林紅燕,王煊,何聰,周紫玲,楊旻愷,文鐘靈,韓洪葦,陸桂華,戚金亮,楊永華
中藥植物紫草天然產物的生物合成及其功能研究進展
林紅燕,王煊,何聰,周紫玲,楊旻愷,文鐘靈,韓洪葦,陸桂華,戚金亮,楊永華
南京大學醫藥生物技術國家重點實驗室,植物分子生物學研究所,生命科學學院,南京 210023
紫草為我國傳統的重要藥用植物資源,其根部代謝產生的紫紅色萘醌類天然產物—紫草素及其衍生物,臨床上常被用于治療瘡瘍和皮膚炎癥。數十年來,紫草因具高效的多重生物活性、藥理作用、良好的臨床療效、較高的利用價值,引起了國內外研究者的重視與關注,正由于此種原因,其野生植物種質資源常遭到大量采挖,生長環境受到嚴重威脅。隨著植物天然產物的生物合成、分子代謝及其生物技術的發展,藥用植物天然產物生物活性功能與藥理作用研究手段的不斷創新,紫草的生物合成途徑和相關調控基因的研究取得了顯著的進展,紫草素藥理作用及其機制得到深入闡明或解析,極大地推進了紫草素的基礎性研究及其臨床應用開發的進程。本文從紫草分類、紫草素的結構與組成及其生物合成途徑、調控紫草素生物合成代謝的功能相關基因以及紫草素生物活性與藥理功能等方面綜述了相關研究進展,并對未來可能的發展趨勢進行了展望,以期為促進我國重要中藥材源的藥用天然產物的深度挖掘與開發提供有益參考,推動我國傳統中藥學的現代化發展。
紫草;紫草素;生物合成;基因調控;藥理活性
紫草(Zi Cao)是我國傳統中藥材,始載于《神農本草經》,列為中品,曰:“紫草,味苦、寒,主心腹邪氣五疸,補中益氣,利九竅,通水道,一名紫丹,一名紫芙,生山谷”?!吨腥A人民共和國藥典》(2020年版)收載的以干燥根為中藥材的紫草來源于紫草科軟紫草屬植物—新疆紫草((Royle)Johnst)或內蒙紫草(Bunge);2000年及其之前的藥典版本中則收載了紫草科紫草屬植物–紫草(Sieb. et Zucc.)等物種。這些紫草物種的根部均含有紫紅色的萘醌類藥用天然產物—紫草素及其衍生物(以下簡稱紫草素),具有抗菌、消炎、活血等功效,且可應用于食品、高級化妝品、日化產品與塑料制品的著色等。近年來,國內外的研究發現紫草素不僅具有抗菌消炎、抑制人類免疫缺陷病毒(human immu-nodeficiency virus, HIV)等多種藥理活性,還可通過活化Caspase-3和抑制拓撲異構酶活性來誘導癌細胞凋亡,是繼喜樹堿、紫杉醇之后又一類極具潛力的天然抗腫瘤藥物。本文就紫草分類、紫草素結構、生物合成及其基因調控以及紫草素生物活性與藥理功能等研究進展,進行了較為全面的概述,期望加強我國紫草素的基礎性研究及其應用開發。
按照《中國植物志》第64(2)卷(1989)及其英文修訂版“”·Vol.16(1995)的形態分類系統,紫草科()約包含100多個屬,2000多個物種,廣泛分布于世界各地,以歐洲地中海區為分布中心[1,2]。目前,紫草科主要被劃分為紫草亞科(Subfam.)、天芥菜亞科(Subfam.)、破布木亞科(Subfam.)、厚殼樹亞科(Subfam.)這四個亞科,其中紫草亞科為其主要類群。紫草亞科中的紫草族(Trib.)主要包含了紫草屬()、軟紫草屬()、滇紫草屬()、藍薊屬()以及紫筒草屬()等5屬。其中,紫草屬與軟紫草屬、滇紫草屬,可能具有較近的親緣關系;按花器官分類,滇紫草屬可能處于較高的進化地位,其次是軟紫草屬,而紫草屬則處于較原始狀態。上述5屬植物共有約50個物種,根據形態分類系統,廣義上可合并為紫草族,狹義上又可拆分為紫草屬與擬紫草屬()[3]。
“紫草”中藥材主要特指能入藥或做藥的“紫草科”植物富含紫草寧及其衍生物的紫紅色根,包括軟紫草屬的新疆紫草、內蒙紫草,以及紫草屬的紫草和滇紫草屬的滇紫草等,根據其根部主要藥用成分的含量差異,新疆紫草和內蒙紫草的根主要為藥用,紫草和滇紫草等可替代入藥,也被廣泛用做染料[4~6]。紫草素是一類萘醌化合物,其母核為5, 8-二羥基-1, 4-萘醌(5, 8-dihydroxy-1, 4-naphthoquinone),并具異己烯基側鏈。根據其旋光性不同,紫草素類化合物被分為兩種旋光異構體,即左旋紫草素(阿卡寧,-型,alkannin)與右旋紫草素(紫草寧,-型,shikonin) (圖1)[7~10]。
