999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

同構法在2020年高考中的應用研究

2021-08-05 09:51:48李昌成
數理化解題研究 2021年10期
關鍵詞:解題利用結構

李昌成 張 珍

(1.新疆烏魯木齊市第八中學 830002;2.新疆奎屯市第六中學 833200)

一、同構法簡介

數學中很多式子的結構就反映了本質,具備了結構才具有其性質.同構法就是利用同構式解題的方法.同構式是結構相似,架構相同的式子.利用同構法解題的基本步驟有:(1)構造合理正確的同構式;(2)利用相關性質解題;(3)回歸題目,完成解答.

二、應用舉例

解答指數函數、對數函數、三角函數、平面向量、數列、導數以及不等式等模塊的試題時,經常會用到同構法.下面以2020年高考數學試題為例,談談同構法的應用.

例1 (全國Ⅱ卷理科第11題,文科第12題)若2x-2y<3-x-3-y,則( ).

A.ln(y-x+1)>0 B.ln(y-x+1)<0

C.ln|x-y|>0 D.ln|x-y|<0

分析以指數式的指數為研究對象,將原不等式變為2x-3-x<2y-3-y,構造函數f(t)=2t-3-t,易判斷f(t)在R上單調遞增.由單調性的定義知x

解由2x-2y<3-x-3-y移項得:2x-3-x<2y-3-y.

令f(t)=2t-3-t,則f(x)

因為y=2x為R上的增函數,y=3-x為R上的減函數,所以f(t)為R上的增函數,所以x0,所以y-x+1>1,所以ln(y-x+1)>ln1=0,因此,A正確,B錯誤;而|x-y|與1的大小沒有信息能確定,故C,D無法確定.

綜上,選A.

評析本題考查了指數函數的性質,對數式的大小的判斷,解題的關鍵是構造函數f(t)=2t-3-t,構造的依據是函數的概念,解析式的相同結構.利用該復合函數的單調性得到x,y的大小關系,解題過程滲透了轉化與化歸的數學思想.

A.a>2bB.a<2bC.a>b2D.a

分析從指數式、對數式的底數入手,結合指數式、對數式運算性質,構造函數f(x)=2x+log2x,利用放縮技巧,根據f(x)的單調性可得到正確答案.

解設f(x)=2x+log2x,易知f(x)為增函數,因為2a+log2a=4b+2log4b=22b+log2b,而22b+log2b<22b+log22b,所以2a+log2a<22b+log22b.

即f(a)

綜上,選B.

評析本題以指數函數、對數函數以及指數、對數的運算為基礎,主要考查函數、方程、不等式的關系,突破口是同構法的應用.恰當放縮才能利用函數f(x)=2x+log2x的單調性比較大小,也是本題壓軸的原因所在.

A.a

綜上,選A.

例4 (江蘇卷第11題)設{an}是公差為d的等差數列,{bn}是公比為q的等比數列.已知數列{an+bn}的前n項和Sn=n2-n+2n-1(n∈N+),則d+q的值是____.

分析等差數列和等比數列前n項和公式都有獨特的形式,已知的前n項和Sn可分成等差數列的前n項和與等差數列的前n項和,依據形式特征分別求得{an},{bn}的公差和公比,最后求得d+q的值.

解設等差數列{an}的首項為a1,公差為d;等比數列{bn}的首項為b1,公比為q,依據題意知q≠1.

{an}的前n項和公式為

評析本題依據已知Sn=n2-n+2n-1=(n2-n)+(2n-1)的特點,恰當地利用了等差數列和等比數列前n和的公式結構,利用同構法準確建立出四元方程組,思路簡潔,預算量小,充分展示了同構法的優越性.

例5 (全國Ⅰ卷文科第16題)數列{an}滿足an+2+(-1)nan=3n-1,前16項和為540,則a1=____.

分析已知中存在(-1)n,所以必須對n為奇偶數分類討論,進而得出奇數項、偶數項各自的遞推關系.根據奇數項遞推關系將各奇數項用a1表示出來,根據偶數項遞推關系將相鄰偶數項和用數值表示出來,從而建立關于a1方程,即可解出a1.

解an+2+(-1)nan=3n-1,當n=2k-1,k∈N*時,an+2=an+3n-1

當n=2k,k∈N*時,an+an+2=3n-1

設數列{an}的前n項和為Sn,依據①②的結構特征得

S16=a1+a2+a3+a4+…+a16=(a1+a3+a5…+a15)+[(a2+a4)+…(a14+a16)]=[a1+(a1+2)+(a1+10)+(a1+24)+(a1+44)+(a1+70)+(a1+102)+(a1+140)]+(5+17+29+41)

=8a1+484=540.

