周勇


摘 要:殼寡糖是甲殼素脫除乙酰基和降解后的低分子聚合物,因其具有黏度低、水溶性好、保濕性強、吸收能力強及生物相容性好等特性而具有廣泛的應用價值。傳統生產殼寡糖工藝存在能耗高、污染重且脫乙酰度不均勻等問題,而酶法制備殼寡糖能有效避免上述問題。當前,酶法制備殼寡糖的關鍵酶在于甲殼素脫乙酰酶。該文介紹了甲殼素脫乙酰酶的來源與酶學性質,結構與催化機理以及其生產菌株的選育,以期為后續產業化應用提供參考。
關鍵詞:甲殼素;殼寡糖;甲殼素脫乙酰酶;脫乙酰
中圖分類號 TS201.2文獻標識碼 A文章編號 1007-7731(2021)11-0027-06
Research Progress of Enzymatic Deacetylation to Make Chitosan Oligosaccharides
ZHOU Yong
(COFCO Biochemical Co., Ltd., Bengbu 233010, China)
Abstract: Chitosan oligosaccharides (COS) is a kind of low molecular polymer after deacetylation and degradation of chitin.It has a wide range of application value because of its low viscosity, good water solubility, strong moisture retention, strong absorption capacity and good biocompatibility. The traditional COS preparation process has some problems, such as high energy consumption, heavy pollution and uneven deacetylation degree, while the enzymatic method can effectively avoid the above problems.At present, chitin deacetylase is the key enzyme for enzymatic preparation of COS.This paper mainly introduces the source, enzymatic properties, structure and catalytic mechanism of chitin deacetylase, as well as the screening of its producing strains, in order to provide reference for the subsequent industrial application.
Key words: Chitin; Chitosan oligosaccharides (COS); Chitin deacetylase; Deacetylation
近年來,隨著人們生活水平的提高,膳食結構和生活方式發生了一系列改變,導致代謝性疾病的患病率迅猛增長,因此人們更加重視身心健康、自身免疫力提升以及營養健康等高品質生活與環境。從淀粉、肝糖、菊粉、纖維素、幾丁質中提取的多種聚合物已經被廣泛應用于生物、醫學、美容、保健等領域[1,2]。殼寡糖(Chitosan oligosaccharides,COS),又稱為低聚葡萄糖胺、低聚氨基葡萄糖、低聚殼聚糖等,因具有黏度低、水溶性好、保濕性強、吸收能力強和生物相容性好等特性而被廣泛關注[3]。目前,COS已被廣泛應用于保健品、食品添加劑、植物生長調節劑及飼料添加劑等領域。已有研究表明,殼寡糖具有增強免疫力,調節血糖、血壓和血脂,排除體內毒素、重金屬和多余自由基,抗腫瘤、肥胖、阿爾茨海默病和通風等效果[4-7]。