紫草素的生物合成以產生香葉基–對羥基苯甲酸(m-geranyl-p-hydroxybenzoic acid, GBA或GHB)為節點,可分為上游部分與核心部分;上游部分包含了兩個途徑,第一個是由萜類骨架途徑(terpe-noid backbone biosynthesis)合成香葉酯焦磷酸(geranyl pyrophosphate, GPP),第二個是由苯丙素途徑(phenylpropanoid biosynthesis, PP)產生對羥基苯甲酸(4-hydroxybenzoate acid, PHB) (圖2)[7~10]。
在生物體中,萜類前體骨架途徑包括了兩個途徑,即細胞質中的甲羥戊酸代謝途徑(mevalonate pathway, MVA)和質體中的去氧木酮糖途徑(2-C- methyl-D-erythritol-4-phosphate pathway, MEP)[11~14]。在紫草素生物合成的研究中,Gaisser 等[15]發現抑制紫草MVA途徑中的限速酶甲戊二羥酸單酰輔酶A還原酶(hydroxymethylglutaryl-coenzyme A reductase, HMGR)活性,幾乎能夠完全抑制紫草素的生物合成。由此,研究者推斷紫草的紫草素合成途徑中GPP主要來源于MVA途徑。但是,近年Singh等[16]發現,當軟紫草MEP途徑中的限速酶5-磷酸–去氧木酮糖還原酶(5-phosphoric acid-deoxyxylulose reductase, DXR)活性被抑制后,軟紫草中的紫草素合成同樣受到抑制。由此可見,紫草素生物合成過程中,MVA和MEP這兩個途徑之間的關系還有待進一步研究和確定。

圖1 紫草中的紫草素類天然產物
根據參考文獻[9]修改繪制。A:紫草寧類;B:阿卡寧類。R為取代基團;1:紫草素;2:去氧紫草素;3:乙酰紫草素;4:ɑ-甲基-正丁酰紫草素;5:異丁酰紫草素;6:異戊酰紫草素;7:β-羥基異戊酰紫草素;8:β,β?-二甲基丙烯酰紫草素;此外,4與6又屬于同分異構體。
PHB是紫草素生物合成的另一重要前體,在生物體中,其可由兩個途徑而來,分別是PP與莽草酸途徑(Shikimate pathway)[17,18]。研究發現,莽草酸途徑不僅可直接合成分支酸,經由分支酸-丙酮酸合成酶(chorismate-pyruvate lyase, CPL或UbiC)直接合成PHB,還是PP的上游途徑,能夠為PP途徑提供苯丙氨酸(Phenylalanine)。然而,PP中4-香豆酸(4-Coumarate)經4-香豆酸輔酶A連接酶(4-coumarate: CoA ligase, 4CL)催化合成4-Coumaroyl-CoA之后,最終合成PHB的過程中仍有幾步反應十分模糊,相應的酶基因也是未知的。在紫草素生物合成中,一般認為PHB只能來自于PP,因為目前在高等植物中似乎并沒有找到與UbiC酶同源的基因與酶。此外,Sommer等[19]和Kohle等[20]將大腸桿菌的UbiC酶基因轉入了紫草毛狀根中進行高表達,雖然紫草毛狀根中生產了較多的UbiC酶,但相應的紫草素類化合物并沒顯著升高。
最新研究發現,紫草寧是由PP代謝途徑的產物PHB和MVA代謝途徑形成的GPP這兩個重要的前體,經對羥基苯甲酸香葉基轉移酶(p-hydroxybenzoate geranyltransferase,PGT)催化形成GBA,再經轉換為香葉基氫醌(geranyl hyrdoxyquinone, GHQ),繼而羥基化為3?-羥基香葉基氫醌(3?-hydroxy-geranyl hyr-doxyquinone, GHQ-3?-OH)等一系列酶促反應,最后在內質網中形成,并通過胞外分泌作用將形成的紫草寧微粒運輸到原生質體外的細胞壁中[15,21,22]。此過程中所涉及的部分酶促反應目前尚不清楚,亟需探究。Wang等[23,24]通過紫草細胞的轉錄組分析與生化檢測,發現CYP76B74催化紫草素生物合成中的香葉基氫醌3?的羥基化,為進一步探索開環反應、萘醌骨架的生成鑒定了一個關鍵位置羥化酶。同時,Song等[25]通過轉錄組分析與GHQ為底物的酶催化反應,證實CYP76B100在C-3?