劉亞楠,趙衡,趙明華,彭文哲



摘? ?要:研究剪切面粗糙體退化對(duì)樁巖界面剪切過(guò)程中荷載傳遞機(jī)理的影響. 將樁身混凝土與鉆孔地層之間的粗糙面抽象為一系列相同的等腰三角形,并用半波長(zhǎng)和剪脹角定義單個(gè)粗糙體的尺寸,引入Patton模型來(lái)描述粗糙體的宏觀剪切響應(yīng)與相對(duì)剪切位移之間的關(guān)系,并考慮到孔壁地層與樁身混凝土的相對(duì)剛度比,基于能量原理,引入了一個(gè)粗糙體退化系數(shù)來(lái)定義在剪切過(guò)程中所產(chǎn)生的粗糙體表面磨損及體積壓縮的行為. 據(jù)此,修正了經(jīng)典的Patton模型,進(jìn)而推導(dǎo)了考慮孔壁粗糙體退化的灌注樁豎向荷載傳遞方程,該方程不僅可以考慮剪切面的粗糙程度(半波長(zhǎng)及剪脹角)對(duì)樁身荷載傳遞行為的影響,而且該解答中所包含的參數(shù)物理意義明確. 采用有限差分法對(duì)荷載傳遞方程進(jìn)行求解,并與工程實(shí)例進(jìn)行了對(duì)比驗(yàn)證. 結(jié)果表明,本文理論預(yù)測(cè)方法的結(jié)果與現(xiàn)場(chǎng)實(shí)測(cè)結(jié)果吻合較好,對(duì)灌注樁的初步設(shè)計(jì)有一定參考價(jià)值.
關(guān)鍵詞:樁基礎(chǔ);側(cè)阻力;荷載傳遞;粗糙體退化;剪脹角
中圖分類(lèi)號(hào):TU473? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
Vertical Load Transfer Behavior of Cast-in-place
Piles Considering Hole Wall Asperity Degradations
LIU Yanan,ZHAO Heng,ZHAO Minghua?覮,PENG Wenzhe
(Institute of Geotechnical Engineering,Hunan University,Changsha 410082,China)
Abstract:The influence of degradation of shear surface asperity on the load transfer mechanism of the pile-rock interface in the shear process is studied. Firstly, the rough surface between concrete of the pile and bored stratum is abstracted as a series of identical isosceles triangles, and the size of a single rough body is defined by half-wavelength and dilatancy angle. Secondly, the Patton model is introduced to describe the relationship between macroscopic shear responses of the rough body and relative shear displacement. Considering the relative stiffness ratio between the hole wall stratum and the pile body concrete, based on the energy principle, a rough body degradation coefficient is introduced to define the behavior of the rough body surface wear and volume compression generated during the shearing process. Accordingly, the classic Patton model was then improved. On this basis, the vertical load transfer equation of cast-in-place piles considering the degradation of the hole wall roughness is derived. This equation can not only consider the influence of the shear surface roughness (half wave length and dilatancy angle) on the load transfer behavior of piles, but the physical meaning of parameters included in the solution is also clear. Finally, the finite difference method is used to solve the load transfer equation, which is compared and verified by engineering examples. The results show that the theoretical predictions in this paper are in good agreement with the field measured results, and have a certain reference value for the preliminary design of cast-in-place piles.
