999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On Twin Domination Number of Cartesian Product of Directed Cycles

2021-08-23 06:24:26MaHongxiaZhaoJuanFengYanqiu
數(shù)學理論與應用 2021年2期

Ma HongxiaZhao Juan Feng Yanqiu

(College of Preparatory,Xinjiang Normal University,Urumqi 830017,China)

Abstract Let γ*(D)denote the twin domination number of digraph D and let Cm□Cn denote the Cartesian product of the directed cycle Cm and Cn,for m,n≥2.In this paper,we give a lower bound for γ*(Cm□Cn)and we determine the exact values of γ*(Cm□Cn)when m,n≡0(mod 3)and when m≡2(mod 3).

Key words Digraph Twin domination number Cartesian product Directed cycle

1 Introduction

LetD=(V,A)be a finite digraph without loops and multiple arcs,whereV=V(D)is the vertex set andA=A(D)is the arc set.For a vertexdenote the set of out-neighbors and in-neighbors ofv,respectively.The out-degree and in-degree ofvare defined byA digraphDis calledr-regular iffor any verticesvinV(D).Given two verticesuandvinV(D),we say thatuout-dominatesv(orvin-dominatesu)ifu=vorA vertexvout-dominates all vertices inA setS?V(D)is called an out-dominating(in-dominating)set ofDifSout-dominates(in-dominates)V(D).The out-domination number ofD,denoted byγ+(D),is the minimum cardinality of an out-dominating set ofD.The in-domination number is defined analogusly.Some results of twin domination in digraphs has been obtained in[1–3].A setis a twin dominating set ofDif for any vertexv∈V?S,there existu,w∈S(possiblyu=w)such that arcsuv,vw∈A(D).The twin domination number ofD,denoted byγ*(D),is the minimum cardinality of a twin dominating set ofD.Clearly,γ+(D)≤γ*(D).

LetD1=(V1,A1)andD2=(V2,A2)be two digraphs which have disjoint vertex setsV1={x1,x2,...,xn1}andV2={y1,y2,...,yn2}and disjoint arc setsA1andA2,respectively.The Cartesian productD=D1□D2has vertex setV=V1×V2and(xi,yj)(xi′,yj′)∈A(D)if and only if one of the following holds:

(a)xi=xi′andyjyj′∈A2?

(b)yj=yj′andxixi′∈A1.

For any fixed vertexyi∈V2,the subdigraphofDhas vertex seand arc setIt is clear thatD1yi~=D1.Similarly,for any fixed vertexxi∈V1,the subdigraphD2xiofDhas vertex setand arc setIt is clear thatTwin domination in digraph is a fundamental and interesting concept.[4–8]presented some related works of out-domination number of the Cartesian product and strong product of directed cycles and directed paths.However,to date no research about the twin domination number has been done for the Cartesian product of directed cycles.

In this paper,we study the twin domination number ofCm□Cn,obtain the lower bound ofγ*(Cm□Cn),and give the following exact values

2 Main results

We emphasize that the vertices of a directed cycleCmare always denoted by the integers{0,1,...,m?1}considering modulom.There is an arcxyfromxtoyinCmif and only ify=x+1(modm).For any vertex(i,j)∈V(Cm□Cn),

the first digit and second digit are considered modulomandn,respectively.

LetCm□Cndenote the Cartesian product ofCmandCn.Observe that the vertices ofare out-dominated by vertices ofand in-dominated by vertices of1}.Especially,the vertices ofare out-dominated by vertices ofand in-dominated by vertices of

Lemma 2.1Letm,n≥2,and

(i)Ifm≡0(mod 3),thenγ*(Cm□Cn)≥nk1?

(ii)Ifm≡1(mod 3),then

(iii)Ifm≡2(mod 3),thenγ*(Cm□Cn)≥nk1+n.

ProofLetSbe a twin domination set ofCm□CnandObserve that each of the vertices ofnot only in-dominates two vertices inbut also out-dominates one vertex inthe vertices ofare only out-dominated by vertices of

Now we turn to investigate the twin domination number ofCm□Cn.

Firstly,we consider the casem≡0(mod 3)andn≡0,2(mod 3).

Define a set as follow(see Figure 1):

Figure 1 The set S1

S1={(3j,i):i≡0(mod 3);(3j+1,i):i≡1(mod 3);(3j+2,i):i≡2(mod 3);wherej∈{0,1,...,k1?1}}.

Theorem 2.1Letm,n≥2 andthen

ProofIfn≡0(mod 3),then we can assume thatn=3k2.Based on Lemma 2.1,we can obtain thatγ*(Cm□Cn)≥3k1k2.Clearly,S1is a twin dominating set ofCm□Cn,and|S1|=3k1k2.

Ifn=3k2+2,then we deduce thatγ*(Cn□Cm)≥3k1k2+3k1from Lemma 2.1.Obviously,S1∪{(3j+2,0)|j∈{0,1,...,k1?1}}is a twin dominating set ofCm□Cnand|S1∪{(3j+2,0)|j∈{0,1,...,k1?1}}|=k1(3k2+2)+k1=3k1k2+3k1.

Secondly,we consider the casem≡2(mod 3).

Theorem 2.2Letm=3k1+2,

(i)Ifn=3k2+2 andk2≥k1,thenγ*(Cm□Cn)=3k1k2+2k1+3k2+2?(Ifk2≤k1,we can obtain an analogous conclusion).

(ii)Ifn=3k2+1 and 2k2≥k1,thenγ*(Cm□Cn)=3k1k2+k1+3k2+1.

