999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Crossed products for Hopf group-algebras

2021-10-21 11:26:28YouMimanLuDaoweiWangShuanhong

You Miman Lu Daowei Wang Shuanhong

(1School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)(2Department of Mathematics, Jining University, Qufu 273155, China)(3School of Mathematics, Southeast University, Nanjing 211189, China)

Abstract:First, the group crossed product over the Hopf group-algebras is defined, and the necessary and sufficient conditions for the group crossed product to be a group algebra are given. The cleft extension theory of the Hopf group algebra is introduced, and it is proved that the crossed product of the Hopf group algebra is equivalent to the cleft extension. The necessary and sufficient conditions for the crossed product equivalence of two Hopf groups are then given. Finally, combined with the equivalence theory of the Hopf group crossed product and cleft extension, the group crossed product constructed by the general 2-cocycle as algebra is determined to be isomorphic to the group crossed product of the 2-cocycle with a convolutional invertible map of the 2-cocycle. The unit property of a general 2-cocycle is equivalent to the convolutional invertible map of the 2-cocycle, and the combination condition of the weak action is equivalent to the convolutional invertible map of the 2-cocycle and the combination condition of the weak action. Similarly, crossed product algebra constructed by the general 2-cocycle is isomorphic to the Hopf π-crossed product algebra constructed by the 2-cocycle with a convolutional invertible map.

Key words:Hopf π-algebra; cleft extension theorem; π-comodule-like algebra; group crossed products

Hopf crossed products were introduced independently by Yukio et al.[1]and Blattner et al.[2]as a Hopf algebraic generalization of group crossed products. In particular, a Hopf crossed product is, in fact, always a Hopf cleft extension, provided that the cocycle that appeared in a Hopf crossed product is convolution-invertible[3-5].

Hopf group-algebras were related to homotopy quantum field theories, which are generalizations of ordinary topological quantum field theories[3,6-8]. In 2007, Wang et al.[9-11]introduced group smash products of Hopf group-algebras. Group crossed products of Hopf group-coalgebras were introduced[12-13]. Other related works can be found in Refs.[14-17].

In this article, we introduce and study the notions of a group crossed product and a group cleft extension. We then characterize group crossed products by the group cleft extension. Finally, we prove the equivalences of the group crossed products for the Hopf group-algebras.

1 Group Cleft Extensions and Existence of Group Crossed Products

Definition1LetA=({Aα}α∈π,Δ,ε) be a Hopfπ-algebra with the bijective antipodeSandJas algebra. We say thatAacts weakly onJif there exists a family of maps:

a?xa?αx, ?α∈π,a∈Aα,x∈J, such that

1) 1α?x=x, ?x∈J;α∈π;

2)a?α(xy)=(a(1,α)?αx)(a(2,α)?αy), ?a∈Aα,x,y∈J;

3)a?α1J=εα(a)1J, ?x∈J.

Furthermore, ifJis anAαmodule for eachα∈πand satisfies 2) and 3), we callJa leftπ-A-module-like algebra.

Definition2LetA=({Aα}α∈π,Δ,ε) be a Hopfπ-algebra andJa leftπ-A-module-like algebra. Letχα,β:Aα#Aβ→Jbe a family ofk-linear maps and suppose thatχis an invertible map. Suppose thatJacts weakly on eachAαwithα∈π. For anyα∈π, there is aπ-crossed productJ#χAαwith the multiplication given by (x#αa)(y#βb)=x(a(1,α)?αy)χα,β(a(2,α),b(1,β))#αβa(3,α)b(2,β), for alla,b∈Aα,Aβ,x,y∈J,α,β∈π, and the unit is 1J#1α.

Proposition1With the above notations,J#χAαis a Hopfπ-crossed product if and only if the following conditions hold: ?a∈Aα,b∈Aβ,c∈Aγ,?α,β∈π, andx,y∈J.