位置催化GHQ的香葉基側鏈羥基化,形成GHQ-3?-OH,CYP76B101在C-3?位置進行GHQ的氧化反應產生GHQ的3?-羧酸衍生物(GHQ-3?-COOH)以及GHQ-3?-OH。此外,在以紫草寧為前體的紫草寧衍生物合成通路研究中,Oshikiri等[26]通過蛋白質組學分析鑒定到兩個關鍵的對映體特異性?;D移酶LeSAT1和LeAAT1,其能分別將乙?;?CoA、異丁酰基-CoA和異戊酰基- CoA識別為酰基供體,產生其相應的紫草寧/鏈烷烴衍生物即乙酰紫草寧/阿卡寧、異丁酰紫草寧/阿卡寧和異戊酰紫草寧/阿卡寧。這些研究都為進一步探究紫草素的生物合成提供了有效信息。

圖2 紫草素的生物合成途徑
根據參考文獻[21]修改繪制。 ACTH: acetoacetyl-CoA thiolase,乙酰乙酰輔酶A硫解酶;C4H: cinnamic acid 4-hydroxylase,肉桂酸-4-羥化酶;4-CL: 4-coumarate:CoA ligase,4-香豆酸輔酶A連接酶;CDPMEK: 4-(cytidine 59-diphospho)-2-C-methyl-D-erythritol 2-phosphokinase,4-二磷酸胞苷-2-C-甲基-D-赤蘚醇激酶;DXPS: 1-deoxy-D-xylulose-5-phosphate synthase,1-脫氧-D-木酮糖-5-磷酸合酶;DXR: 5-phosphoric acid-deoxyxylulose reductase,5-磷酸–去氧木酮糖還原酶;GDPS: geranyldiphosphate synthase,焦磷酸香葉酯合酶;GHQH: geranylhydroquinone 3’-hydroxylase,香葉基氫醌3?-羥化酶;HDR: 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase,1-羥基-2-甲基-2-(E)-丁烯基-4-焦磷酸還原酶;HDS: 1-hydroxy-2-methyl-2-(E)-butenyl-diphosphate synthase,1-羥基-2-甲基-2-(E)-丁烯基-4-二磷酸合酶;HMGR: hydroxymethylglutaryl-coenzyme A reductase,甲戊二羥酸單酰輔酶A還原酶;HMGS: 3-hydroxy-3-methylglutaryl-CoA synthase,3-羥基-3-甲基–戊二酰輔酶A合成酶;MCT: 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase,2-C-甲基-D-赤蘚糖醇4-磷酸胞苷轉移酶;MECDPS: 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, 2-C-甲基-D-赤蘚糖醇2,4-環焦磷酸合成酶;MVAK: mevalonate 5-phospho kinase,甲羥戊酸5-磷酸激酶;MVDD: mevalonate diphosphate decarboxylase,甲羥戊酸5-焦磷酸脫羧酶;PAL: phenylalanine ammonia-lyase,苯丙氨酸解氨酶;PGT: p-hydroxybenzoate geranyltransferase,對羥基苯甲酸香葉基轉移酶;PMVK: 5-phosphomevalonate phosphokinase,磷酸甲羥戊二酸激酶;SAT: shikonin acetyltransferase,紫草寧乙酰轉移酶。
先前的研究者通過抑制差減雜交(suppression subtractive hybridization, SSH)及cDNA末端快速擴增(rapid-amplification of cDNA ends, RACE)等技術,已經成功篩選和克隆了一系列紫草、軟紫草以及滇紫草中與紫草素生物合成直接或間接相關的酶基因和調控基因[16]。
由于紫草素生物合成核心部分不明確,目前已經鑒定和克隆的與紫草素合成直接相關酶基因僅在上游部分,主要包括MVA途徑和PP途徑的一些酶基因以及催化GBA合成的基因。
