魏鴻超,王志強
(北京航空航天大學 儀器科學與光電工程學院,北京 100191)
反作用飛輪通過精確地跟蹤姿控系統力矩信號給定指令,達到調整衛星姿態或者補償系統干擾力矩的目的[1-2]。當給定零轉矩指令時,要求飛輪電機的轉速具有較高的穩速精度,而鎖相環穩速控制技術是高精度磁懸浮反作用飛輪工作在速率保持模式下的最佳控制方案。
鎖相環控制技術主要目的是改善電機動態性能和提高系統抗干擾能力。在最初階段,鎖相環控制系統采用的是通過模擬電路實現的單一鎖相控制,控制方案簡單。采用MC4044鑒頻鑒相器(以下簡稱PFD)的直流電動機控制方案在1973年第一次被提出,并且分析了其穩態精度達到0.01%的可能性。Tal首先建立了電壓泵PFD的線性離散模型,并且從穩定性分析入手,得到了存在低速極限及其與環路參數的關系。20世紀80年代以來,隨著電力電子、微電子技術以及控制技術的發展,對電動機調速系統性能的要求也越來越高,主要表現為:轉速穩定精度高、動態調速性能好、抗干擾能力強等[3]。鎖相調速雖然在穩態精度方面有獨特的優勢,但是在動態性能和抗干擾能力方面有明顯的不足[4],因此,對鎖相環技術的研究主要針對這兩方面?,F代的電機鎖相控制已發展成一個包括軟硬件的控制系統,作為一種相位檢測手段的鎖相環技術,能夠與其它先進的控制技術相結合,共同作用提高調速系統的綜合性能[5-8]。
本文建立了鎖相環穩速控制系統的動力學模型,首先采用環路參數模型參考自適應方法,改善鎖相環系統的抗干擾性能,在此基礎上設計了雙模轉速控制器。然后,基于協同控制理論對磁懸浮飛輪電機的轉矩進行高動態、強魯棒控制。最后對速率模式下磁懸浮反作用飛輪自適應鎖相環協同控制方法進行了實驗研究。
鎖相環是頻率和相位的同步控制系統,目的是實現輸入參考信號和反饋信號的相等和相位差的恒定。利用鎖相環技術能夠實現數字信號的同步,將此策略融入到電機轉速控制系統中,則可以實現轉速控制中的高精度穩速控制。
電動機轉速控制中應用的鎖相環和通訊中應用的鎖相環,兩者之間有著根本上的差別。在電動機控制系統中,電機測速器通常作為有慣性的電壓控制振蕩器。鎖相環轉速控制(以下簡稱PLSC)系統主要由PFD、LPF及VCO等3個基本部件組成,其中,鑒相器是鎖相環的核心元件。根據信號形式劃分,鎖相環可分為最初的模擬鎖相環[9]、后繼出現的數?;旌湘i相環[10]和各種不同性能的全數字鎖相環路[11-13],以及近幾年出現的純軟件鎖相環[14-15]。
文獻[16]提出了一種基于PFD的鎖相調速系統模型,并建立了PFD的非線性數學模型,但該模型中不包含轉矩控制器,鎖相環的動態響應特性較差。針對磁懸浮反作用飛輪工作在速率保持模式下,鎖相環轉速控制系統對轉矩擾動的魯棒性要求,本文引入了轉矩控制器,以提高鎖相環的動態響應速度和對轉矩擾動的魯棒性,控制系統的結構如圖1所示。

圖1 鎖相速度控制系統結構
PFD的輸出通常表現為非線性,只有在鎖相環靠近鎖定的狀況下能夠表現出線性比例特性。在鎖相調速系統中,電動機、轉矩控制器和光電碼盤共同組成帶有慣性的VCO,電動機轉速的輸出通過霍爾傳感器或者光電碼盤轉化為與電動機的轉子轉速成比例的脈沖信號,PFD比較參考輸入脈沖信號與霍爾傳感器或光電碼盤輸出的脈沖信號相位。
根據電動機的動態特性,鎖相調速系統被認為比電子鎖相環更高一級的系統。鎖相調速系統在動態特性的性能和要求上與電子鎖相環存在明顯的差異,相較于電子鎖相環,鎖相調速系統頻率低、時間常數大并且調速范圍寬。電動機的機械慣量大,系統帶寬變窄,系統時間常數比電子鎖相環時間常數大,所以系統靠頻率牽引作用入鎖難度大。當磁懸浮反作用飛輪工作在速率保持模式下時,需對轉速采用雙??刂?,雙模控制系統的結構如圖2所示。

