腎組織5-HT2AR、Tph1、AADC、MAO-A蛋白表達 (n=4) C-腎組織5-HT、ROS含量 (n=10)
本研究揭示了鹿血晶對順鉑誘導的腎小管上皮細胞損傷具有直接的保護作用,且這種保護作用具有劑量相關性,與動物實驗發現的“鹿血晶可劑量相關性地抑制順鉑誘導的AKI”結果一致[7]。表明鹿血晶中確實存在活性成分,可直接作用于腎臟,保護腎臟免受順鉑等毒物對腎臟的損傷作用、保護腎功能。結果表明,鹿血晶可劑量相關性地抑制順鉑誘導的HK-2細胞ROS產生、氧化應激、炎癥因子分泌、細胞凋亡;鹿血晶的這種作用與抑制順鉑誘導的NF-κB炎癥信號通路、細胞凋亡通路(Bax、Caspase3、Caspase9表達上調及Bcl-2表達下調)激活有關。鹿血晶還可保護線粒體,抑制順鉑對線粒體呼吸鏈功能的破壞(呼吸鏈蛋白ND1、CYTB和ATP6下調,ATP合成減少)。鹿血晶的以上作用與氯吉蘭的作用完全相同;而氯吉蘭的直接作用是抑制MAO-A對單胺類的降解作用,使降解過程時產生的ROS減少[15-17]。順鉑誘導的HK-2細胞ROS產生部位就是線粒體,而MAO-A正是位于線粒體的外膜上。因此,可以推測,鹿血晶對腎小管上皮細胞的保護作用可能是通過抑制線粒體MAO-A催化的5-HT降解,從而抑制ROS生成、恢復呼吸鏈功能實現的。
研究表明,5-HT參與腎臟的病理狀態。近端腎小管細胞已被證明可高水平表達AADC[18],5-HT高水平合成可導致慢性腎病并發尿毒癥[19]。在人系膜細胞,5-HT刺激5-HT2AR后產生大量ROS[20],通過調節下游細胞因子的表達,引起組織炎癥、損傷和死亡[21]。本課題組前期研究也發現,5-HT參與糖尿病腎損傷的發生[14];并揭示出細胞5-HT降解系統調控ROS產生的機制[11,13,22]:由于5-HT合成增多、5-HT2AR及MAO-A表達上調,使線粒體MAO-A催化的5-HT降解增多,導致線粒體ROS生成增多、呼吸鏈受損ATP合成減少;其中,5-HT2AR的作用是同時介導5-HT合成酶Tph1、AADC的表達及MAO-A的表達,從而調控線粒體5-HT降解。順鉑誘導AKI的機制也是如此[23]。本研究表明,鹿血晶能夠明顯抑制順鉑對HK-2細胞及小鼠腎臟Tph1、AADC、5-HT2AR、MAO-A表達的上調作用,抑制HK-2細胞及腎組織內5-HT水平升高、5-HT降解。腎組織切片HE染色及Tph1、AADC、5-HT2AR、MAO-A免疫組化染色結果顯示,AKI小鼠腎損傷部位就是這些蛋白的高表達部位,位于腎小球周圍的腎小管上皮細胞,與文獻報道的“AKI腎損傷部位-近端腎小管”一致[10,23]。因此,順鉑誘導腎小管上皮細胞線粒體ROS產生增多、呼吸鏈功能損傷,從而導致細胞損傷,起因于其對細胞5-HT降解系統的激活。
綜上所述,推測鹿血晶保護腎臟、抑制順鉑誘導AKI的機制如下(圖9):鹿血晶活性成分可直接作用于腎臟近端腎小管上皮細胞,抑制順鉑對細胞的損傷作用;其作用機制是抑制順鉑對細胞Tph1、AADC、5-HT2AR、MAO-A的上調作用,從而抑制細胞的5-HT合成及線粒體5-HT降解導致的ROS生成、呼吸鏈功能損傷,而細胞發生氧化應激、炎癥、細胞凋亡等病變正是起因于線粒體ROS產生增多[11,13,23]。因此,鹿血晶保護腎功能、抑制順鉑誘導AKI,是通過抑制腎小管上皮細胞的5-HT降解系統激活實現的。

圖9 鹿血晶抑制順鉑誘導腎小管上皮細胞損傷的機制
利益沖突 所有作者均聲明不存在利益沖突
[1] 袁相戀, 薄士儒, 李慶杰, 等. 鹿血化學成分和藥理作用及其應用研究進展 [J]. 經濟動物學報, 2011, 15(4): 207-211.
[2] 韓淑芳, 邵志強, 吳雙福. 鹿血口服液對腎陽虛和抗應激藥理研究 [J]. 中國林副特產, 2002(2): 8-9.
[3] Ghosh S. Cisplatin: The first metal based anticancer drug [J]., 2019, 88: 102925.
