999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Syntheses,Crystal Structures,Luminescence and Catalytic Activity of Manganese(Ⅱ)and Cadmium(Ⅱ)Coordination Polymers Based on 2,3-Dihydroxy-terephthalic Acid

2021-06-19 07:33:44LIYuZHUANGYingFenZHANGYanLaiFENGAnShengZOUXunZhong
無機化學學報 2021年6期

LI YuZHUANG Ying-FenZHANG Yan-LaiFENG An-Sheng ZOU Xun-Zhong

(Guangdong Research Center for Special Building Materials and Its Green Preparation Technology/Foshan Research Center for Special Functional Building Materials and Its Green Preparation Technology,Guangdong Industry Polytechnic,Guangzhou 510300,China)

Abstract:Two 3D manganese(Ⅱ) and cadmium(Ⅱ) coordination polymers,namely[M(μ4-H2DTA)(bipy)]n(M=Mn(1),Cd(2)),have been constructed hydrothermally using H4DTA(H4DTA=2,3-dihydroxy-terephthalic acid),bipy(bipy=2,2′-bipyridine),and manganese or cadmium chlorides.Single-crystal X-ray diffraction analyses reveal that two complexes are isostructural and crystallize in the orthorhombic system,space groups Pnna.Both complexes disclose a 3D metal-organic framework.The luminescent and catalytic properties of two complexes were investigated.Complex 1 exhibited good catalytic performance for the cyanosilylation reaction.CCDC:2060258,1;2060259,2.

Keywords:coordination polymer;2,3-dihydroxy-terephthalic acid;luminescence;catalytic

0 Introduction

The design of functional coordination polymers(CPs)turned to be a hot research topic[1-3],especially considering a huge diversity of potential applications of such complexes and derived materials in gas storage and separation[4-6], catalysis[7-10], molecular magnetism[11-12], photochemistry[13-15], and selective sensing[16-18].Although the assembly of CPs may depend on many parameters(e.g.,types of metal ions[10-11],linkers[16,18], supporting ligands[19-20], solvent[21-22], molar ratios of reagents[23-25]and temperature conditions[26-27]),the nature of metal ions and organic linkers are undoubtedly the key factors that usually define the structures and functional properties of the obtained complexes.Aromatic carboxylic acids containing several COOH functionalities represent the most populated family of linkers in the research on CPs,especially given their availability and reasonable cost,thermal stability,possibility of further functionalization and multitude of coordination modes[22-23,28-29].

In particular,terephthalic acid is one of the simplest and common building blocks that is widely used for the synthesis of different CPs and MOFs(metalorganic frameworks)[30-33].However,the functionalized terephthalate ligands remain significantly less investigated[30].For example,an introduction of two hydroxy substituents into terephthalic acid may well affect its coordination behavior and structures of the resulting complexes.Given an unexplored coordination chemistry of 2,3-dihydroxy-terephthalic acid[34-35],the main aim of the present work consisted in widening the family of metal(Ⅱ)coordination polymers with this dicarboxylate linker and searching for potential catalytic applications of the obtained complexes.

Herein,we report the syntheses,crystal structures,luminescent and catalytic properties of two Mn(Ⅱ)and Cd(Ⅱ)coordination polymers constructed from the 2,3-dihydroxy-terephthalic acid.

1 Experimental

1.1 Reagents and physical measurements

All chemicals and solvents were of AR grade and used without further purification.Carbon,hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer.IR spectrum was recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer.Thermogravimetric analysis(TGA)data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10℃·min-1.Powder X-ray diffraction patterns(PXRD)were measured on a Rigaku-Dmax 2400 diffractometer using CuKαradiation(λ=0.154 06 nm).The X-ray tube was operated at 40 kV and 40 mA,and the data collection range was between 5°and 45°.Excitation and emission spectra were recorded on an Edinburgh FLS920 fluorescence spectrometer using the solid samples at room temperature.Solution1H NMR spectra were recorded on a JNM ECS 400M spectrometer.