來自蝦蟹等節肢動物、昆蟲外殼或真菌細胞壁的甲殼素(又稱幾丁質),經過脫乙酰處理后得到殼聚糖,經過進一步水解反應破壞殼聚糖分子中的糖苷鍵可制備獲得殼寡糖[8]。其中,脫乙酰化過程主要有化學法、物理法和酶法。化學法是用強酸處理甲殼素上的乙酰基而得到不同聚合度的分子,該方法存在環境污染嚴重、不同聚合度產物中副產物含量較高且反應條件苛刻等問題;物理法是通過超聲波、γ射線或微波輻射使甲殼素分子內的化學鍵斷鏈從而得到不同聚合度分子,該方法對設備的要求程度高、能耗高且降解效率低。基于甲殼素脫乙酰酶的酶法制備殼寡糖能較好地避免這些問題,是行業發展趨勢[8,9]。
甲殼素脫乙酰酶(Chitin deacetylase,簡稱CDA,E.C.3.5.1.41)是一種催化甲殼素中N-乙酰基-D-葡萄糖胺(GlcNAc)脫除乙酰基轉化為殼聚糖的酶[10]。CDA酶解甲殼素作為一種生物轉化法,其與傳統的化學法相比,不僅可以降低生產能耗,而且在生產過程中不需要強酸強堿處理,可解決生產過程中的環境污染問題。此外,通過生物轉化可獲得高品質的殼聚糖和殼寡糖產品,表現均勻的乙酰化程度以及具有分布范圍窄的分子量[8]。因此,基于過甲殼素脫乙酰酶的酶法轉化生產殼寡糖是一種高品質、低成本、節能環保的新型生產方法。本文重點介紹了甲殼素脫乙酰酶的來源與酶學性質、結構與催化機理以及編碼基因的克隆表達,以期為后續研究與產業化應用提供參考。
1 CDA的來源及與酶學性質
早在1973年,Amki等[11]首次從接合菌綱(Zygonycetes)的魯氏毛霉(Mucor rouxii)中發現CDA。1982年,Kauss等[12]從植物病原菌菜豆炭疽菌(Colletotrichum lindemuthianum)中分離并得到部分純化的CDA。隨后,越來越多真菌被報道具有CDA活性,如曲霉(Aspergillus)[13, 14]、藍色犁頭霉(Absidia coerulea)[15]、釀酒酵母(Saccharomyces cerevisiae)[16]、粟酒裂殖酵母(Schizosaccharomyces pombe)[17]、短帚霉(Scopulariopsis brevicaulis)[18]、金針菇(Flammulina velutipes)[19]、灰蓋鬼傘(Coprinus cinereus)[20]、卵形孢球托霉(Gongronella butleri)[21]、卷柄根霉(Rhizopus circinans)[22]、黑根霉(R.nigricans)[23]、青霉(Penicillium)和尖孢鐮刀菌(Fusarium oxysporum)[24,25]等,其酶學特性見表1。目前為止,真菌來源的CDA基本是單肽鏈糖蛋白,表現出良好的熱穩定性,但不同來源的CDA在細胞內的存在位置、分子量、等電點以及發揮作用的最適pH值、最適溫度,對金屬離子和乙酸的反應都有著較大的差異。例如,M.rouxii的產酶位置在周質空間,而C.lindemuthianum產生的CDA分泌到細胞外,且酶活力不受乙酸的影響;分子量大小由25~150kDa;最適pH分布在4.5~8.0。總體顯示,子囊菌門真菌(包括菜豆炭疽菌、曲霉、釀酒酵母、粟酒裂殖酵母和短帚霉)來源的CDA不受底物乙酸抑制,同時在Co2+存在的條件下,可激活該酶的活性,并且均為胞外酶,有利于提取,在工業化生產與應用中具有廣泛的前景。此外,不同真菌來源CDA也在其生命活動中發揮了不同的功能。Mouyna等[26]研究顯示,并不是所有CDA均參與細胞壁合成或作為毒力因子。
大量菌株篩選研究顯示,采用4′-硝基乙酰苯胺顯色法發現某些細菌也具有CDA活性,如嗜熱脂肪芽孢桿菌(Bacillus stearothermophilus)[33]、解淀粉芽孢桿菌(B. amyloliquefaciens)[34]、地衣芽孢桿菌(B. licheniformis)[35]、蠟樣芽孢桿菌(B. cereus M1)[36]、紅平紅球菌(Rhodococcus erythropolis)[37],以及近年來發現的海水硝酸鹽還原菌(Nitratireductor aquimarinus)[38]和馬紅球菌(Rhodococcus equi)[39]。其中,R. equi來源的CDA大小為36kDa,最適溫度和pH分別為30℃、8.0,同時在較寬溫度范圍(如4~25℃)和較寬pH范圍(如6.0~9.0)仍保持穩定。此外,外源添加金屬離子,如Sr2+、Mg2+、Na+可提高酶活,而Co2+、Ba2+可抑制酶活[39]。近年來報道的基于醋酸鹽受體的熒光篩選法[40],為新環境中高通量篩選CDA產生菌提供了新的途徑。