在MVA途徑中,鑒定與克隆的軟紫草基因較為完整。其中軟紫草的乙酰乙酰輔酶A硫解酶基因(acetoacetyl-coenzyme A thiolase gene,)、甲戊二羥酸單酰輔酶A合成酶基因(hydroxy-methylglutaryl CoA synthase gene,)、甲戊二羥酸單酰輔酶A還原酶基因(hydroxymethylglutaryl-coenzyme A redu-ctase gene,)、甲羥戊酸焦磷酸激酶基因(phosphomevalonate kinase gene,)、甲羥戊酸激酶基因(mevalonate kinase gene,)、甲羥戊酸5-焦磷酸脫羧酶基因(mevalonate disphosphate decarboxy-lase gene,)、異戊烯焦磷酸異構酶基因(isopentenyl pyrophosphate:dimethyllallyl pyrophosphate isomerase gene,)以及焦磷酸香葉酯合酶基因(geranyl diphosphate syn-thase gene,)均已成功獲得[16]。但是,到目前為止,在紫草中僅鑒定和克隆了紫草甲戊二羥酸單酰輔酶A還原酶基因(hydroxyme-thylglutaryl-coenzyme A reductase gene,)[27]。而MVA途徑中,HMGR酶可能是唯一的限速酶,直接影響到紫草素的合成[15,16]。
在PP途徑中,目前已知的酶基因在紫草和軟紫草中均已經被鑒定和克隆,即苯丙氨酸解氨酶基因(phenylalanine ammonia-lyase gene,)、肉桂酸-4-羥化酶基因(cinnamic acid 4-hydroxylase gene,)和基因[28~30]。其中,酶基因被認是控制PP途徑的關鍵起始酶基因[30];而酶基因與酶基因可能不直接影響紫草素的合成[28,30]。
作為紫草素合成核心部分的關鍵起始酶基因,具有非常重要的作用,其在紫草與軟紫草中均已經被鑒定與克隆。有研究報道,許多調控因素,如光信號、植物激素(如二氯苯氧乙酸(dichlorphe-noxyacetic acid, 2, 4-D)與茉莉酸甲酯(methyl jasmonate, MJ))以及無機離子(如NH4+),均直接作用于,從而調控紫草素的生物合成[31]。
除了與紫草素合成直接相關的酶基因以外,研究者還在新疆紫草和紫草中克隆了許多間接相關的調控基因,其中主要包括一些調控因素的潛在受體基因或轉錄因子基因,以及這些調控因素合成相關的酶基因。
Yazaki等[32]通過SSH技術鑒定與克隆了一系列紫草黑暗誘導基因(dark-inducible gene,)。其中,只有基因受到光信號的嚴格調控,在黑暗中特異表達?;虍a物與擬南芥的脂質轉移蛋白(lipid-transfer protein, EARLI 1)同源,可能具有穩定紫草素合成場所(即細胞內小囊泡)的功能,但具體功能目前尚不明確。
花卉分生組織/乙烯響應轉錄因子(APETALA2/ ethylene-responsive factor,AP2/ERF)基因家族與乙烯不敏感蛋白3/類乙烯不敏感蛋白(/protein, EIN3/EIL)基因家族是乙烯信號傳導途徑中關鍵的轉錄因子[33,34]。研究發現,紫草基因可能參與光信號和乙烯對紫草素合成的調控[35]。Fang等[36]將基因在紫草毛狀根中高表達,構建出了一個高產紫草素的毛狀根體系。
Fe+結合的順式還原酮加雙氧酶基因(aciredu-ctone dioxygenase gene,)被證明參與到乙烯與多胺的合成途徑中[37]。Qi等[38]發現紫草基因可能參與調控紫草素的生物合成。此外,有研究報道,多胺合成途徑中的精氨酸脫羧酶基因(arginine decarboxylase gene,)也可能參與紫草素合成的調控[35]。
Yazaki等[39]鑒定了一個與病程相關蛋白(pathogenesis related protein, PR)同源的基因,其可能和紫草素合成有關。Yamamura等[40]在紫草細胞系中鑒定得到一個質外體(細胞壁)表達的色素愈傷組織特異性基因(pigment callus-specificgene,),并推測其可能與紫草素的分泌相關。另外,研究者還鑒定、克隆了部分紫草中MYB和MYC轉錄因子基因,認為它們的功能可能也與紫草素合成有關[18,41,42]。