1.2 Syntheses of[M(μ4-H2DTA)(bipy)]n(M=Mn(1)and Cd(2))

A mixture of MCl2·xH2O(x=4 for 1 andx=1 for 2;0.20 mmol),H4DTA(0.040 g,0.20 mmol),bipy(0.031 g,0.20 mmol),NaOH(0.016 g,0.40 mmol),and H2O(10 mL)was stirred at room temperature for 15 min,and then sealed in a 25 mL Teflon-lined stainless steel vessel,and heated at 160℃for 3 days,followed by cooling to room temperature at a rate of 10℃·h-1.Yellow(1)or colourless(2)block-shaped crystals were isolated manually,and washed with distilled water.Yield:51% for 1 and 42% for 2(based on H4DTA).Anal.Calcd.for C18H12MnN2O6(1,%):C 53.09,H 2.97,N 6.88;Found(%):C 53.01,H 2.99,N 6.83.IR(KBr,cm-1):1 638w,1 594s,1 474m,1 441m,1 388s,1 330m,1 260m,1 222w,1 132w,1 062w,1 013w,852w,835w,810m,764m,736w,646w.Anal.Calcd.for C18H12CdN2O6(2,%):C 46.52,H 2.60,N 6.03;Found(%):C 46.41,H 2.58,N 6.06.IR(KBr,cm-1):1 631w,1594s,1474m,1441m,1383s,1330m,1251m,1222w,1132w,1062w,1013w,860w,811m,770m,736w,649w.

The complexes are insoluble in water and common organic solvents,such as methanol,ethanol,acetone and DMF.

1.3 Structure determination

Two single crystals with dimensions of 0.25 mm×0.23 mm×0.22 mm(1)and 0.23 mm×0.22 mm×0.21 mm(2)were collected at 293(2)K on a Bruker SMART APEX Ⅱ CCD diffractometer with CuKαradiation(λ=0.154 178 nm).The structures were solved by direct methods and refined by full matrix least-square onF2using the SHELXTL-2014 program[36].All non-hydrogen atoms were refined anisotropically.All the hydrogen atoms were positioned geometrically and refined using a riding model.A summary of the crystallography data and structure refinements for 1 and 2 is given in Table 1.The selected bond lengths and angles for complexes 1 and 2 are listed in Table 2.

Table 1 Crystal data for complexes 1 and 2

Table 2 Selected bond distances(nm)and bond angles(°)for complexes 1 and 2

CCDC:2060258,1;2060259,2.

1.4 Catalytic cyanosilylation of aldehydes

In a typical test,a suspension of an aromatic aldehyde(0.50 mmol,4-nitrobenzaldehyde as a model substrate),trimethylsilyl cyanide(1.0 mmol)and the catalyst(typically,molar fraction=3%)in dichloromethane(2.5 mL)was stirred at 35℃.After a desired reaction time,the catalyst was removed by centrifugation,followed by an evaporation of the solvent from the filtrate under reduced pressure to give a crude solid.This was dissolved in CDCl3and analyzed by1H NMR spectroscopy for quantification of products(Fig.S1).To perform the recycling experiment,the catalyst was isolated by centrifugation,washed with dichloromethane,dried at room temperature,and reused.The subsequent steps were performed as described above.

2 Results and discussion

2.1 Description of structure of 1 and 2

Complexes 1 and 2 are isostructural(Table 1)and the structure of 1 is discussed in detail as an example.Complex 1 reveals a 3D metal-organic framework with the asymmetric unit containing a Mn(Ⅱ)ion(with half occupancy),a half ofμ4-H2DTA2-ligand,and a half of bipy moiety.The Mn(Ⅱ)center is six-coordinated and reveals a octahedral{MnN2O4}environment,which is completed by four carboxylate O atoms from four individualμ4-H2DTA2-blocks and a pair of N atoms from the bipy moiety(Fig.1).The lengths of Mn—O and Mn—N bondsare 0.213 7(3)~0.217 8(3)nm and 0.229 8(3)nm,respectively;these are within the normal values for related Mn(Ⅱ) derivatives[11,22,27].The H2DTA2-block acts as aμ4-linker via bidentate COO-groups(Scheme 1).The intramolecular hydrogen bond(O3—H3…O2)was found.Theμ4-H2DTA2-blocks connect adjacent Mn1 ions to form a 3D metal-organic framework(Fig.2).This crystal structure features an intricate 3D metal-organic net that is built from the 4-connected,topologically distinct Mn1 andμ4-H2DTA2-nodes(Fig.3).The resulting net can be classified as a binodal 4,4-connected framework with apts(PtS,cooperate)topology and point symbol of(42.84).