解得a1=7.

評析本題表象上考查數列的遞推公式,實際上巧妙地考查了同構法,對①②兩式的結構必須深刻理解,否則難以應用,這屬于信息題的范疇.對于①還有等差數列的印跡,通過遞推能實現各項向a1的轉化.對于②學生不曾接觸,是一個新鮮模式,必須理解到:相鄰偶數項和是與a1無關的一個實數,否則無法推進解答.整個解題過程都離不開遞推關系的結構引領.

三、練習鏈接

A.0 B.mC.2mD.4m

參考答案:B.(提示:利用中心對稱的結構特征解答.)

2.設函數f′(x)是奇函數f(x)(x∈R)的導函數,f(-1)=0,當x>0時,xf′(x)-f(x)<0,則使得f(x)>0成立的x的取值范圍是____.

參考答案:x<-1或0

有些式子的結構很明顯,可以直接使用同構法解題,如例1、例4;有的式子結構不明顯,需要重構,重構的關鍵在于對問題本質的把握,湊足條件,如例2、例3;有的式子的含義是臨時賦予的,需要在當時的情景中比對應用,如例5.同構法解題相對靈活,既需要扎實的基本功,又有相當的靈活性.它往往是突破難題的有力武器.

猜你喜歡
解題利用結構
用“同樣多”解題
設而不求巧解題
利用min{a,b}的積分表示解決一類絕對值不等式
中等數學(2022年2期)2022-06-05 07:10:50
《形而上學》△卷的結構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
用“同樣多”解題
利用一半進行移多補少
論結構
中華詩詞(2019年7期)2019-11-25 01:43:04
利用數的分解來思考
Roommate is necessary when far away from home
論《日出》的結構
主站蜘蛛池模板: 伊大人香蕉久久网欧美| 国产91无毒不卡在线观看| 国产精品久久久久久搜索| 久爱午夜精品免费视频| 四虎永久在线| 尤物午夜福利视频| 青青青视频91在线 | 性69交片免费看| 日本a∨在线观看| 亚洲中文精品人人永久免费| 日韩精品一区二区三区中文无码| 58av国产精品| 色悠久久综合| 亚洲色图欧美视频| 欧美日韩国产综合视频在线观看 | 成人日韩精品| 国产精品无码制服丝袜| av在线人妻熟妇| 国产激情无码一区二区免费| 天天躁夜夜躁狠狠躁躁88| 91久久性奴调教国产免费| 亚洲av无码片一区二区三区| 午夜电影在线观看国产1区| 国产精品视频观看裸模| 日本不卡在线视频| 久久久黄色片| 久久一日本道色综合久久| 无码专区第一页| 真实国产精品vr专区| 人人妻人人澡人人爽欧美一区| 国产精品国产主播在线观看| 亚洲成肉网| 超碰91免费人妻| 中文字幕在线观看日本| 99久久人妻精品免费二区| 国产系列在线| 日韩小视频在线播放| 国产精品无码制服丝袜| 在线免费观看AV| 欧美日韩精品一区二区在线线 | 久青草国产高清在线视频| 亚洲AV无码久久精品色欲| 色综合久久久久8天国| 国产成人永久免费视频| 九色视频最新网址| 国产一区二区在线视频观看| 精品视频一区二区观看| 欧美成人综合视频| 2021国产精品自拍| 青青热久免费精品视频6| 国产精品专区第一页在线观看| 日韩无码真实干出血视频| 日韩一区二区三免费高清| 91精品久久久久久无码人妻| 欧美国产视频| 日韩不卡高清视频| 激情视频综合网| 国产午夜精品一区二区三| 2021国产精品自产拍在线观看| 国产午夜福利亚洲第一| 国产精品午夜电影| 亚洲综合第一区| 亚洲第一极品精品无码| 久久综合一个色综合网| 国产精品部在线观看| 在线免费不卡视频| 国产成人精品日本亚洲77美色| 99精品免费欧美成人小视频 | 91久久偷偷做嫩草影院免费看| 成人夜夜嗨| 日韩免费毛片| 国产人在线成免费视频| 欧美天堂久久| 欧美日韩国产系列在线观看| 韩日午夜在线资源一区二区| 久久五月视频| 精品無碼一區在線觀看 | 无码啪啪精品天堂浪潮av| 亚洲欧洲AV一区二区三区| 免费全部高H视频无码无遮掩| 99热这里只有免费国产精品| 亚洲一道AV无码午夜福利|