999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On Fractional Smoothness of Modulus of Functions

2021-10-13 11:56:48DongLi
Annals of Applied Mathematics 2021年3期

Dong Li

SUSTech International Center for Mathematics and Department of Mathematics, Southern University of Science and Technology,Shenzhen, Guangdong 518055, China

Abstract. We consider the Nemytskii operators u→|u|and u→u±in a bounded domain ? with C2 boundary. We give elementary proofs of the boundedness in Hs(?) with 0≤s<3/2.

Key words: Nemytskii, nonlocal extension, fractional Laplacian.

1 Introduction

Let ? be a nonempty open bounded set in Rd. For 0<γ<1 andf ∈C1(?), define the nonlocal ˙Hγsemi-norm as

Forf ∈C2(?) and 0<γ<1, we define

where (and throughout this note)?f=(?x1f,···,?xnf) denotes the usual gradient.Throughout this note we shall only be concerned with real-valued functions, however with some additional work the results can be generalized to complex-valued functions. Define the Nemytskii operators

The purpose of this note is to give an elementary proof of the following.

where α1>0depends on(s,?,d).

We refer to[1,7]and the references therein for a more detailed survey of composition operators in function spaces with various fractional order of smoothness.

The rest of this note is organized as follows. In Section 2 we give the proof for the one dimensional case. In Section 3 we give the details for general dimensionsd≥2.

1.1 Notation

2 The one dimensional case

Lemma 2.1.Let0<α<1and0<δ<1?α. Consider

Sending?→0 then yields the result.

Lemma 2.3.Let0<α<1. Assume u is bounded on[0,1]. Suppose

More generally, there are constants β1>0, β2>0depending only on α, such that for any finite interval onR, it holds that(below|I|denote the length of the interval))

where β3>0depends only on α.

One can see [3] for an extensive discussion on general fractional order Hardy inequalities and counterexamples.

Proof.The first identity is obvious. For the second inequality,one can apply Lemma 2.2 tou(x)χ(x),whereχis a smooth cut-offfunction supported in[0,2/3]. This then yields

The desired inequality follows easily by using the first identity. To get the extra factor(1?x)?αone can invoke the symmetryx→1?x. The inequality (2.8)follows from rescaling and reducing to the caseI=(0,1).

The following theorem is a special case of Bourdaud-Meyer[6]. We reproduce the proof here to highlight the needed changes for the finite domain case (see Theorem 2.2).

Theorem 2.1.Let0

Proof.Setα=2s. WriteI={x:u(x)>0}as a countable disjoint union of intervalsIjsuch that eachIj=(aj,bj) satisfiesu(aj)=u(bj)=0. Here ifajorbjare infinity the value ofu(aj) oru(bj) are understood in the limit sense. By using Lemma 2.3,we have

Thus, we complete the proof.Corollary 2.1.Let0

Proof.By a partition of unity in the frequency space, we have

Theorem 2.2(Boundedness ofT2on a finite interval).Let0

Proof.Setα=2s. If{u>0}=(0,1) there is nothing to prove. Otherwise write{x∈(0,1):u(x)>0}as a countable union of maximal intervalsIjsuch that for eachIj=(aj,bj),eitheru(aj)=u(bj)=0 with 00,u(b)=0. We discuss several further cases.Case 1:b≥1/4. Clearly then

Thus this case is also proved.

3 The general case d≥2

Lemma 3.1.Let0

where C1>0depends only on(s,K,f).

Figure 1: The set Q+ and K in Lemma 3.1.

Proof.Denote ?gas an extension ofgto R2such that ?ghas compact support and

Thus, we complete the proof.

Lemma 3.2.Let0

Then

where C2>0depends only on(s,K,f).

Proof.Observe that

Figure 2: The set F0 and the curve γ in Lemma 3.3.

Assume u is compactly supported in

Proof.With no loss we consider the two dimensional case. The argument then follows from a standard partition of unity. The extension for the interior piece is quite straightforward. The localized boundary piece follows from(after rotation and relabelling coordinate axes if necessary) Lemma 3.3.Proof.By Theorem 3.1, we extendfto ?fdefined on the whole Rd. The result then follows from the boundedness in the whole space case (see Corollary 2.1).

Finally we remark that Theorem 1.1 follows from Corollary 3.1 since the proofs forT1andT3are similar.

Acknowledgements

The author is indebted to Prof. Xiaoming Wang for raising this intriguing question.


登錄APP查看全文

主站蜘蛛池模板: 米奇精品一区二区三区| 国产又大又粗又猛又爽的视频| 伊人久久福利中文字幕| 91精品aⅴ无码中文字字幕蜜桃 | 久草性视频| 67194在线午夜亚洲| 国产在线高清一级毛片| 亚洲精品人成网线在线| 91欧洲国产日韩在线人成| 91福利在线观看视频| 午夜久久影院| 99ri精品视频在线观看播放| 精品91自产拍在线| 国产日韩欧美在线视频免费观看| 色综合五月| 巨熟乳波霸若妻中文观看免费| 免费黄色国产视频| 毛片最新网址| 久久成人18免费| 日本免费一级视频| 青青草国产免费国产| 久久久久国色AV免费观看性色| 国产欧美日韩另类| 国产精品熟女亚洲AV麻豆| 综合人妻久久一区二区精品| 国产一级二级在线观看| 亚洲人网站| 久久情精品国产品免费| 九色免费视频| 自拍偷拍欧美| 69视频国产| 国产成人综合亚洲欧美在| 中文字幕欧美日韩高清| 欧美亚洲国产精品第一页| 欧美一级大片在线观看| 欧美伊人色综合久久天天| 亚洲精品无码AV电影在线播放| 亚洲成人精品久久| 成人在线第一页| 在线色国产| 国产中文一区a级毛片视频| 国产欧美日韩资源在线观看| 亚洲av无码成人专区| 试看120秒男女啪啪免费| 综合五月天网| 国产新AV天堂| 欧美日韩精品在线播放| 日韩欧美成人高清在线观看| 色视频国产| 欧美在线视频a| 69精品在线观看| 国产美女主播一级成人毛片| 99免费在线观看视频| 久久久久青草线综合超碰| 精品无码日韩国产不卡av | 99热这里只有精品在线播放| 国产精品综合久久久| 久久成人18免费| 国产福利拍拍拍| 99国产精品一区二区| 亚洲第一国产综合| 亚洲国产精品一区二区第一页免| 综合亚洲网| 亚洲一级毛片在线观播放| 在线观看国产精品第一区免费| 国产av无码日韩av无码网站| 青青青国产精品国产精品美女| 国产极品粉嫩小泬免费看| 亚洲成人免费看| 日韩高清中文字幕| 国产美女叼嘿视频免费看| 区国产精品搜索视频| 色哟哟国产精品| 日本午夜影院| 欧类av怡春院| 国产av色站网站| 2021国产乱人伦在线播放| 国产精品hd在线播放| 成人毛片免费观看| 久久窝窝国产精品午夜看片| 欧美日韩国产在线播放| 狼友视频一区二区三区|