根據國內外研究報道,紫草素及其衍生物具有顯著的抗腫瘤、抗炎、抗菌、抗病毒、抗氧化等多重藥理作用,因而具有廣闊的開發應用前景[43~45]。
大量研究表明,紫草素及其衍生物(圖3)對不同的腫瘤細胞表現出顯著的細胞毒性,其抗癌作用牽涉到多個靶點,抗癌機制包括促細胞凋亡、誘導細胞壞死、抑制DNA拓撲異構酶活性、抑制酪氨酸激酶磷酸化、抑制血管再生及調控多條與腫瘤相關的信號通路等。
SH-7是在紫草寧的結構基礎上修飾的來的一種新的萘醌類化合物,它通過抑制Topo II的活性達到抗腫瘤效果,且抑制效果遠比其母體化合物紫草寧好[46]。SH-7有效穩定Topo II-DNA復合物并提高了磷酸化的組蛋白H2AX的表達量,同時,它對Topo I也有抑制作用,但效果不如Topo II。早在1995年,Ahn等[47]就合成了一系列乙酰紫草寧類似物,并發現這些類似物是DNA Topo I的良好抑制劑。Qiu等[48]合成的紫草素衍生物PMMB172對三陰性乳腺癌細胞MDA-MB-231的增殖有良好的抑制作用,它通過靶向信號轉導與轉錄激活因子(signal transduc-tion and transcriptional activators, STAT3)的SH2結構域來抑制STAT3的入核以及在細胞核中的定位,進而抑制其下游基因的表達。
對紫草寧及其衍生物的抗腫瘤機制研究最多的要數微管蛋白。2011年,Acharya等[49]報道了萘醌能夠使微管蛋白解聚,造成紡錘體微管組織混亂,導致大部分細胞都被阻滯在G2/M期??紤]到紫草寧也屬于萘醌類化合物,關于它是否為微管蛋白抑制劑的研究便成為熱點。2014年,Wang等[50]合成了一系列雜環羧酸紫草寧酯,并從中篩選獲得3-吲哚丙酸紫草寧酯(compound 3)和3-噻吩乙酸紫草寧酯(compound 8)兩種對HeLa細胞增殖抑制效果明顯的化合物,并推測其為良好的微管蛋白抑制劑。Guo等[51]在紫草寧支鏈羥基上引入了苯氧苯乙酸,并證明它(compound 16)是通過抑制微管蛋白的聚合來有效抑制HepG2細胞增殖的。Baloch等[52]也對紫草寧進行結構修飾,并篩選出化合物3j,認為它能夠干擾微管蛋白的聚集使得HepG2細胞周期抑制在G2/M期,同時激活caspase導致細胞凋亡。Lin等[53]通過硫原子作為橋,在紫草寧支鏈和萘醌環上連接巰基糖,并通過實驗證明連接兩個木糖的紫草寧巰基糖衍生物IIb的抗癌活性最佳,而且它也是通過靶向微管蛋白而發揮作用的。Sun等[54]合成獲得的苯甲酰丙烯酸紫草寧酯PMMB317可通過靶向表皮生長因子受體(epidermal growth factor receptor, EGFR)和微管蛋白,發揮雙重抗腫瘤作用。

圖3 具有抗癌活性的代表性紫草寧衍生物
SH7, Compound 3, Compound 8, Compound 16, 3j, PMMB172, PMMB317, Naphthazarin, IIb均為化合物在文獻中的名稱及編號。
相比之下,關于阿卡寧及其衍生物的抗腫瘤活性研究相對較少(圖4)。2004年,Huang等[55]利用多種親核物質對β, β-二甲基丙烯酰阿卡寧進行還原烷基化和氧化共軛加成反應,所得產物8、11b、12b、14b相比于母體化合物β, β-二甲基丙烯酰阿卡寧(1)和乙酰阿卡寧(2),對人肺腺癌細胞株GLC-82、人鼻咽癌細胞株CNE2、人肝癌細胞株Bel-7402和人白血病細胞株K562具有更高的體外細胞毒性。另外,作者推測,細胞組分(親核試劑)與醌(親電試劑)的共軛加成和還原烷基化可能正是醌類結構具有細胞毒性的原因。2010年,Deng等[56]報道一個新型的阿卡寧衍生物SYUNZ-16,稱其可通過抑制蛋白激酶B(Protein kinase B, PKB/AKT)激酶活性、阻斷蛋白激酶B/叉頭狀轉錄因子O (Protein kinase B/forkhead box O, AKT/FOXO)信號通路來誘導細胞凋亡和抑制腫瘤的生長。Zhang等[57~59]報道了二甲基化阿卡寧衍生物S-2a、阿卡寧肟衍生物S-11、DMAKO-05等小分子具有很好的體外抗腫瘤活性。此外,Chang等[60]發現阿卡寧可誘導活性氧(reactive oxygen species, ROS)水平升高從而對DNA造成氧化損傷,同時聯合聚腺苷二磷酸–核糖聚合酶(poly- ADP-ribose polymerase, PARP)抑制劑奧拉帕尼在無毒劑量下,顯著抑制體內外結腸癌的生長。