盡管大多數報道的CDA來自真菌或細菌,但昆蟲CDA是昆蟲幾丁質代謝中重要酶系。研究發現,CDA在昆蟲在其生長發育過程中,如器官形成、甲殼素修飾、幼蟲-蛹和蛹-成蟲蛻皮等結構形成中有助于昆蟲外骨骼和其他結構的完整性[41, 42]。隨著農業領域生物殺蟲劑的廣泛關注,基于CDA的綠色殺蟲劑逐漸成為研究熱點。Wu等[41]通過RNA干擾技術使馬鈴薯甲蟲的CDA基因沉默,結果顯示幼蟲發育期延長,生長發育遲緩,甲殼素含量降低。棉花紅蜘蛛(Tetranychus cinnabarinus)來源的不太CDA序列比對顯示[43],TecCDA1和TecCDA2均由5個結構域組成相似的催化位點,但通過RT-PCR顯示它們在成蟲期的表達水平存在差異,表明它們具有不同的功能。
2 CDA的結構與催化機理
甲殼素脫乙酰酶屬于糖酯酶家族4(carbohydrate esterase family 4,縮寫CE-4)成員之一[44]。該家族的成員具有保守的結構域,命名為“NodB同源結構域”或“多糖脫乙酰酶結構域”,因此,除外CDA,該家族的其他蛋白包括NodB蛋白(EC 3.5.1.-)和肽聚糖脫乙酰酶(EC 3.1.1.-)[45, 46]。CE-4家族成員序列比對顯示該家族成員氨基酸序列具有高度一致性[47]。NodB同源域在NodB蛋白(根瘤蛋白)的基因序列中處于功能表達區,推測其與根瘤蛋白的脫乙酰活性密切相關。同時,脫乙酰酶的編碼基因內及Bacillus sp.的開放閱讀框中均存在相似基因片段,如乙酰木聚糖酯酶基因、木聚糖酶基因、肽聚糖脫乙酰酶以及許多未表征的開放閱讀框,且與CDA基因中保守片段相似,說明NodB同源域對CDA的脫乙酰基功能非常重要。
CE-4家族蛋白含有5個保守的催化位點(MT1-5),構成了乙酰脫氫酶結構域的活性位點,包括保守的組氨酸和天冬氨酸殘基[47]。其中,C.lindemuthianum來源的CDA活性位點結構圖(圖1)[47]顯示,MT1包括2個天冬氨酸殘基(D),1個與鋅或者鈷離子反應而另一個結合底物釋放出來的乙酸;MT2包括2個組氨酸(H)結合金屬離子和1個絲氨酸(S)或者蘇氨酸(T)與第2個組氨酸形成氫鍵用于穩定環的結構;MT3形成一側的活性凹槽,同時具有多種功能,包括結合乙酸、結合鋅以及協調天冬氨酸殘基的催化;MT4利用色氨酸(W)形成另一側的活性凹槽;MT5包括亮氨酸(L)和組氨酸(H)構成疏水性口袋結構。CDA常見的脫乙酰基模式為多點進攻模式,其過程如下:CDA先與底物鏈的任一序列結合,然后從結合位點的非還原端開始,催化脫去乙酰基,本次酶解完畢;然后酶與底物解離,與另一底物鏈結合進行新一輪的脫乙酰基反應。這一作用方式也與其他CE-4家族成員相近[47, 48]。
3 CDA基因的克隆表達
目前,文獻報道并在NCBI公布的CDA基因來自18個屬,約29個種。因野生菌難以實現工業化應用,來自C. lindemuthianum[49,32,50],F. velutipes[19],R. circinans[22],A. nidulans[51],V. parahaemolyticus[52]和B. licheniformis[35]等物種的CDA序列已被克隆并在模式菌株中進行異源表達。
以大腸桿菌(Escherichia coli)為表達宿主,早在1999年,Tokuyasu等[49]將C.lindemuthianum 的CDA基因與變鉛青鏈霉菌(Streptomyces lividans)的甲殼素酶信號肽序列結合克隆到大腸桿菌內,得到分泌型CDA,其酶活力與野生型CDA無明顯區別。Wang等[51]將A. nidulans來源的CDA基因克隆到pET-28a(+)后轉入E.coli BL21中表達,得到純化的CDA活性為4.17 U/mg,最適溫度和pH分別為50℃,pH8.0,但是該酶以包涵體的形式存在,同時其活性受金屬離子及乙二胺四乙酸的影響,不利于大規模工業化生產。Sun等[36]利用B. cereus M1的CDA基因序列構建的重組表達載體pCT7-CHISP6H-BcCDA在大腸桿菌E. coli BL21體內高效分泌表達,重組BcCDA的分子量約23kDa,具有脫乙酰基酶活性,上清液中的最大比活力為235.43U/mg,純化后該酶的比活力高達11608.31U/mg,提高49.31倍。