[4] Shiraishi F, Curtis L M, Truong L,. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis [J]., 2000, 278(5): F726-F736.
[5] Dupre T V, Doll M A, Shah P P,. Suramin protects from cisplatin-induced acute kidney injury [J]., 2016, 310(3): F248-F258.
[6] Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: An historical perspective and an update [J]., 1998, 34(10): 1522-1534.
[7] 張怡, 徐凡, 金佳琦, 等. 鹿血晶對順鉑誘導小鼠急性腎損傷的保護作用 [J/OL]. 中成藥, [2021-04-19]. http://kns.cnki.net/kcms/detail/31.1368.R.20210416.1737. 002.html.
[8] Hoste E A J, Kellum J A, Selby N M,. Global epidemiology and outcomes of acute kidney injury [J]., 2018, 14(10): 607-625.
[9] Gonsalez S R, Cortês A L, Silva R C D,. Acute kidney injury overview: From basic findings to new prevention and therapy strategies [J]., 2019, 200: 1-12.
[10] Holditch S J, Brown C N, Lombardi A M,. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury [J]., 2019, 20(12): 3011.
[11] Ma Y Y, Liang X R, Li C,. 5-HT2Areceptor and 5-HT degradation play a crucial role in atherosclerosis by modulating macrophage foam cell formation, vascular endothelial cell inflammation, and hepatic steatosis [J]., 2021, doi: 10.5551/jat.58305.
[12] 張譽馨, 張銳, 楊靜, 等. 2型糖尿病引起的疲勞與骨骼肌5-羥色胺降解的相關性研究 [J]. 藥學學報, 2021, 56(1): 190-200.
[13] Fu J, Li C, Zhang G,. Crucial roles of 5-HT and 5-HT2 receptor in diabetes-related lipid accumulation and pro-inflammatory cytokine generation in hepatocytes [J]., 2018, 48(6): 2409-2428.
[14] 徐凡, 楊靜, 金佳琦, 等. 腎臟5-羥色胺合成和降解在高血糖誘導腎損傷時的作用研究 [J/OL]. 藥學學報, [2021-04-07]. https://doi.org/10.16438/j.0513-4870.2021-0152.
[15] 黃繼漢, 黃曉暉, 陳志揚, 等. 藥理試驗中動物間和動物與人體間的等效劑量換算 [J]. 中國臨床藥理學與治療學, 2004, 9(9): 1069-1072.
[16] Guimar?es J T, Soares-da-Silva P. The activity of MAO A and B in rat renal cells and tubules [J]., 1998, 62(8): 727-737.
[17] Chaaya R, Alfarano C, Guilbeau-Frugier C,. Pargyline reduces renal damage associated with ischaemia-reperfusion and cyclosporin [J]., 2011, 26(2): 489-498.
[18] Manni M E, Bigagli E, Lodovici M,. The protective effect of losartan in the nephropathy of the diabetic rat includes the control of monoamine oxidase type A activity [J]., 2012, 65(4): 465-471.
[19] Hafdi Z, Couette S, Comoy E,. Locally formed 5-hydroxytryptamine stimulates phosphate transport in cultured opossum kidney cells and in rat kidney [J]., 1996, 320 (Pt 2): 615-621.
[20] Pawlak D, Znorko B, Kalaska B,. LP533401 restores bone health in 5/6 nephrectomized rats by a decrease of gut-derived serotonin and regulation of serum phosphate through the inhibition of phosphate co-transporters expression in the kidneys [J]., 2018, 113: 124-136.
[21] Greene E L, Houghton O, Collinsworth G,. 5-HT(2A) receptors stimulate mitogen-activated protein kinase via H(2)O(2) generation in rat renal mesangial cells [J]., 2000, 278(4): F650-F658.
[22] Li X, Guo K K, Li T,. 5-HT 2 receptor mediates high-fat diet-induced hepatic steatosis and very low density lipoprotein overproduction in rats [J]., 2018, 12(1): 16-28.
[23] Guan J, Tong X, Zhang YNephrotoxicity induced by cisplatin is primarily due to the activation of the 5-hydroxytryptamine degradation system in proximal renal tubules [J],2021,doi: 10.1016/j.cbi.2021.109662.