Key words:pile foundation;side resistance;load transfer;asperity degradation;dilation angle
在我國(guó)南方山區(qū),常采用半路半橋或公路橋梁的形式跨越山區(qū)或峽谷,此時(shí)需將橋梁樁基設(shè)置在風(fēng)化程度各異的土層或巖層中[1]. 在各類(lèi)地層的鉆孔和成樁過(guò)程中,擾動(dòng)的地層與澆筑的混凝土樁體之間會(huì)形成參差不齊的剪切面. 當(dāng)基樁承受豎向荷載時(shí),由于剪切面的錯(cuò)動(dòng)引起的界面摩擦是樁側(cè)阻力的主要來(lái)源[2]. 目前,國(guó)內(nèi)外眾多學(xué)者基于室內(nèi)模型試驗(yàn)及現(xiàn)場(chǎng)試驗(yàn)結(jié)果,建立了大量理論模型預(yù)測(cè)鉆孔灌注樁的樁側(cè)摩阻力發(fā)揮機(jī)制[3-5]. 但是,這些研究大都基于各種數(shù)學(xué)假定而缺乏對(duì)應(yīng)的物理機(jī)制. 例如,假定摩阻力的發(fā)揮與相對(duì)剪切位移之間服從線性、雙曲線或者三折線的數(shù)學(xué)關(guān)系.這類(lèi)模型本質(zhì)上屬于半經(jīng)驗(yàn)半數(shù)學(xué)方法,需根據(jù)經(jīng)驗(yàn)參數(shù)完善模型參數(shù)的選取,最終確定側(cè)阻力極限值.
20世紀(jì)60年代,Patton[6]基于室內(nèi)巖石直剪試驗(yàn)結(jié)果提出了經(jīng)典的Patton節(jié)理模型,首次將巖石節(jié)理假定為一系列規(guī)則的三角形粗糙體,并給出了峰值抗剪強(qiáng)度的雙折線包絡(luò)線. 隨后,Ladanyi等[7]從能量耗散的角度對(duì)Patton模型進(jìn)行了改進(jìn),以考慮被剪斷的粗糙體所能提供的殘余摩擦力. 針對(duì)巖石節(jié)理的隨機(jī)性與不規(guī)則性,Barton[8]提出了著名的JRC(The Joint Roughness Coefficient,粗糙度系數(shù))-JCS(The Joint Wall Compressive Strength,節(jié)理壁面抗壓強(qiáng)度)模型,引入10條標(biāo)準(zhǔn)輪廓線來(lái)反映不同二維巖石節(jié)理面的JRC. 然而,Grasselli等[9]在研究粗糙度和材料特性對(duì)節(jié)理剪切變形行為的影響時(shí)發(fā)現(xiàn),當(dāng)界面剪切的相對(duì)位移越大時(shí),剪切過(guò)程中節(jié)理自身的壓縮變形與磨損就越大. 顯然,節(jié)理剪切過(guò)程中的剪脹角i并非恒定值,而是與材料性質(zhì)參數(shù)和幾何參數(shù)相關(guān)的變量. Patton剪切模型形式簡(jiǎn)單且參數(shù)具有顯著的物理意義,為預(yù)測(cè)鉆孔灌注樁的樁側(cè)摩阻力發(fā)揮提供了新的思路[10-15]. 但值得注意的是,Patton剪切模型是基于剛性粗糙體的概念進(jìn)行建模的,換言之,對(duì)于灌注樁的孔壁粗糙體,需要進(jìn)一步考慮樁身混凝土和孔壁地層的相對(duì)剛度[16-18]. 當(dāng)剛度較大時(shí),地層粗糙體的壓縮與退化效應(yīng)不容忽視,且將進(jìn)一步影響粗糙體的抗剪強(qiáng)度. 這是由于在剪切位移的發(fā)展過(guò)程中,孔壁對(duì)樁身的側(cè)向約束程度將隨著界面剪脹的增加而增加[16,19-20]. 因此,不考慮粗糙體的壓縮將高估界面的剪脹程度和孔壁的側(cè)向約束程度. 對(duì)于工程設(shè)計(jì)來(lái)說(shuō),這種高估無(wú)疑是偏于不安全的.
基于此,本文考慮到孔壁地層與樁身混凝土的相對(duì)剛度差,引入了一個(gè)粗糙體退化系數(shù)來(lái)定義在剪切過(guò)程中所產(chǎn)生的粗糙體表面磨損及體積壓縮的行為. 在此基礎(chǔ)上修正了經(jīng)典的Patton節(jié)理模型,并用以描述灌注樁的側(cè)阻力發(fā)揮機(jī)制. 然后,將其引入灌注樁的豎向荷載傳遞分析中,并推導(dǎo)基樁軸力與沉降之間的關(guān)系. 最后,通過(guò)算例驗(yàn)證,證明了本文理論計(jì)算方法的可行性,并對(duì)粗糙體半波長(zhǎng)及傾角的影響進(jìn)行參數(shù)分析,以期為灌注樁的初步設(shè)計(jì)提供一定的參考.