χα,β(a,1β)=χα,γ(a,1γ)=εα(a)1J

(1)

χα,β(a(1,α),b(1,β))χαβ,γ(a(2,α)b(2,β),c)=

(a(1,α)?αχβ,γ(b(1,β),c(1,γ)))χα,βγ(a(2,α),b(2,β)c(2,γ))

(2)

χα,β(a(1,α),b(1,β))(a(2,α)b(2,β)?αβx)=

a(1,α)?α(b(1,β)?βy)χα,β(a(2,α),b(2,β))

(3)

Remark11) Ifπ=1, the Hopfπ-crossed product is then the ordinary Hopf crossed product.

2) If we takeχα,β(a,b)=εα(a)εβ(b)1J, ?α,β∈π,a∈Aα,b∈Aβ, the Hopfπ-crossed product becomes the Hopfπ-smash product.

LetAbe a Hopf algebra. For anyα∈π, denoteδαas the one-dimensional linear space generated byα. Then we have a Hopf group algebraH={Hα=A?δα}α∈πwith the structure (a?α)(1,α)?(a?α)(2,α)=a1?α?a2?α,εα(a?α)=ε(a),Sα(a?α)=S(a)?α-1.

IfJ#σAis a crossed product withσ:A?A→J. Define

Definition3LetJbe a leftπ-Aα-module-like algebra.

1) We say thatH?Jis aπ-Aα-extension ifJis a rightπ-Aα-comodule algebra with a family ofk-linear mapsρ={ρα:J→J?Aα},

JcoAα={x∈J|ρα(x)=x?1α∈J?Aα, ?x∈J, ?α∈π}

which is called aπ-subalgebra of the rightπ-co-invariants.

εα(a)1J?a∈Aα,α∈π

Lemma1LetH?Jbe aπ-Aα-cleft extension with a rightπ-Aα-comodule structure map:ρ={ρα:J→J?Aα} viaxx(0,0)?x(0,α)forα∈πand aπ-Aα-cleft structure map:γ={γα:Aα→J}α∈πsuch thatγα(1Aα)=1Jwith We then have

Proposition3LetH?Jbe aπ-Aα-cleft viaγ={γα:Aα→J}α∈πsuch thatγα(1Aα)=1Jwithα∈π. Then, there is a Hopfπ-crossed product with a weak action ofAαonJgiven by

and a family of convolution-invertible mapsχ={χα,β:Aα?Aβ→J}α,β∈πgiven by

?a∈Aα, ?b∈Aβ

ProofFirst, we compute forx∈J,a∈Aα,

?Sα-1(a(3,α-1)))=a?αx?1Aα∈J?Aα

and thus,a?αx∈H=JcoAα. Furthermore, it is easy to see that Definition 1 2) and 3) hold.

Similarly, we can prove thatχ={χα}α∈πhas values inA. In fact, ?a,b∈Aα,Aβ,

ρα(χα,β(a,b))=ραγα(a(1,α))ραγβ(b(1,β))·

Finally, it is easy to check thatΦ={Φα}α∈πis a leftπ-J-module-like map and is a rightπ-Aα-comodule map.

To check thatνis a right inverse forγis more complicated. By a computation similar to the above, we have

a(5,α))]χα(α(2,α),S(a(3,α)))#1Aα

(4)

and hence,νis a right inverse forγif and only if

(5)

Sinceχ={χα,β:Aα?Aβ→J} is invertible, Eq. (2) gives

(a(3,α),b(3,β)c(3,γ))=a?αχβ,γ(b,c)

(6)

for anya∈Aα,b∈Aβ,c∈Aγ.

εα(a)εβ(b)εγ(c)1J

(7)

Hence, from Eq. (7), we obtain

(8)

We may now verify Eq. (6) using Eq. (8):

By Proposition 3 and Proposition 4, we can now get the main result of this section as follows.

2 Equivalences of Group Crossed Products

The proof is clear.