危蓉萍等[53]將蜜蜂螺原體CH-1中的CDA基因克隆至pET-28a(+)表達載體上并在大腸桿菌中克隆表達,測得該酶活力最高可達10.14U/mL,最適溫度為50℃左右。Raval等[35]將B. licheniformis來源的CDA基因克隆至pET22b載體后轉化至大腸桿菌細胞內表達,酶活為320μmol/min·mL。添加丙三醇可使生物量提高50%,酶活由90μmol/min·mL提高至343.14μmol/min·mL,同時純化后的CDA比活力為1142±43μmol/min·mL,較粗酶液提高221倍。
以畢赤酵母(Pichia pastoris)為表達宿主,2008年Yamada等[19]將F. velutipes來源的CDA基因利用表達質粒pPICZαA轉入P. pastoris X-33后,其重組基因的表達水平較低,約1mg/L培養液,重組蛋白大小為31kDa。Gauthier等[22]將R. circinans來源的含CDA序列的cDNAs克隆至P.pastoris內,在其體內表達得到的蛋白酶具有和野生型相似的活性和大小,其中大小為75kDa,在37℃條件下最適pH為5.5~6,比活力為965.13U/mg。Kang等[50]將C. lindemuthianum來源的CDA基因裝入組成型表達載體pHMB905A后轉入P. pastoris GS115中,經72h的甲醇誘導表達后,培養物上清液中CDA產量可達110mg/L,酶活為77.27U/mg,大小為33kDa。
以昆蟲細胞為表達宿主是一種新興的表達系統,因具有外源蛋白折疊修飾功能和避免密碼子的偏好性使其在表達昆蟲來源CDA時更具有天然的優勢。趙盼等[54]利用昆蟲細胞昆蟲Sf9細胞表達飛蝗CDA基因,Western blot結果顯示其蛋白分子量61kD左右,酶活檢測顯示不同基因表達存在差異,最高可達0.354U/μL。因昆蟲細胞表達CDA基因成本較高,相較大腸桿菌和酵母表達系統,培養條件苛刻,因此不適用于大規模工業化生產。
4 討論
隨著人們對美好生活的向往及高品質生活的追求,以殼寡糖為代表的越來越多的高分子化合物已被廣泛應用于醫藥、生物醫學、食品工業、衛生、新型醫療器械和農業等領域。我國在20世紀中葉發起了對殼寡糖的研究,到2000年時已經有10余款保健食品上市,2004年將殼寡糖研究納入國家“十五”攻關計劃項目,2009年將殼寡糖產業列入“十二五”產業計劃,2014年正式批準殼寡糖為新食品原料。目前市場上富含殼寡糖的保健品主要用于增強免疫產品約17種、降血糖產品4種、降血脂產品3種、保護肝臟類產品4種、增加骨密度類產品4種、抗氧化產品3種等8大類。這些產品的殼寡糖主要來源于甲殼類動物的外殼,采用傳統的化學降解法或物理降解法處理,存在能耗高、污染大、反應條件苛刻、降解效率低下且產品品質不佳的問題。
為了深入貫徹落實綠色發展理念,加快推動綠色生物制造,全面提高資源利用效率,酶法制備殼寡糖已成為行業發展趨勢。當前,針對不同制備原料和應用領域,研發人員不斷篩選新型CDA,如從海洋環境篩選海洋細菌來源的脫乙酰酶、從昆蟲體內篩選相關脫乙酰酶,以滿足不同應用領域需求,提高酶的匹配性,同時為后續外源表達提供序列信息。但目前篩選的菌株仍存在菌株退化、CDA性能不穩定及活力低等問題。因此,篩選高活性的CDA仍是工業化應用中需要解決的重要問題。為了提高酶法制備殼寡糖的效率,研發人員不斷探索CDA的結構及催化機理,但不同來源CDA其結構類似,但在機體內的基因表達情況及作用機制存在差異,可能存在不同的誘導因素或功能修飾。因此,將產生菌直接應用于催化反應中或利用其編碼基因進行異源表達,需要進行進一步基因分析和蛋白結構分析,從而有針對性地進行基因編輯以提高其表達量或者酶活。
參考文獻
[1]Baranwal A,Kumar A,Priyadharshini A,et al.Chitosan:An undisputed bio-fabrication material for tissue engineering and bio-sensing applications[J].Int J Biol Macromol,2018,110:110-123.