圖4 具有抗癌活性的代表性阿卡寧衍生物
1, 2, 8, 14b, 11b, 12b, SYUN-16, S-2a, S-11, DMAKO-05均為化合物在文獻中的名稱及編號。
Yang等[61]通過研究紫草寧的抗炎機制,發現紫草寧通過干擾素和核因子κB (nuclear factor kappa-B, NF-κB)信號通路,抑制RAW264.7細胞中脂多糖(lipopolysaccharid, LPS)誘導的高遷移率族蛋白B1 (high mobility group box 1, HMGB1)的釋放。此外,紫草寧和β-羥基異戊?;喜輰?β-valeryl,β-HIVS) (圖5),通過抑制血管內皮生長因子受體(vascular endothelial growth factor receptor, VEGFR)與三磷酸腺苷(triphosadenine, ATP)非競爭性的方式抑制血管生成[62]。萘醌化合物CMEP-NQ可以在不影響細胞活力的前提下,下調LPS誘導的誘導型一氧化氮合酶(inducible nitric oxide synthase, iNOS)和環氧合酶-2(cyclooxygenase-2, COX-2)表達,從而抑制一氧化氮(nitric oxide, NO)和前列腺素E2 (prostaglandin E2, PGE2)的產生[63]達到抗炎作用。乙酰紫草寧具有抗過敏和抗炎作用,能有效降低過敏性鼻炎小鼠模型的過敏性炎癥,主要是通過抑制輔助型T細胞2 (T helper 2 cell, Th2)相關卵清蛋白(ovalbumin, OVA)特異性免疫球蛋白E (immune globulin, IgE)、IgG1的產生,同時抑制Th2細胞產生白細胞介素4 (interleukin-4, IL-4)、IL-5、IL-13和肥大細胞產生組胺;此外,乙酰紫草寧可減輕炎癥細胞浸潤和杯狀細胞增生程度[64]。自噬在乙酰紫草寧(圖5)通過腺苷酸活化蛋白激酶/哺乳動物雷帕霉素靶蛋白(adenosine monophosphate activated protein kinase/mammalian target of rapamycin, AMPK/Mtor)通路對非酒精性脂肪性肝炎的治療起著關鍵作用,Zeng等[65]發現乙酰紫草寧不僅可以改善脂肪變性,還可能通過誘導飲食缺乏蛋氨酸膽堿的小鼠肝臟自噬來減輕肝臟炎癥、肝損傷和肝纖維化。Cui等[66]研究證明乙酰紫草寧可明顯減弱動脈粥樣硬化模型小鼠斑塊內炎性細胞(T淋巴細胞、中性粒細胞、巨噬細胞)浸潤,IL-1、IL-6、腫瘤壞死因子-α (tumor necrosis factor-α, TNF-α)和單核細胞趨化蛋白-1 (monocyte chemotactic protein 1, MCP-1)水平降低,并通過抑制NF-κB信號通路改善小鼠血管炎癥。Zhang等[67]使用紫草羥基萘醌類混合物(hydroxy-naphthoquinone mixture, HM)治療葡聚糖硫酸鈉(dextran sulfate sodium, DSS)誘導的潰瘍性結腸炎,結果顯示,HM能有效改善小鼠結腸炎臨床癥狀和組織病理損傷。早在2012年,西班牙學者Andújar等[68]首次報道了紫草寧對DSS誘導的實驗性結腸炎具有顯著治療作用,并證明紫草寧是通過阻斷NF-κB和STAT3信號表達,以及它們的促炎反應,來調節結腸炎和與之相關的腫瘤發生。