Theorem2LetJbe a Hopfπ-algebra,Aαa family of coalgebrasA={Aα,mα,1Aα}α∈π, andγ={γα:Aα→J}α∈πa family of convolution-invertible linear maps. Ifχ={χα:Aα?Aα→J}α∈πis a family ofk-linear maps, we then have the following assertions with the above notationsχγαfor anyα,β∈π:

2)χsatisfies Eq. (1) if and only ifχγsatisfies Eq. (1);

3) (χ,?) satisfies Eq. (2) if and only if (χγ,?γ) satisfies Eq. (2);

4) If(χ,?) satisfies Eq. (2), (χ,?) satisfies Eq. (3) if and only if (χγ,?γ) satisfies Eq. (3);

3) If (χ,?) satisfies Eq. (3), then

(a(1,α))?γα(b(1,β)?γβx))χγαα,β(a(2,α),b(2,β))=

γα(a(1,α))(a(2,α)?γβ(b(1,β)))χα,β(a(3,α),b(2,β))

Conversely, we get it from Lemma 2.

4) If (χ,?) satisfies Eq. (2) and Eq. (3), then, fora∈Aα,b∈Aβ,c∈Aγ,

γα(a(1,α))(a(2,α)?[γβ(b(1,β))(b(2,β)?γγ(c(1,γ)))·

γα(a(4,α))(a(5,α)?γβγ(b(5,β)c(4,γ)))χα,βγ(a(5,α),b(6,β)c(5,γ))·

2) and 5) of Theorem 2 are clearly proved.

主站蜘蛛池模板: 亚洲视频a| 亚洲午夜福利精品无码不卡| 亚洲欧美国产五月天综合| 午夜一级做a爰片久久毛片| 亚洲色图在线观看| 欧美一区二区三区欧美日韩亚洲| 四虎亚洲精品| 国产午夜一级淫片| 欧美在线伊人| a级毛片免费播放| 精品国产91爱| 99视频只有精品| 波多野结衣一二三| 亚洲精品第一页不卡| 亚洲第一页在线观看| 欧美爱爱网| 国产精品爽爽va在线无码观看| 亚洲精品卡2卡3卡4卡5卡区| 久久不卡国产精品无码| 欧美区在线播放| 91精品专区| 亚洲成A人V欧美综合天堂| 999国内精品视频免费| 日本手机在线视频| 强奷白丝美女在线观看| 欧美啪啪一区| 亚洲欧洲国产成人综合不卡| 欧美人在线一区二区三区| 国产一在线观看| 亚洲美女一区| 国产久草视频| 久久a级片| 久无码久无码av无码| 亚洲Av激情网五月天| 无码人中文字幕| 凹凸国产分类在线观看| 91伊人国产| 国精品91人妻无码一区二区三区| 国产成人福利在线视老湿机| 国产主播福利在线观看| 欧洲亚洲一区| 免费一级毛片| 99久久精品久久久久久婷婷| 日本高清在线看免费观看| 毛片视频网址| 国产精品手机在线播放| 永久成人无码激情视频免费| 高潮毛片免费观看| 第一页亚洲| 国产免费网址| 蜜芽国产尤物av尤物在线看| 久久成人18免费| 人妻无码一区二区视频| 一级毛片高清| 国产无遮挡猛进猛出免费软件| 成人字幕网视频在线观看| 亚洲精品男人天堂| 欧美色99| 九色在线观看视频| 人人爱天天做夜夜爽| 一级不卡毛片| 亚洲国产日韩在线观看| 欧美一级夜夜爽| 国产视频欧美| 国产激情无码一区二区APP| 国产一区二区精品高清在线观看 | 丁香五月婷婷激情基地| 久久久久久久久亚洲精品| 亚洲中文字幕国产av| 国产一级在线播放| 婷婷综合色| a级毛片在线免费| 91国内在线视频| 国产福利不卡视频| 国产av一码二码三码无码| www.99精品视频在线播放| 日韩视频福利| 大香伊人久久| 亚洲综合婷婷激情| 在线a网站| 色欲色欲久久综合网| 亚洲精品动漫在线观看|