1? ?常法向剛度條件下樁側(cè)摩阻力
1.1? ?基本假定
鉆孔灌注樁成孔時(shí),樁身混凝土與孔壁地層的交界面將存在由于鉆孔設(shè)備鉆進(jìn)而產(chǎn)生的粗糙體,當(dāng)該界面滑移時(shí),會(huì)出現(xiàn)滑移剪脹現(xiàn)象(如圖1所示),界面的法向應(yīng)力增加,嵌巖段樁側(cè)摩阻力的產(chǎn)生主要由此引起.
為便于后續(xù)理論推導(dǎo),本文做如下假定:1)樁巖界面的粗糙體為規(guī)則等腰三角形,半波長(zhǎng)為λ,粗糙體傾角為β(見(jiàn)圖1);2)忽略界面的膠結(jié)作用力cu;3)孔壁地層材料的剛度小于樁身混凝土.
1.2? ?法向應(yīng)力及法向剛度
鉆孔灌注樁工作過(guò)程中,樁身在荷載作用下與孔壁地層發(fā)生相對(duì)向下的位移,將產(chǎn)生沉降w. 界面發(fā)生剪脹,產(chǎn)生法向應(yīng)力增量,根據(jù)厚壁圓筒的彈性理論解,當(dāng)洞壁發(fā)生徑向擴(kuò)張時(shí)(軸對(duì)稱(chēng))的法向應(yīng)力增量 Δσn為:
Δσn = ■■? ? ? ? (1)
式中:Er為巖體的彈性模量;νr為巖石的泊松比;r為樁截面半徑;Δr為樁半徑增量.
令K = Er /((1+ νr) × Δr),將其定義為圍巖法向剛度,可知法向應(yīng)力增量Δσn與徑向擴(kuò)張線性相關(guān). 當(dāng)深度z處界面的相對(duì)位移增量為Δw,孔壁粗糙體處于彈性狀態(tài)時(shí),巖壁的徑向膨脹為:
Δr = Δw tan β? ? ? ? (2)
式中:β為粗糙體傾角.
根據(jù)式(1),法向應(yīng)力增量為:
Δσn = K tan βΔw? ? ? ?(3)
1.3? ?粗糙體壓縮
在初始剪脹過(guò)程中,剪脹角i可視為粗糙體傾角β,即初始剪脹角i0 = β. 然而,常法向剛度(Constant Normal Stiffness,CNS)條件下法向應(yīng)力的施加可能導(dǎo)致粗糙體的壓縮與磨損(本文統(tǒng)稱(chēng)為退化),粗糙體傾角的退化過(guò)程可通過(guò)粗糙體高度的降低來(lái)表征[15],如圖2所示.
顯然,不同法向應(yīng)力會(huì)產(chǎn)生不同的粗糙體壓縮高度Δy,從而直接影響剪脹角的發(fā)揮程度. 受法向應(yīng)力和法向剛度的影響,粗糙體的退化將不會(huì)與剪切位移線性相關(guān). 因此,剪脹角不能直接使用粗糙體初始剪脹角i0,而應(yīng)由動(dòng)態(tài)變化剪脹角i來(lái)代替. 此時(shí),傾斜率tan i可用于衡量剪脹角發(fā)揮值,表示為:
tan i = Δy/Δw? ? ? ? ? (4)
1.4? ?樁側(cè)摩阻力表達(dá)式
一般而言,軟巖粗糙體的壓縮程度太大而不能被忽略,滑移剪脹過(guò)程中,剪脹角發(fā)揮值i小于初始剪脹角i0 . 鑒于此,本文引入退化因子η來(lái)表征瞬時(shí)剪脹角與初始剪脹角的比值,如式(5)所示. η = 0,對(duì)應(yīng)粗糙體未退化條件;η = 1,對(duì)應(yīng)粗糙體被完全破壞條件.