圖2 雙模鎖相速度控制系統結構
如果系統轉速誤差的絕對值比設定的誤差帶大,則系統在轉速PI協同控制作用下,電機迅速進行加速或者減速。當系統轉速誤差絕對值比設定的誤差帶小時,系統切換成鎖相控制模式,系統處于穩定狀態時只有鎖相環控制作用,使系統獲得較高的穩態精度。
假設磁懸浮飛輪電機三相對稱,忽略換相轉矩脈動的影響,則PLSC系統可用如下的微分方程組描述:
(1)
式中:F(θ,ω)=
式中:θ為相位差;ωR為參考信號頻率;ω為電機輸出轉速;τd、τf為濾波時間常數;kp為PFD增益;Vc為濾波器輸出;J為轉子轉動慣量;KT為飛輪電機轉矩系數;Ke為飛輪電機反電動勢系數;B為阻尼系數;Td為未補償電機內擾動轉矩;im為永磁無刷直流電機繞組相電流;Lm為繞組相電感;Rm為繞組相電阻;ΔVT為功率開關管通態壓降;i為Buck DC-DC變換器的輸入電流;Uo為Buck DC-DC變換器的輸出電壓;UDC為電源供電電壓;L為Buck DC-DC變換器濾波電感;C為Buck DC-DC變換器濾波電容;u1為控制輸入;N為碼盤的刻線數或電機極對數與轉子位置傳感器數量的乘積。
PFD的輸入/輸出特性如圖3所示。

圖3 PFD輸入/輸出特性
采用雙模轉速控制是改善鎖相環控制動態性能和擴大轉速調節范圍的有效途徑[17-18]。雙模轉速控制避開了鑒相器的非線性工作區,不但具有良好的動態特性,還獲得了較高的穩態精度。為了使雙模控制系統從PI協同控制切換到鎖相環控制后,環路能夠快速入鎖,就要求鎖相環的快捕帶大于誤差帶。此外,即使采用了雙模控制,鎖相環在飛輪電機內擾動轉矩的作用下仍可能失鎖[19-20]。當雙模轉速控制器運行于鎖相控制方式時,系統結構見圖2。在鎖相環調速系統中引入轉矩控制器,能夠不同程度地改善環路的動態性能和抗干擾能力[21]。磁懸浮反作用飛輪在速率保持模式下,電機工作在正向或反向電動狀態下。
定義狀態向量x=(x1,x2,x3,x4,x5,x6)=(θ,Vc,ω,im,i,Uo),則由式(1)所描述的微分方程組可得到鎖相環系統的非線性狀態空間模型:
(2)
因包含環路濾波器,所以在θ∈[0,2π]時,
F(x1,x3)=
k=0,1,2,…
(3)
當θ∈[0,2π]時,相差為正,鎖相環的狀態空間模型為線性。式(3)代入式(2)得到:
(4)
由式(4)可知,基于PFD的PLSC系統在θ∈[0,2π]時,相位誤差在線性范圍內。
環路的增益直接影響鎖相環的穩速精度和帶負載能力,增益增大則抗干擾的能力強,但穩態精度降低;增益減小則抗干擾的能力減弱,但穩態精度提高。在鎖相環工作過程中,如果可以依據速度和相位誤差的大小自動調整環路增益,則可以自動適應穩態精度和抗轉矩擾動。在轉矩控制器中引入協同控制器能夠有效地提高轉矩的動態跟蹤能力。
磁懸浮反作用飛輪電機鎖相環模型參考自適應控制器框圖如圖4所示。

圖4 磁懸浮反作用飛輪電機鎖相環模型參考自適應控制器
調節系統:
(5)
式中:θe為相位差。
參考模型:
(6)
式中:φe為相位差;KR為參考模型增益,在控制過程中不斷更新。
采用模型參考自適應方法調節環路增益,當擾動轉矩發生變化,飛輪電機的電磁轉矩也相應改變來保證電機的穩定運行。常見的鎖相環控制是控制增益恒定,通過相位誤差的改變來調整轉矩給定。而式(6)的參考模型定義了恒定的相位誤差,通過調節環路增益,改變電磁轉矩給定。
采用Lyapunov理論推導自適應律,選擇Lyapunov函數:
(7)
式中:ξ為正常數。V對時間的導數:
(8)



圖5 鎖相環自適應協同控制器框圖
在轉矩參考作用下,飛輪速率保持模式的轉矩協同控制系統宏函數可定義為電機電磁轉矩、Buck DC-DC變換器輸入電流與其參考值的線性組合:
ψ1=k1(Ta-KAx2)+k2(x5-ir)
(9)
式中:k1和k2為權系數,Ta為飛輪電機電磁轉矩的參考值;ir為Buck DC-DC變換器的輸入電流參考值。定義流形的期望動態特性方程:
(10)
式中:趨近率T1是根據ψ1確定的,其決定了系統向流形面ψ1=0運動并且最終達到流形面的收斂速度。
飛輪電機的電磁轉矩:
Ta=KTim
(11)
將式(11)代入到(10)得:
k1(KTim-KAx2)+k2(x5-ir)=0
(12)
將式(4)代入式(12)中,得到飛輪加速運行的協同控制律:

