999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS?

2021-06-17 13:58:56楊月英

(楊月英)

School of Mechanical and Electrical Engineering,Huzhou Vocational&Technical College,Huzhou 313000,China

E-mail:yyy1008@163.com

Weimao QIAN(錢偉茂)

School of Continuing Education,Huzhou Vocational&Technical College,Huzhou 313000,China

E-mail:qwm661977@126.com

Hongwei ZHANG(張宏偉)

School of Mathematics and Statistics,Changsha University of Science&Technology,Changsha 410014,China

E-mail:hwzhang2018@163.com

Yuming CHU(褚玉明)?

Department of Mathematics,Huzhou University,Huzhou 313000,China

E-mail:chuyuming2005@126.com;chuyuming@zjhu.edu.cn

Abstract In the article,we prove that the double inequalities hold for all a,b>0 with ab if and only if λ1 and

Key words Geometric mean;arithmetic mean;Toader mean;ontraharmonic mean;complete elliptic integral

1 Introduction

Let a,b>0 and r∈(0,1).Then the geometric mean G(a,b),arithmetic mean A(a,b),quadratic mean Q(a,b),contraharmonic mean C(a,b),Toader mean T(a,b)[1,2],complete elliptic integrals K(r)and E(r)[3–18]of the first and second kinds are given by

respectively.

From(1.2)and(1.3)we clearly see that

It is well known that K(r)is strictly increasing from(0,1)onto(π/2,∞),that E(r)is strictly decreasing from(0,1)onto(1,π/2),and that they satisfy the following formulae[19]:

Recently,the bounds for the Toader mean have attracted the attention of many researchers.Vuorinen,in[22],conjectured that

is the p-th H?lder mean.Inequality(1.5)was proved by Barnard,Pearce and Richards in[23],and they proved that H2(a,b)is an upper H?lder mean bound for T(a,b).

In[24],Alzer and Qiu proved that p0=log2/(logπ?log2)=1.5349...is the best possible constant such that the inequality T(a,b)<(a,b)holds for all a,b>0 with a/=b,and proposed that

for all a,b>0 with a/=b.

Inequality(1.6)was proved by Kazi and Neuman[25]by using the two-point Gauss-Chebyshev quadrature formula with the remainder given in[26].

is the generalized Seiffert mean.

In[28,29],the authors proved that the double inequalities

hold for all a,b>0 with a/=b if and only if α1≤1/2,β1≥(4?π)/[(√2?1)π]=0.659...,α2≤1/2,β2≥4?2logπ/log2=0.697...,α3≤0 and β3≥1/4,where Lp(a,b)=(ap+1+bp+1)/(ap+bp)is the p-th Lehmer mean.

Wang et al.[30]established the double inequality

hold for all a,b>0 with a/=b and p∈[1/2,2].The special cases p=1 and p=1/2 of inequality(1.8)were also proved in[32]and[33],respectively.

In[34],Chu et al.proved that the double inequalities

Let p≥1,s≥1/2,λ∈(0,1/2)andμ∈(1/2,1).Then the two-parameter geometricarithmetic mean GAλ,p(a,b)and two-parameter contraharmonic-arithmetic mean CAμ,s(a,b)are defined by

respectively.

From(1.1),(1.7),(1.11)and(1.12),we clearly see that

The aim of the article is to find the best possible parameters λ1=λ1(p),μ1=μ1(p)∈(0,1/2)and λ2=λ2(s),μ2=μ2(s)∈(1/2,1)such that the double inequalities

hold for all p≥1,s≥1/2 and a,b>0 with a/=b.

2 Lemmas

In order to prove our main results,we need four lemmas,which we present in this section.

Lemma 2.1The following statements are true:

ProofParts(1)–(5)can be found in[19,Theorem 3.21(1)and(8),and Exercises 3.43(11),(16)and(32)].

Part(6)follows easily from part(3)and the monotonicity of E(r)on the interval(0,1),together with the facts that

Lemma 2.3Let u∈[0,1],r∈(0,1),p≥1 and

Then one has that

(1)fu,p(r)>0 for all r∈(0,1)if and only if u≤1/(2p);

(2)fu,p(r)<0 for all r∈(0,1)if and only if u≥1?(2/π)2/p.

ProofIt follows from(2.5)that

From Lemma 2.1(5)and(6),together with(2.9),we know that the function r→fp(r)is strictly increasing on(0,1)and that

It follows from Lemma 2.2 that the interval[0,1]can be expressed by

We divide the proof into three cases.