[2]Wang Wenqian,Meng Qiuyu,Li Qi,et al.Chitosan derivatives and their application in biomedicine[J].International Journal of Molecular Sciences,2020,21(2):487-512.
[3]Kim S K.Chitin,chitosan,oligosaccharides and their derivatives:Biological activities and applications[M].CRC Press,2010.
[4]Parashar P,Mazhar I,Kanoujia J,et al.Appraisal of anti-gout potential of colchicine-loaded chitosan nanoparticle gel in uric acid-induced gout animal model[J].Archives of Physiology and Biochemistry,2019:1-11.
[5]Lodhi G,Kim Y,Hwang J,et al.Chitooligosaccharide and its derivatives:Preparation and biological applications[J].BioMed research international,2014,2014(1):654913.
[6]Imran M,Sajwan M,Alsuwayt B,et al.Synthesis,characterization and anticoagulant activity of chitosan derivatives[J].Saudi Pharmaceutical Journal,2019,28(1).
[7]Naveed M,Phil L,Sohail M,et al.Chitosan oligosaccharide (COS):An overview[J].Int J Biol Macromol,2019,129:827-843.
[8]Gabriel S K,Peters L,Mucalo M.Chitosan:A review of sources and preparation methods[J].Int J Biol Macromol,2020.
[9]楊倩,劉建輝,蔣彤,等.幾丁質脫乙酰酶的研究進展[J].食品研究與開發,2017,038(010):200-203.
[10]Ghormade V,Kulkarni S,Doiphode N,et al.Chitin deacetylase:A comprehensive account on its role in nature and its biotechnological applications[J].Current Research,Technology and Education Topics in Applied Microbiology and Microbial Biotechnology,2010,2:1054-1066.
[11]Araki Y,Ito E.A pathway of chitosan formation in Mucor rouxii:Enzymatic deacetylation of chitin[J].Biochem Biophys Res Commun,1974,56(3):669-675.
[12]Kauss H,Jeblick W,Young D H.Chitin deacetylase from the plant pathogen Colletotrichum lindemuthianum[J].Plant Science Letters,1983,28(2):231-236.
[13]Alfonso C,Nuero O M,Santamaria F,et al.Purification of a heat-stable chitin deacetylase from Aspergillus nidulans and its role in cell wall degradation[J].Curr Microbiol,1995,30(1):49-54.
[14]Gastebois A,Clavaud C,Aimanianda V,et al.Aspergillus fumigatus:Cell wall polysaccharides,their biosynthesis and organization[J].Future Microbiology,2009,4(5):583-595.
[15]Gao X D,Katsumoto T,Onodera K.Purification and characterization of chitin deacetylase from Absidia coerulea[J].J Biochem,1995,117(2):257-263.
[16]Martinou A,Koutsioulis D,Bouriotis V.Expression,purification,and characterization of a cobalt-activated chitin deacetylase (cda2p) from Saccharomyces cerevisiae[J].Protein Expr Purif,2002,24(1):111-116.