(13)
式(13)構成磁懸浮反作用飛輪電機速率保持模式的鎖相環轉矩協同控制規律。
當θ∈[-2π,0)時,相差為負,鎖相環的狀態空間模型是非線性的。
(14)
由式(14)可知,基于PFD的PLSC系統在θ∈[-2π,0)時,雖然相位誤差在線性范圍內,但PFD的輸入/輸入特性仍具有強非線性。
在快捕帶內,鎖相環的參考轉頻和反饋轉頻同步,因此可將式(14)的狀態空間模型轉換:
(15)
當θ∈[-2π,0)時,鎖相環的模型參考環路增益自適應控制與θ∈[0,2π]時的算法相同。在轉矩參考作用下,飛輪速率保持模式的轉矩協同控制系統宏函數仍定義為式(9)的電機電磁轉矩、Buck DC-DC變換器輸入電流與其參考值的線性組合。
將式(14)代入式(12)中得到:
(16)
式(16)構成磁懸浮反作用飛輪電機速率保持模式的鎖相環自適應協同控制規律。
鑒相器通常被劃分成兩大類,第一類為乘法器(或稱組合邏輯電路),第二類為時序電路。第一類鑒相器的輸出是信號的輸入波形和本地振蕩器的波形做乘后所得乘積的平均值。第二類鑒相器輸出的有用誤差電壓僅根據輸入信號波形的翻轉與磁懸浮飛輪電機轉速波形的翻轉兩者之間的時間間隔決定,與其他信息無關。
在電機鎖相環轉速控制系統中,最重要和最著名的時序鑒相器是PFD,本文采用的PFD模型如圖6所示,模型由兩個D觸發器、一個與門和一個接在反饋回路中的延遲組成。D觸發器的數據端始終接邏輯高電平。兩個D觸發器的時鐘端輸入分別為參考轉速的翻轉和反饋信號的翻轉。兩個D觸發器的輸出一個標記為OUP,另一個標記為ODN。正確極性的時鐘沿把它與相連的D觸發器置1。當與門判斷出OUP和ODN同時為真時,通過反饋把兩個D觸發器同時置0。PFD的時序邏輯采用FPGA實現。

圖6 鎖相環的PFD
OUP的有效輸出反饋轉速相位滯后于參考信號,ODN的有效輸出反饋轉速相位超前于參考信號。OUP和ODN的有效輸出指出了相位誤差的方向。而相位誤差的大小則由OUP和ODN脈沖的寬度來確定,PFD的波形如圖7所示。

圖7 鎖相環的PFD
在通常情況下,PFD發揮著驅動電荷泵的作用,電荷泵的作用是在每個相位比較周期區間,根據相位誤差配給環路濾波器相應的電荷量?;陔姾杀玫逆i相環的PFD輸出是包含在OUP和ODN脈沖的寬度里面的,而脈沖寬度是連續變化的模擬量。因此,采用PFD和電荷泵組合結構的鎖相環仍然是模擬鎖相環,而不是數字鎖相環。
本文采用可逆計數器代替鎖相環中的電荷泵,將可逆計數器的輸出進行數字積分,并把雙??刂魄袚Q前的PI協同控制器的輸出與可逆計數器數字濾波后的輸出求和,作為鎖相環的控制量輸出。自適應算法和協同控制算法在FPGA中做數值運算,自適應協同控制的輸出量與載波比較生成PWM。
磁懸浮反作用飛輪工程化實驗驗證平臺如圖8所示。實驗平臺包括28 V直流電源、15 N·m·s磁懸浮反作用飛輪、飛輪電機磁軸承控制系統、飛輪電機數字控制系統等,霍爾轉子位置傳感器提供磁懸浮飛輪的轉速信息。磁懸浮反作用飛輪的主要技術指標如表1所示。

圖8 磁懸浮飛輪實驗平臺

表1 磁懸浮反作用飛輪主要技術指標
在磁懸浮反作用飛輪速率保持模式的鎖相環自適應協同控制下,鎖相環系統在捕獲帶內不同頻率下的環路濾波器輸出波形如圖9所示。給定參考轉頻666 Hz,圖9(a)是反饋轉頻滯后時的環路濾波器輸出波形,圖9(b)是反饋轉頻超前時的環路濾波器輸出波形。

圖9 鎖相環環路濾波器的輸出
圖10是在隨機擾動轉矩作用下鎖相環自適應協同控制系統電流的動態響應。

圖10 電流的動態響應
圖11是磁懸浮反作用飛輪在速率保持模式下的鎖相環自適應協同控制系統穩速曲線,飛輪電機的轉速穩定度優于1×10-4。
本文首先建立鎖相環穩速控制系統的動力學模型,采用環路參數模型參考自適應方法,以保證在擾動轉矩作用下仍能維持較高的穩速精度。然后,基于協同控制方法設計了磁懸浮飛輪電機的高動態轉矩控制器,提高了鎖相環的響應速度和抗擾動能力。設計了基于FPGA的數字鎖相環自適應協同控制器,在FPGA控制器上實現了鎖相環自適應協同控制算法,最后對磁懸浮反作用飛輪速率保持模式鎖相環自適應協同控制方法進行了實驗研究。