Deer blood crystal inhibits cisplatin-induced kidney injury by reducing synthesis and degradation of 5-HT in renal tubular epithelial cells
ZHANG Yi, GUAN Jing, XU Fan, LIANG Xiu-rui, ZHANG Yu-xin, JIN Jia-qi, FU Ji-hua
School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
To explore the mechanism of deer blood crystal (DBC) on protecting the kidney and inhibiting cisplatin-induced kidney injury.HK-2 cells were divided into control group, model group, DBC (160, 400, 1000 μg/mL) groups and monoamine oxidase A (MAO-A) inhibitor clorgyline (15 μmol/L) group, drug were added to pretreat for 1 h, and then the cells were exposed to cisplatin (20 μmol/L) for 24 h to induce cell damage. Male ICR mice were randomly divided into control group, model group and DBC (0.78 g/kg) group, after pretreatment with DBC for 7 d, kidney injury was induced by ip cisplatin (25 mg/kg) in model and DBC group; Furthermore, mice were still treated for 3 d and then killed. Malondialdehyde (MDA), glutathione (GSH), adenosine triphosphate (ATP) levels, superoxide dismutase (SOD) activity in cells and tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) levels in supernatant were measured, reactive oxygen species (ROS) and 5-hydroxytryptamine (5-HT) levels in cells and kidney tissue of mice were measured. ROS content, location and apoptosis of HK-2 cells were respectively distinguished by fluorescent probe DCFH-DA, Mito-Tracker Red CMXRos and fluorescent dye Hoechst 33342.Western blotting was used to analyze the protein expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), Caspase-3, Caspase-9, NADH dehydrogenase 1 (ND1), cytochrome B (CYTB), ATPase 6 (ATP6), nuclear factor-κB p65 (NF-κB p65), phosphorylated NF-κB p65 (p-NF-κB p65), inhibitor κBα (IκBα) and p-IκBα in cells, and tryptophan hydroxylase 1 (Tph1), aromatic cluster amino acid decarboxylase (AADC), 5-HT2Areceptor (5-HT2AR), MAO-A protein expressions in cells and kidney tissue of mice. Hematoxylin-eosin (HE) staining was used to detect the pathological damage of renal tissues; Immunohistochemistry was used to detect expressions of Tph1, AADC, 5-HT2AR, and MAO-A in renal tissues.Compared with model group, elevation of intracellular ROS, MDA levels and supernatant TNF-α, IL-1β levels were inhibited by DBC (< 0.05, 0.01), intracellular GSH, SOD levels were reduced (< 0.05, 0.01), and apoptosis in HK-2 cells were reduced. Effect of DBC (1000 μg/mL) group was similar to that of clorgyline group, and reversal effects of both on cisplatin-induced phosphorylation of NF-κB p65, activation of apoptosis (upregulation of Bax, Caspase-3, Caspase-9 expressions, and downregulation of Bcl-2 expression), and decline of respiratory chain function (downregulation of ND1, CYTB and ATP6 expressions, and reduction of ATP level) were also similar in HK-2 cells. Additionally, the upregulation of Tph1, AADC, 5-HT2AR, MAO-A expression, and increased 5-HT levels in HK-2 cells induced by cisplatin were significantly inhibited in DBC (1000 μg/mL) group (< 0.05, 0.01), while the level of 5-HT was even higher in clorgyline group (< 0.01). Fluorescence probe detection showed that mitochondria was the site of ROS production in HK-2 cells induced by cisplatin, and the inhibitory effect of DBC (1000 μg/mL) group and clorgyline group on ROS production was similar. HE staining showed that the damage site of renal tissue induced by cisplatin was mainly in the proximal renal tubular epithelial cells, and it was the site of the highest upregulation of Tph1, AADC, 5-HT2AR and MAO-A expressions induced by cisplatin as shown by immunohistochemistry. DBC could suppressed the upregulation of Tph1, AADC, 5-HT2AR and MAO-A protein expressions and the increase of 5-HT and ROS levels induced by cisplatin in renal tissue (< 0.01).The mechanism of inhibiting cisplatin-induced kidney injury by active components of DBC is probably to directly act on the renal proximal tubular epithelial cells, suppressing the upregulation of Tph1, AADC, 5-HT2AR and MAO-A expressions induced by cisplatin, thus inhibiting the synthesis of 5-HT and mitochondrial 5-HT degradation, inhibiting ROS production and protecting mitochondrial respiratory chain, so as to inhibit oxidative stress, inflammation and apoptosis.
deer blood crystal; renal proximal tubular epithelial cells; mitochondrion; synthesis of 5-hydroxytryptamine; degradation of 5-hydroxytryptamine; reactive oxygen species
R285.5
A
0253 - 2670(2021)24 - 7501 - 10
10.7501/j.issn.0253-2670.2021.24.012
2021-08-03
國家自然科學基金資助項目(81570720)
張 怡(1996—),女,碩士,從事腎臟急性損傷的病理機制及相關藥理學研究。Tel: 15895908069 E-mail: zy578546102@qq.com
傅繼華(1962—),男,副教授,碩士生導師,從事肝腎損傷、代謝異常性疾病的發病機制研究及相關疾病治療的藥理學研究。Tel: 13951933013 E-mail: fjhfy_cpu@163.com; jihua_fu@cpu.edu.cn
[責任編輯 李亞楠]