最初,人們發現紫草根部的粗提物具有抗菌活性,在過去五十年內,很多研究人員對紫草根部活性成分的抗菌活性做了更深入、系統的研究,并得出結論紫草寧及其衍生物具有廣譜的抗菌活性。目前,紫草寧及其衍生物已被證明對革蘭氏陽性菌有明顯的抗菌活性,如金黃色葡萄球菌、腸球菌、枯草芽孢桿菌等,最小抑菌濃度(minimum inhibitory concentration, MIC)值大約在0.30~6.25 μg/mL之間。相反,它們對革蘭氏陰性菌,如大腸桿菌、綠膿假單胞菌和黃色微球菌等沒有明顯的作用[69]。
早期文獻報道紫草寧及其衍生物具有抑菌作用,但是近期的動力學研究說明紫草寧及其衍生物是具有殺菌作用的[70]。Shen等[71]的研究表明紫草寧(圖5)可用于治療對甲氧西林有抗性的金黃色葡萄球菌,MIC值為6.25 μg/mL。后期的研究發現紫草寧酯類衍生物對金黃色葡萄球菌有更好的活性,如甲基丁酰紫草寧(圖5),其對金黃色葡萄球菌的MIC值為1.56 μg/mL。Kuo等[72]還報道了紫草寧以濃度依賴的方式抑制幽門螺旋桿菌的增殖。一些腸內細菌包括肺炎桿菌、沙門氏菌、金黃色葡萄球菌和大腸桿菌等體內的酶會表現N-乙?;D移酶(N-acetyltrans-ferase, NAT)活性,有助于化學致癌物質的代謝激活,Kuo等[72]研究人員還發現了紫草寧可以抑制NAT-介導的N-乙?;?,從而阻斷NAT對化學致癌物質的激活。
紫草寧及其衍生物抗病毒研究也由來已久。2003年,Chen等[73]的研究顯示紫草寧可下調巨噬細胞表面一個HIV-1的主要共同受體趨化因子受體5 (chemokine receptor, CCR5)的表達從而抑制HIV病毒的復制。2017年,Zhang等[74,75]發現紫草寧衍生物PMM034可顯著抑制橫紋肌肉瘤(rhabdomyosar-coma, RD)細胞中促炎因子的表達水平,從而抑制引起手足口病的71型人腸病毒(human enterovirus 71 of hand, foot and mouth disease, EV71)的活性。此外,他們還發現PMM034可通過抑制神經氨酸苷酶有效抑制流感病毒H1N1的表達,且效果可媲美于陽性藥奧司他韋[74,75]。

圖5 具有抗炎、抗菌活性的代表性紫草寧及其衍生物
Shikonin (紫草寧),Acetylshikonin (乙酰紫草寧),2-Methylbutyryl shikonin (2-甲基丁酰紫草寧),β-hydroxyisovaleryl shikonin (β-羥基異戊酰紫草寧),CMEP-NQ (萘醌化合物)均為化合物在文獻中的名稱及編號。
Lee等[76,77]發現紫草寧可通過WNT/-catenin途徑顯著抑制3T3-L1細胞中脂肪的形成和積累,并由此推測其同樣可以利用該通路對肥胖癥及相關疾病起到治療作用。Wang等[78]研究發現紫草寧可通過抗氧化作用對小鼠腦出血、再灌注損傷起到保護作用。從機制上來說,即紫草寧顯著降低了神經系統缺陷評分、梗死面積、丙二醛(malondialdehyde, MDA)、羰基和活性氧的水平,減弱了神經元損傷,上調了超氧化物歧化酶(superoxide dismutase, SOD)、過氧化氫酶(catalase, CAT)、谷胱甘肽過氧化物酶(glutathioneperoxidase, GSH- px)的活性,降低了谷胱甘肽(glutathione, GSH)/谷胱甘肽二硫化合物(glutathione disulfide, GSSG)的比例。
紫草作為我國傳統中藥,國內外對其次生代謝產物—紫草素的生物合成與分子代謝研究日益精進。紫草素除了在藥理作用方面顯示良好的活性外,同時也是名貴的染料,作為天然食用色素或添加到化妝品中加以使用,基于此,當前面臨著臨床或生產需求量大與珍貴植物物種資源日益匱乏的矛盾。因此,亟需從不同角度入手提高紫草寧及其衍生物的產量,實現規?;a紫草素:一方面,雖然紫草寧及其衍生物的合成途徑已基本清楚,但涉及到控制催化GHQ-3?-OH合成紫草寧過程以及紫草寧合成其一系列衍生物的關鍵酶基因尚不明確,已知的合成途徑中關鍵基因的表達調控也有待探明,因此,有必要通過基因組學、轉錄組學、蛋白質組學和代謝組學等多組學研究相結合,明晰紫草寧及其衍生物合成調控通路中尚未發現的關鍵酶基因,繼而通過基因工程或代謝工程手段,獲得可高效生產紫草寧及其衍生物的高產轉基因株系,用于生產實踐;另一方面,可在明晰紫草寧及其衍生物生物合成調控途徑的基礎上,采用合成生物學的方法,通過改造工程菌株使其合成分泌紫草寧及衍生物;或者,還可通過增加高產紫草素等藥用成分的紫草科藥用紫草的廣泛栽培,用以緩解野生植物種質資源與紫草素的供求矛盾。