tan i = tan i0(1 - η)? ? ? ? ? (5)
式(5)為粗糙體退化的一般關(guān)系,但退化規(guī)律的演變不能簡(jiǎn)單地用此方程來(lái)表征. 大量直剪試驗(yàn)[9-11]表明:剪脹角的退化速度隨著剪切位移的增加而下降;在大多數(shù)情況下,其變化曲線可用指數(shù)函數(shù)描述. 在此基礎(chǔ)上,本文通過(guò)定義兩個(gè)參數(shù)的冪函數(shù)來(lái)描述粗糙體退化特性,如式(6)所示.
η = 1 - exp-■■? ? ? ?(6)
式中:λ為粗糙體半波長(zhǎng);m為材料參數(shù);k為幾何參數(shù). 目前尚不清楚m、k與其他物理力學(xué)參數(shù)(如軟巖抗壓強(qiáng)度或楊氏模量)之間的關(guān)系,但可以確定的是,m與巖石抗壓強(qiáng)度成正比,k與粗糙度成正比.
滑動(dòng)剪切力S可以表示為:
S = Ntan i0 + Stan i0 tan φb + Ntan φb? ? (7)
式中:N為法向力;φb為軟巖內(nèi)摩擦角;Ntan i0,Stan i0 tan φb,Ntan φb分別表示由法向力抵抗剪脹的滑動(dòng)摩擦力、剪脹時(shí)引起額外的滑動(dòng)摩擦力以及不考慮剪脹時(shí)內(nèi)摩擦角引起的滑動(dòng)剪切力.
相應(yīng)地,其滑動(dòng)機(jī)制可表示為:
τ = ■? ? ? ? (8)
式中:τ為剪切應(yīng)力.
常法向荷載條件下規(guī)則三角形粗糙體的峰值抗剪強(qiáng)度可由經(jīng)典的Patton模型[6]表示:
τ = σn tan(φb + i0),σn≤σT? ? ? ? (9)
τ = c + σn tan φr,σn≥σT? ? ? ? (10)
式中:σn為法向應(yīng)力;φr為軟巖的殘余摩擦角;c為黏聚力;σT為過(guò)渡應(yīng)力,σT = c/[tan(φb+i)-tan φr].
將式(7)和(8)代入式(9),樁巖界面平均剪切應(yīng)力可通過(guò)剪脹角來(lái)計(jì)算。
τ = ■? ? ? ? (11)
在CNS條件下,施加的法向應(yīng)力通常由以下兩個(gè)分量組成:初始法向應(yīng)力σn0以及由剪脹引起的應(yīng)力增量Ky,即σn = σn0 + Ky = σn0 + Kw tan i,其中K是法向剛度. 則式(11)可改寫(xiě)為
τ = (σn0 + Kw tan i)■? ? (12)
因此,CNS條件下的τ-w表達(dá)式為:
τ=[σn0 + Kwtan i0(1-η)]■
(13)
2? ?樁身沉降及軸力計(jì)算
2.1? ?基本微分方程的建立
根據(jù)荷載傳遞理論,對(duì)樁身任一截面有:
■ = ■τ(w)? ? ? ? (14)
式中:U為灌注樁的周長(zhǎng);Ap為灌注樁的截面積;Ep為灌注樁的彈性模量.
結(jié)合τ-w曲線可知,式(14)難以得到解析解,故本文使用有限差分法對(duì)其進(jìn)行求解,并根據(jù)τ-w曲線的變化趨勢(shì),采用二次多項(xiàng)式對(duì)其進(jìn)行擬合,便于簡(jiǎn)化差分求解過(guò)程. 故式(14)可寫(xiě)作:
■ = ■(aw2 + bw)? ? ? ?(15)
式中:a,b分別為τ-w曲線的二次多項(xiàng)式擬合式中二次項(xiàng)與一次項(xiàng)常系數(shù).