Fig.1 Drawing of coordination environment around Mn(Ⅱ)center in complex 1 with 30% probability thermal ellipsoids

Scheme 1 Coordination mode of H2DTA2- ligand in complex 1

Fig.2 Perspective of 3D metal-organic framework along a axis

Fig.3 Topological representation of binodal 4,4-connected metal-organic framework with a pts topology viewed along a axis

2.2 TGA analysis

To determine the thermal stability of complexes 1 and 2,their thermal behaviors were investigated under nitrogen atmosphere by TGA.As shown in Fig.4,both complexes did not contain solvent of crystallization or H2O ligands and remains stable up to 305 and 282℃,respectively,followed by a decomposition on further heating.

Fig.4 TGA curves of complexes 1 and 2

2.3 Luminescent properties

Solid-state emission spectra of H4DTA and complex 2 were measured at room temperature(Fig.5).The spectrum of H4DTA revealed a weak emission with a maximum at 426 nm(λex=310 nm).In comparison with H4DTA,complex 2 exhibited a more extensive emission at 388 nm(λex=310 nm).These emissions correspond to intraligandπ-π*orn-π*transition of H4DTA[11,22-23].Enhancement of the luminescence in 2 compared to H4DTA can be explained by the coordination of ligands to Cd(Ⅱ);the coordination can augment a rigidity of ligand and reduce an energy loss due to radiationless decay[22-23,37].

Fig.5 Solid-state emission spectra of H4DTA and complex 2 at room temperature

2.4 Catalytic cyanosilylation of aldehydes

Given the potential of Mn(Ⅱ) and Cd(Ⅱ) complexes to catalyze the organic reactions[38-40],we explored the application of 1 and 2 as heterogeneous catalysts in the cyanosilylation of 4-nitrobenzaldehyde as a model substrate to give 2-(4-nitrophenyl)-2-((trimethylsilyl)oxy)acetonitrile.Typical tests were carried out by reacting a mixture of 4-nitrobenzaldehyde,trimethylsilyl cyanide(TMSCN),and the catalyst in dichloromethane at 35℃(Scheme 2,Table 3).Such effects as reaction time,catalyst loading,solvent composition,catalyst recycling and finally substrate scope were investigated.

Scheme 2 Catalyzed cyanosilylation of 4-nitrobenzaldehyde(model substrate)

Upon using complex 1 as the catalyst(Molar fraction:3%),a high conversion of 93% of 4-nitrobenzaldehyde into 2-(4-nitrophenyl)-2-((trimethylsilyl)oxy)acetonitrile was reached after 12 h in dichloromethane at 35℃(Table 3,Entry 7).Upon extending the reaction time further to 18 h,only a slight increase in the product yield to 94% occurred.Moreover,no other products were detected,and the yield of this product was considered to be the conversion of 4-nitrobenzaldehyde(Fig.6).

Table 3 Catalyzed cyanosilylation of 4-nitrobenzaldehyde with TMSCN

Fig.6 PXRD patterns for 1:simulated(red),before(black)and after(blue)catalysis

We also compared the activities of catalyst 1 in the reactions of other substituted aromatic and aliphatic aldehydes with trimethylsilyl cyanide,and the corresponding cyanohydrin derivatives were produced in yields ranging from 48% to 93%(Table 4).Aryl aldehydes bearing strong electron-withdrawing substituents(e.g.,nitro and chloro)exhibited the higher reactivities(Table 4,Entries 2~5),which may be related to an increase in the electrophilicity of the substrate.Aldehydes containing electron-donating proups(e.g.,methyl)showed lower reaction yields(Table 4,Entry 7)as expected.Anortho-substituted aldehyde showed lower reactivity,possibly as a result of steric hindrance.