Case 1:u≤1/(2p).Then,from(2.8)and(2.10),together with the monotonicity of the function r→fp(r)on the interval(0,1),we get that the function r→fu,p(r)is strictly increasing on(0,1).Therefore,fu,p(r)>0 for all r∈(0,1)follows from(2.6)and the monotonicity of the function r→fu,p(r)on the interval(0,1).

Case 2:u=1.Then equations(2.8)and(2.10),together with the monotonicity of the function r→fp(r)on the interval(0,1),lead to the conclusion that the function r→fu,p(r)is strictly decreasing on(0,1).Therefore,fu,p(r)<0 for all r∈(0,1)follows from(2.6)and the monotonicity of the function r→fu,p(r)on the interval(0,1).

Case 3:1/(2p)

We divide the proof into two subcases.

Subcase 3.1:1?(2/π)2/p≤u<1.Then(2.7)leads to

Therefore,fu,p(r)<0 for all r∈(0,1)follows from(2.6)and(2.11),together with the piecewise monotonicity of the function r→fu,p(r)on the interval(0,1).

Subcase 3.2:1/(2p)

Therefore,there exists u?∈(u0,1)such that fu,p(r)<0 for u∈(0,u?)and fu,p(r)>0 for u∈(u?,1)follows from(2.6)and(2.12),together with the piecewise monotonicity of the function r→fu,p(r)on the interval(0,1). □

We divide the proof into three cases.

3 Main Results

Theorem 3.1Let λ1,μ1∈(0,1/2)and p≥1.Then the double inequality

Therefore,Theorem 3.3 follows from Lemma 2.4 and(3.2). □

Remark 3.4Let s=1/2,1.Then,from(1.14)and(1.15),we clearly see that inequalities(1.9)and(1.10)can be derived from Theorem 3.3.

The following Corollary 3.5 also can be derived directly from(1.1),(1.4),(1.11)and(1.12),as well as Theorems 3.1 and 3.3:

Corollary 3.5Let λ1,μ1∈(0,1/2),λ2,μ2∈(1/2,1),p≥1 and s≥1/2.Then the double inequalities

主站蜘蛛池模板: 免费观看成人久久网免费观看| 国产成人免费高清AⅤ| 国产内射一区亚洲| 亚洲AV无码精品无码久久蜜桃| 国产一级裸网站| 欧美一级黄片一区2区| 亚洲av无码成人专区| 久久一日本道色综合久久| 亚洲第一香蕉视频| 国产丝袜啪啪| 国产h视频免费观看| 欧美不卡视频在线观看| 1024你懂的国产精品| 在线观看热码亚洲av每日更新| 国产毛片高清一级国语| 成人av手机在线观看| 99久久这里只精品麻豆| 欧美高清国产| 国产网友愉拍精品视频| 欧美激情二区三区| 97人人模人人爽人人喊小说| 2020国产精品视频| 亚洲中文字幕23页在线| 三上悠亚一区二区| 99久久国产综合精品2023 | 国产成人精品亚洲77美色| 在线国产毛片| 国产激爽大片在线播放| 精品人妻AV区| 日本欧美视频在线观看| 亚洲国产精品日韩av专区| 九色视频一区| 四虎亚洲国产成人久久精品| 亚洲二区视频| 免费高清a毛片| 成年人免费国产视频| 久草视频精品| 国产第一页亚洲| 亚洲国产亚洲综合在线尤物| 71pao成人国产永久免费视频| 美女扒开下面流白浆在线试听| 国产亚洲精品自在久久不卡| 天堂亚洲网| 国产亚洲视频播放9000| 一本大道视频精品人妻 | 片在线无码观看| 幺女国产一级毛片| 国产麻豆永久视频| 欧美精品黑人粗大| 亚洲天堂在线免费| 国产国拍精品视频免费看 | 国产毛片高清一级国语 | 国产乱码精品一区二区三区中文| 熟妇无码人妻| 丁香六月综合网| 国产麻豆精品在线观看| 日韩免费毛片| 国产成人精品一区二区三区| 欧洲亚洲一区| 亚欧成人无码AV在线播放| 国产成人禁片在线观看| 日本人妻丰满熟妇区| 亚洲日本中文字幕天堂网| 99re在线视频观看| 91福利免费视频| 中文字幕人成人乱码亚洲电影| 亚洲精品片911| 免费国产高清视频| 久久精品最新免费国产成人| 久久人妻系列无码一区| 国产性爱网站| 亚洲精品桃花岛av在线| 国产99免费视频| 色吊丝av中文字幕| 国产欧美日韩另类| 丁香综合在线| 久久成人国产精品免费软件| 欧美成人综合在线| 91热爆在线| 一区二区三区精品视频在线观看| 国产永久在线观看| 亚洲欧美另类中文字幕|