[17]Matsuo Y,Tanaka K,Matsuda H,et al.Cda1+,encoding chitin deacetylase is required for proper spore formation in Schizosaccharomyces pombe[J].FEBS Lett,2005,579(12):2737-2743.
[18]Cai J,Yang J,Du Y,et al.Purification and characterization of chitin deacetylase from Scopulariopsis brevicaulis[J].Carbohydr Polym,2006,65(2):211-217.
[19]Yamada M,Kurano M,Inatomi S,et al.Isolation and characterization of a gene coding for chitin deacetylase specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes and its expression in the yeast Pichia pastoris[J].FEMS Microbiol Lett,2008,289(2):130-137.
[20]Bai Y,Wang Y,Liu X,et al.Heterologous expression and characterization of a novel chitin deacetylase,cda3,from the mushroom Coprinopsis cinerea[J].Int J Biol Macromol,2020,150.
[21]Maw T,Tan T K,Khor E,et al.Selection of Gongronella butleri strains for enhanced chitosan yield with uv mutagenesis[J].J Biotechnol,2002,95(2):189-193.
[22]Gauthier C,Clerisse F,Dommes J,et al.Characterization and cloning of chitin deacetylases from Rhizopus circinans[J].Protein Expr Purif,2008,59(1):127-137.
[23]Jeraj N,Kuni[c] B,Lenasi H,et al.Purification and molecular characterization of chitin deacetylase from Rhizopus nigricans[J].Enzyme & Microbial Technology,2006,39(6):1294-1299.
[24]Pareek N,Vivekanand V,Saroj S,et al.Purification and characterization of chitin deacetylase from Penicillium oxalicum saem-51[J].Carbohydr Polym,2012,87(2):1091-1097.
[25]Suresh P V,Sakhare P Z,Sachindra… N M.Extracellular chitin deacetylase production in solid state fermentation by native soil isolates of Penicillium monoverticillium and Fusarium oxysporum[J].Journal of Food Science & Technology,2014,51(8):1594-1599.
[26]Mouyna I,Dellière S,Beauvais A,et al.What are the functions of chitin deacetylases in Aspergillus fumigatus?[J].Frontiers in Cellular and Infection Microbiology,2020,10:28.
[27]Hunt D E,Gevers D,Vahora N M,et al.Conservation of the chitin utilization pathway in the Vibrionaceae[J].Appl Environ Microbiol,2008,74(1):44-51.
[28]Maw T,Tan T K,Khor E,et al.Complete cdna sequence of chitin deacetylase from Gongronella butleri and its phylogenetic analysis revealed clusters corresponding to taxonomic classification of fungi[J].J Biosci Bioeng,2002,93(4):376-381.
[29]Zhao Y,Jo G H,Ju W T,et al.A highly n-glycosylated chitin deacetylase derived from a novel strain of Mortierella sp.Dy-52[J].Biosci Biotechnol Biochem,2011,75(5):960-965.
[30]Tokuyasu K,Ohnishikameyama M,Hayashi K.Purification and characterization of extracellular chin deacetylase from Colletotrichum lindemuthianum[J].Bioscience Biotechnology & Biochemistry,1996,60(10):1598-1603.
[31]Tsigos I,Bouriotis V.Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum[J].J Biol Chem,1995,270(44):26286-26291.
[32]Shrestha B,Blondeau K,Stevens W F,et al.Expression of chitin deacetylase from Colletotrichum lindemuthianum in pichia pastoris:Purification and characterization[J].Protein Expr Purif,2004,38(2):196-204.
[33]Kafetzopoulos D,Thireos G,Vournakis J N,et al.The primary structure of a fungal chitin deacetylase reveals the function for two bacterial gene products[J].Proc Natl Acad Sci U S A,1993,90(17):8005-8008.
[34]He Y,Xu J,Wang S,et al.Optimization of medium components for production of chitin deacetylase by Bacillus amyloliquefaciens z7,using response surface methodology[J].Biotechnol Biotechnol Equip,2014,28(2):242-247.
[35]Raval R,Simsa R,Raval K.Expression studies of Bacillus licheniformis chitin deacetylase in E.Coli rosetta cells[J].Int J Biol Macromol,2017,104(Pt B):1692-1696.