2.2? ?基本微分方程的求解
自樁頂至樁底將全樁分成N分段,各節(jié)點(diǎn)編號(hào)i分別記為0,1,…,K,…,N-1,N,并在樁頂和樁底分別增加1個(gè)虛擬節(jié)點(diǎn),表示樁頂及樁底處沉降(如圖3所示),其中N為樁底處節(jié)點(diǎn)編號(hào).
相鄰節(jié)點(diǎn)之間的距離為h = dz,對(duì)于第i個(gè)節(jié)點(diǎn),式(14)可推導(dǎo)為差分形式:
wi-1 - 2wi + wi+1 = ■(aw2i + bwi)? ? ? (16)
即任意節(jié)點(diǎn)沉降可由相鄰兩節(jié)點(diǎn)沉降表示:
wi-1 = ■w2i + ■+2■wi - wi+1? ? (17)
對(duì)于節(jié)點(diǎn)N,式(17)可寫(xiě)為:
wN-1 = ■w2N + ■+1■wN - wN+1? (18)
對(duì)于節(jié)點(diǎn)N-1,式(17)可寫(xiě)為:
wN-2 = ■w2N-1 + ■+1■wN-1 - wN? (19)
顯然,可依次推導(dǎo)出相鄰3個(gè)節(jié)點(diǎn)沉降之間的關(guān)系.
對(duì)于樁頂,可根據(jù)現(xiàn)場(chǎng)實(shí)測(cè)軸力所對(duì)應(yīng)的沉降值wp,取w0 = wp作為邊界條件,因此對(duì)于節(jié)點(diǎn)0,式(17)可寫(xiě)為:
w-1 = ■w2p + ■+2■wp - w1? ?(20)
對(duì)于上述方程可使用迭代法,由節(jié)點(diǎn)1遞推至節(jié)點(diǎn)N,控制邊界條件w0 = wp,得到w1依次遞推各節(jié)點(diǎn)沉降,然后將wi代入式(17),即可求解節(jié)點(diǎn)i處樁側(cè)摩阻力,進(jìn)而獲得樁身軸力變化曲線.
3? ?算例驗(yàn)證
為了驗(yàn)證本文方法的可行性,引入O′neill等[21]的鉆孔樁現(xiàn)場(chǎng)靜載試驗(yàn)進(jìn)行對(duì)比. 試驗(yàn)場(chǎng)地的巖層條件如下:上層為3 m的填土,下層約為6 m的泥頁(yè)巖. 樁身嵌巖深度為6.1 m,基樁直徑為0.61 m,樁身混凝土重度為20.4 kN/m3,其彈性模量Ep為2.761 04 MPa,取圍巖平均彈性模量Er為232 MPa,巖層內(nèi)摩擦角為24.8°,黏聚力為1.2 MPa,結(jié)構(gòu)面摩擦角φu為30°,殘余內(nèi)摩擦角φr為24°,泊松比 νr取0.25,泊松比為0.3,剪脹角i為10°,半波長(zhǎng)λ為10 mm,m = 4.62,k = 0.94. 根據(jù)以上參數(shù),采用本文方法計(jì)算樁身軸力變化曲線,并將其與實(shí)測(cè)曲線進(jìn)行對(duì)比,如圖4所示. 由圖4可知,本文理論方法計(jì)算獲得的樁身軸力變化曲線與文獻(xiàn)[21]的實(shí)測(cè)曲線趨勢(shì)一致,吻合較好,說(shuō)明本文方法可用于分析灌注樁荷載傳遞機(jī)制.
4? ?參數(shù)分析
通過(guò)上述分析可知,粗糙體半波長(zhǎng)λ和傾角β是樁-巖界面剪切特性的主要影響因素. 因此,本文在驗(yàn)證理論方法的基礎(chǔ)上,基于控制變量法,探討二者單獨(dú)變化對(duì)樁身沉降及軸力的影響.