ProofFirstly,we assumen=3k2+2.Then by Lemma 2.1,we haveγ*(Cm□Cn)≥3k1k2+2k1+3k2+2.Without loss of generality,we assume thatn≥m,in other words,k2≥k1.Define the following subsets ofV(Cm□Cn):

LetS2=Xi∪Y.We first show thatS2is an out-dominating set ofCm□Cn.

For eachi,1≤i≤m?4,note that the vertices ofare out-dominated by vertices inXiandXi?1.Clearly,all the vertices ofare out-dominated by the vertices inXm?4andY,wheni>m?3,the vertices ofare out-dominated by the vertices inY.Particularly,the vertices ofare out-dominated by vertices inX0andY.It follows thatS2is an out-dominating set ofCm□Cn.

In the following,we show thatS2is also an in-dominating set ofCm□Cn.For eachi,0≤i≤m?5,we see that all vertices ofare in-dominated by vertices inXiandXi+1.Particularly,the vertices ofare in-dominated by vertices inX0andY.ThereforeS2is an in-dominating set ofCm□Cn.

From above,we conclude thatS2is a twin dominating set ofCm□Cnwith cardinality 3k1k2+2k1+3k2+2.

As an example,Figure 2 shows a twin dominating sets ofC11□C14.

Figure 2 A twin dominating set of C11□C14

Secondly,we assumen=3k2+1.

It is evident from Lemma 2.1 thatγ*(Cm□Cn)≥3k1k2+k1+3k2+1.Assume that,that is 2k2≥k1.

Ifk1is even,thenmis even.Define some sets as follows:

Y={(3j+1,i)|j∈{0,1,...,k1},i≡1(mod 3)}∪{(0,i),(3j+2,i)|j∈{0,1,...,k1?1},i≡2(mod 3)}∪{(1,i),(3j,i)|j∈{1,2,...,k1},i≡0(mod 3)},where

It is clear that all the vertices inX0∪Xicould out-dominate the vertices fromMoreover,the vertices ofare out-dominated by the vertices inandY.Whenthe vertices inYcould dominate all the vertices ofI n particular,the vertices ofare out-dominated by the vertices inX0andY.SoS3is an out-dominating set ofCm□Cn.Similarly,we can show thatS3is also an in-dominating set ofCm□Cn.ThereforeS3is a twin dominating set ofCm□Cn,and|S3|=n(k1+1)=3k1k2+k1+3k2+1.

As an example,Figure 3 shows a twin dominating sets ofC8□C13.

Ifk1is odd,then define some sets as follows:

Y′={(3j+1,i)|j∈{0,1,...,k1},i≡1(mod 3)}∪{(0,i),(3j+2,i)|j∈{0,1,...,k1?1},i≡2(mod 3)}∪{(1,i),(3j,i)|j∈{1,2,...,k1},i≡0(mod 3)},where

Similarly,whenwe have thatX0∪Xi′is a twin dominating set ofCm□Cn,and whenis a twin dominating set ofCm□Cn.This completes the proof of the Theorem.

As an example,Figure 4 shows a twin dominating sets ofC11□C13.

Figure 3 A twin dominating set of C8□C13

Figure 4 A twin dominating set of C11□C13

主站蜘蛛池模板: 精品视频一区在线观看| 亚洲无线观看| 为你提供最新久久精品久久综合| AV不卡在线永久免费观看| 国产成人欧美| 国产精品无码作爱| 欧美成人日韩| 亚洲日韩日本中文在线| 成人年鲁鲁在线观看视频| 色网站免费在线观看| 亚洲国产中文精品va在线播放 | 久久国产精品77777| 国产成人福利在线视老湿机| 九九热精品视频在线| 欧美日韩国产精品综合| 欧美国产综合视频| 久久这里只有精品2| 伊人欧美在线| 午夜毛片福利| 日日摸夜夜爽无码| 99精品免费在线| 成人在线视频一区| 久久性视频| 91国内在线观看| 日韩精品中文字幕一区三区| 国产乱视频网站| 国产精品欧美在线观看| 亚洲欧美成人综合| 国产又爽又黄无遮挡免费观看 | 中国一级特黄视频| 欧美成人一级| 国产九九精品视频| 欧美色伊人| 国产网站免费看| 日韩免费中文字幕| 九色在线观看视频| 五月激情综合网| 亚洲欧洲日本在线| 亚洲综合第一页| 国产老女人精品免费视频| 日韩美女福利视频| 亚洲国产欧美国产综合久久| 亚洲天堂精品在线观看| 久久中文字幕av不卡一区二区| 欧美乱妇高清无乱码免费| 成人国产精品网站在线看| 国产成年无码AⅤ片在线 | 91成人在线观看视频 | 亚洲无线视频| 久久国产乱子| 九九视频免费看| 久久www视频| 色成人综合| 中文字幕在线看视频一区二区三区| 伊人中文网| 试看120秒男女啪啪免费| 四虎在线观看视频高清无码| 久久性妇女精品免费| 亚洲综合九九| 亚洲二三区| 一区二区影院| 欧美一道本| 亚洲av无码牛牛影视在线二区| 日本免费一级视频| 欧美日韩高清在线| 久久久久久国产精品mv| 激情午夜婷婷| 色香蕉影院| 日本欧美成人免费| 精品久久香蕉国产线看观看gif| 亚洲综合第一区| 亚洲无码精品在线播放| 欧美激情视频二区| 日韩在线视频网| 一本一道波多野结衣av黑人在线| 国产在线91在线电影| 自慰网址在线观看| 国产成人欧美| 伊人激情久久综合中文字幕| 免费精品一区二区h| 亚洲av片在线免费观看| 偷拍久久网|