Table 4 Cyanosilylation of various aldehydes with TMSCN catalyzed by 1a

To examine the stability of 1 in the cyanosilylation reaction,we tested the recyclability of this heterogeneous catalyst.For this purpose,upon completion of a reaction cycle,we separated the catalyst by centrifugation,washed it with CH2Cl2,and dried it at room temperature before its further use.We repeated recycling catalyst 1 and the catalytic system mained the higher activity over at least five consecutive cycles(the yields were 92%,91%,89% and 88% for second to fifth run,respectively).According to the PXRD data(Fig.6),the structure of 1 was essentially preserved after five catalytic cycles.

A possible catalytic cycle for the cyanosilylation reaction catalyzed by a Mn coordination polymer is proposed in Scheme 3.It can involve dual activation of the carbonyl and TMSCN by the Mn(Ⅱ)centre and a ligated carboxylate group,respectively,followedby the forma-tion of C—C bond leading to cyanohydrin[41-42].

Scheme 3 Mechanism for Mn-catalyzed cyanosilylation reaction

3 Conclusions

In summary,we have successfully synthesized and characterized two new manganese and cadmium complexes by using one unexplored dicarboxylic acid as ligand under hydrothermal condition.Both complexes feature a 3D metal-organic framework structure.Besides,the luminescence and catalytic properties were also investigated and discussed.The results show that complex 1 exhibits a higher catalytic activity in the cyanosilylation at 35℃.

Supporting information is available at http://www.wjhxxb.cn

主站蜘蛛池模板: 91精品国产福利| 国产主播一区二区三区| 亚洲九九视频| 波多野结衣在线一区二区| 亚洲熟女偷拍| 欧洲高清无码在线| 日韩欧美网址| 青青草国产在线视频| 国产91高跟丝袜| 99在线视频免费| 国产精品漂亮美女在线观看| 日本亚洲最大的色成网站www| 全免费a级毛片免费看不卡| 国产91透明丝袜美腿在线| 免费精品一区二区h| 国产JIZzJIzz视频全部免费| 久久精品人妻中文系列| 夜夜操天天摸| 欧美五月婷婷| av一区二区三区在线观看 | 极品av一区二区| 亚洲色大成网站www国产| av在线无码浏览| 国产成人高精品免费视频| 亚洲最黄视频| 无套av在线| 亚洲无码37.| 国产另类乱子伦精品免费女| 国产va在线观看免费| 97超碰精品成人国产| 午夜小视频在线| 国产精品亚洲五月天高清| 国产不卡一级毛片视频| 综合五月天网| 日韩小视频在线观看| 国产成人毛片| 亚洲va在线∨a天堂va欧美va| 欧美激情视频一区二区三区免费| 亚洲天堂免费| 国产第一色| 中文字幕亚洲乱码熟女1区2区| 91成人在线免费视频| 日韩不卡高清视频| 一本大道AV人久久综合| 婷五月综合| 国产毛片一区| 亚洲bt欧美bt精品| 全部免费毛片免费播放 | 福利视频一区| 国产va在线| 亚洲国产精品日韩av专区| 无码国内精品人妻少妇蜜桃视频| 热99re99首页精品亚洲五月天| 91麻豆国产视频| 91网在线| 亚洲国产看片基地久久1024| 综合色区亚洲熟妇在线| 亚洲精品在线91| 成年人免费国产视频| 一本色道久久88综合日韩精品| 色悠久久综合| 国产精品无码AV片在线观看播放| 精品人妻系列无码专区久久| 911亚洲精品| 亚洲视频欧美不卡| 亚洲精品日产精品乱码不卡| 亚洲首页在线观看| 精品超清无码视频在线观看| 国产欧美成人不卡视频| 日本免费精品| 亚洲色图欧美视频| 国产超碰一区二区三区| 性视频一区| 91精品网站| 永久在线精品免费视频观看| 欧美成人手机在线观看网址| 亚洲欧美人成人让影院| 国产呦精品一区二区三区网站| 欧美午夜精品| 色窝窝免费一区二区三区| 日韩免费毛片视频| 毛片久久网站小视频|