4.1? ?半波長(zhǎng)λ的影響
由式(6)和式(13)可知,鉆孔灌注樁豎向荷載傳遞將受到半波長(zhǎng)λ的影響,因此本文假定半波長(zhǎng)λ為某一合理的數(shù)值,對(duì)灌注樁樁身軸力隨半波長(zhǎng)λ的變化而改變的規(guī)律作一定的討論. 參數(shù)分析中其他參數(shù)保持不變,與實(shí)例驗(yàn)證一致,半波長(zhǎng)λ在8 mm、10 mm、12 mm和14 mm變化. 分析結(jié)果如圖5所示,由圖5可知,隨著半波長(zhǎng)λ的增大,軸力下降的幅度逐漸減小,這說(shuō)明樁側(cè)界面的抗剪強(qiáng)度越大,樁頂豎向荷載傳遞的有效深度越短,反之越大.
4.2? ?粗糙體傾角β的影響
由式(13)可知,鉆孔灌注樁豎向荷載傳遞將受到粗糙體傾角β的影響,因此本文假定粗糙體傾角β為某一合理的數(shù)值,對(duì)灌注樁樁身軸力隨粗糙體傾角β的變化而改變的規(guī)律作一定的討論. 參數(shù)分析中其他參數(shù)保持不變,與實(shí)例驗(yàn)證一致,粗糙體傾角β在8°、10°、12°和14°變化. 分析結(jié)果如圖6所示,由圖6可知,隨著粗糙體傾角β的增大,軸力下降的幅度逐漸減小,這說(shuō)明樁-巖界面抗剪能力越大,樁頂豎向荷載傳遞的有效深度越短,反之越大.
5? ?結(jié)? ?論
根據(jù)樁身混凝土-軟巖界面的剪切特性,探討了常法向剛度條件下的樁側(cè)摩阻力發(fā)揮機(jī)制,通過(guò)考慮樁-巖界面剪脹效應(yīng),引入退化因子、材料參數(shù)和幾何參數(shù),研究粗糙體對(duì)灌注樁側(cè)阻力及軸力分布規(guī)律的影響,得出如下結(jié)論:
1)灌注樁-軟巖界面粗糙體的存在,使得樁側(cè)摩阻力發(fā)揮機(jī)制與一般預(yù)制樁完全不同,故其工程設(shè)計(jì)難以照搬常規(guī)豎向受荷樁設(shè)計(jì)計(jì)算方法.
2)通過(guò)現(xiàn)場(chǎng)試驗(yàn)對(duì)比可知,本文方法所得的樁身軸力預(yù)測(cè)曲線與現(xiàn)場(chǎng)實(shí)測(cè)曲線趨勢(shì)一致,說(shuō)明本文計(jì)算方法用于軟巖灌注樁設(shè)計(jì)計(jì)算是可行的.
3)提出一個(gè)綜合考慮退化因子η,材料參數(shù)m及幾何參數(shù)k的樁側(cè)摩阻力表達(dá)式,用以考慮粗糙體的影響,其參數(shù)可作為灌注樁承載特性的控制指標(biāo).
參考文獻(xiàn)
[1]? ? 趙明華,羅衛(wèi)華,雷勇,等. 汨水河特大橋嵌巖樁承載特性試驗(yàn)研究[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,41(3):1—6.
ZHAO M H,LUO W H,LEI Y,et al. In-site load-carrying characteristics test of rock-socketed piles of Mishui river bridge[J]. Journal of Hunan University (Natural Sciences),2014,41(3):1—6. (In Chinese)
[2]? ? 趙明華,雷勇,劉曉明. 基于剪切位移法的基樁負(fù)摩阻力計(jì)算[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,35(7):1—6.
ZHAO M H,LEI Y,LIU X M. Settlement calculation of single pile's negative skin friction with shear displacement method[J]. Journal of Hunan University(Natural Sciences),2008,35(7):1—6. (In Chinese)
[3]? ? 趙明華,夏柏楊,趙衡. 考慮鋸齒狀節(jié)理的樁巖界面模型試驗(yàn)研究[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,47(1):123—129.