[36]Sun Y Y,Zhang J Q,Wang S J,et al.Cloning and recombinant expression of chitin deacetylase from Bacillus cereus[J].Food Research & Development,2016.
[37]Sun Y,Zhang J,Wu S,et al.Statistical optimization for production of chitin deacetylase from Rhodococcus erythropolis hg05[J].Carbohydr Polym,2014,102:649-652.
[38]Chai J,Hang J,Zhang C,et al.Purification and characterization of chitin deacetylase active on insoluble chitin from Nitratireductor aquimarinus mcda3-3[J].Int J Biol Macromol,2020,152.
[39]Ma Q,Gao X,Tu L,et al.Enhanced chitin deacetylase production ability of Rhodococcus equi cgmcc14861 by co-culture fermentation with Staphylococcus sp.Mc7[J].Frontiers in Microbiology,2020,11.
[40]Pawaskar G M,Pangannaya S,Raval K,et al.Screening of chitin deacetylase producing microbes from marine source using a novel receptor on agar plate[J].Int J Biol Macromol,2019,131:716-720.
[41]Wu J J,Chen Z C,Wang Y W,et al.Silencing chitin deacetylase 2 impairs larval–pupal and pupal–adult molts in Leptinotarsa decemlineata[J].Insect Molecular Biology,2019,28(1):52-64.
[42]Miller S,Shippy T,Tamayo B,et al.Characterization of chitin deacetylase genes in the Diaphorina citri genome[J].2020.
[43]An,Xiangshun,Zhong,et al.Comparative characterization of putative chitin deacetylases from Tetranychus cinnabarinus[J].Bioscience Biotechnology & Biochemistry,2019.
[44]Caufrier F,Martinou A,Dupont C,et al.Carbohydrate esterase family 4 enzymes:Substrate specificity[J].Carbohydr Res,2003,338(7):687-692.
[45]Gilmore M E,Bandyopadhyay D,Dean A M,et al.Production of muramic delta-lactam in Bacillus subtilis spore peptidoglycan[J].J Bacteriol,2004,186(1):80-89.
[46]Vollmer W,Tomasz A.The pgda gene encodes for a peptidoglycan n-acetylglucosamine deacetylase in Streptococcus pneumoniae[J].J Biol Chem,2000,275(27):20496-20501.
[47]Blair D E,Hekmat O,Schuttelkopf A W,et al.Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum[J].Biochemistry,2006,45(31):9416-9426.
[48]Liu Z,Gay L M,Tuveng T R,et al.Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans fgsc a4[J].Sci Rep,2017,7(1):1746.
[49]Tokuyasu K,Kaneko S,Hayashi K,et al.Production of a recombinant chitin deacetylase in the culture medium of Escherichia coli cells[J].FEBS Lett,1999,458(1):23-26.
[50]Kang L,Chen X,Zhai C,et al.Synthesis and high expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris gs115[J].J Microbiol Biotechnol,2012,22(9):1202-1207.
[51]Wang Y,Song J Z,Yang Q,et al.Cloning of a heat-stable chitin deacetylase gene from Aspergillus nidulans and its functional expression in Escherichia coli[J].Appl Biochem Biotechnol,2010,162(3):843-854.
[52]Kadokura K,Sakamoto Y,Saito K,et al.Production of a recombinant chitin oligosaccharide deacetylase from Vibrio parahaemolyticus in the culture medium of Escherichia coli cells[J].Biotechnol Lett,2007,29(8):1209-1215.
[53]危蓉萍,楊東航,卜瑩瑩,等.蜜蜂螺原體幾丁質脫乙酰酶基因的克隆、表達及酶學性質[J].南京農業大學學報,2016,39(03):417-424.
[54]Zhao P,Zhang X,Liu X,et al.Eukaryotic expression,affinity purification and enzyme activity of chitin deacetylase in Locusta migratoria[J].Scientia Agricultura Sinica,2017,50:1057-1066.
(責編:張宏民)