ZHAO M H,XIA B Y,ZHAO H. Laboratory testing study on concrete-rock interface with sawtooth joint[J]. Journal of Hunan University (Natural Sciences),2020,47(1):123—129. (In Chinese)
[4]? ? 劉海峰,朱長(zhǎng)歧,汪稔,等. 礁灰?guī)r-混凝土界面剪切特性試驗(yàn)研究[J]. 巖土力學(xué),2020,41(5):1540—1548.
LIU H F,ZHU C Q,WANG R,et al. Shear test on reef limestone-concrete bonding interface[J]. Rock and Soil Mechanics,2020,41(5):1540—1548. (In Chinese)
[5]? ? 邢皓楓,孟明輝,何文勇,等. 基于結(jié)構(gòu)面力學(xué)特性的嵌巖樁側(cè)摩阻力分布分析[J]. 巖土工程學(xué)報(bào),2012,34(12):2220—2227.
XING H F,MENG M H,HE W Y,et al. Distribution of shaft resistance of rock-socketed piles based on mechanical properties of pile-rock interface[J]. Chinese Journal of Geotechnical Engineering,2012,34(12):2220—2227. (In Chinese)
[6]? ? PATTON F D. Multiple modes of shear failure in rock[C]// Proceeding of the 1st Congress of International Society of Rock Mechanics. Lisbon,Portugal:International Society for Rock Mechanics and Rock Engineering,1966:509—513.
[7]? ? LADANYI B,ARCHAMBAULT G. Simulation of shear behaviour of a jointed rock mass[C]//Proceedings of the 11th U.S. Symposium on Rock Mechanics(USRMS). Berkeley,California:American Rock Mechanics Association,1969:105—125.
[8]? ? BARTON N. The shear strength of rock and rock joints [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1976,13(9):255—279.
[9]? ? GRASSELLI G,EGGER P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(1):25—40.
[10]? PLESHA M E. Constitutive models for rock discontinuities with dilatancy and surface degradation[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(4):345—362.
[11]? JING L R,F(xiàn)ENG X T. Numerical modeling for coupled thermo-hydro-mechanical and chemical processed (THMC) of geological media-international and Chinese experiences[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(10):1704—1715.
[12]? TATONE B S,GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials[J]. Review of Scientific Instruments,2009,80(12):125110.
[13]? LI Y R,ZHANG Y B. Quantitative estimation of joint roughness coefficient using statistical parameters[J]. International Journal of Rock Mechanics and Mining Sciences,2015,77:27—35.
[14]? HORVATH R G,KENNEY T C,KOZICKI P. Methods of improving the performance of drilled piers in weak rock[J]. Canadian Geotechnical Journal,1983,20(4):758—772.
[15]? SEIDEL J P,HABERFIELD C M. Towards an understanding of joint roughness[J]. Rock Mechanics and Rock Engineering,1995,28(2):69—92.
[16]? JOHNSTON I W,LAM T S K. Shear behavior of regular triangular concrete/rock joints-analysis[J]. Journal of Geotechnical Engineering,1989,115(5):711—727.
[17]? SEIDEL J P,HABERFIELD C M. Laboratory testing of concrete-rock joints in constant normal stiffness direct shear[J]. Geotechnical Testing Journal,2002,25(4):391—404.
[18]? SEIDEL J P,HABERFIELD C M. A theoretical model for rock joints subjected to constant normal stiffness direct shear[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(5):539—553.
[19]? LEONG E C,RANDOLPH M F. Finite element modelling of rock-socketed piles[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1994,18(1):25—47.
[20]? SEOL H,JEONG S,KIM Y. Load transfer analysis of rock-socketed drilled shafts by coupled soil resistance[J]. Computers and Geotechnics,2009,36(3):446—453.
[21]? O′N(xiāo)EILL M W,TOWNSEND F C,HASSAN K M,et al. Load transfer for drilled shafts in intermediate geomaterials:FHWA-RD-95-172[R]. McLean,VA:Federal Highway Administration,1996:171—176.