同時,國內外學者針對紫草素進行的抗腫瘤、抗炎、抗菌、抗病毒等藥理研究,逐步挖掘了其潛在的分子作用機制。然而到目前為止,仍然沒有找到明確的十分高效的作用靶點,以提高紫草素類天然產物對腫瘤的靶向性。此外,紫草素類天然產物抗細菌、真菌及病毒的確切分子機制也并不十分明確,這嚴重阻礙了其藥用價值的開發。根據前人的研究,紫草素在抗炎、抗癌方向對PI3K/AKT/mTOR、MAPK、JAK/STAT、NF-κB通路的影響較為顯著[79~84];在抗菌方面紫草素對生物膜的形成和成熟抑制、誘導群體感應分子法尼醇的產生、增加內源性活性氧(ROS)的產生、阻斷組蛋白H3去乙酰化、導致內源性NO積累等都是研究的熱點[85~88]。隨著現代分子生物學、合成生物學及生物信息學的快速發展,相信明確紫草素的完整生物合成途徑及其調控、挖掘紫草素的潛在作用靶點將不是難題;并根據可能的作用靶點,再進行深入的化學結構或生化功能等各種修飾,可望極大地促進中藥植物天然產物生物合成的調控,有效地開發紫草素或其衍生物成為臨床應用的植物源新藥。
[1] Wang WC, Liu YL, Zhu GL, Lian YS, Wang JQ,Wang QR (eds). Angiospermae, Dicotyledoneae, Boraginaceae. Flora of China 64(2). Beijing: Science Press, 1989, 1–236.王文采、劉玉蘭、朱格麟、廉永善、王鏡泉、王慶瑞(編著). 被子植物門?雙子葉植物綱紫草科?中國植物志(第六十四卷?第二分冊). 北京: 科學出版社, 1989, 1–236.
[2] Zhu GL, Harald R, Rudolf K. Boraginaceae. In: Flora of China, Vol.16, Science Press & Missouri Botanical Garden, 1995, 16: 329–427. http://www.iplant.cn/info/ Boraginaceae?t=foc.
[3] Cohen JI, Litt A, Davis JI. Comparative floral development in(Boraginaceae) and implications for the evolution and development of heterostyly., 2012, 99(5): 797–805.
[4] Chinese Pharmacopoeia Commission. 2000. Pharmacopoeia of the People's Republic of China (Part I). Beijing: Chemical Industry Press, 280.國家藥典委員會. 中華人民共和國藥典(2000版)(第一部). 北京: 化學工業出版社, 280.
[5] Zhou RH, Duan JA. Plant Chemotaxonomy. Shanghai: Shanghai Scientific & Technical Publishers, 2005, 309– 310.周榮漢, 段金廒. 植物化學分類學. 上海: 上??茖W技術出版社, 2005, 309–310.
[6] Chinese Pharmacopoeia Commission. 2020. Pharmacopoeia of the People's Republic of China (Part I). Beijing: China Medical Science Press, 355–356.國家藥典委員會. 中華人民共和國藥典(2020版)(第一部). 北京: 中國醫藥科技出版社, 355–356.
[7] Sagratini G, Cristalli G, Giardinà D, Gioventù G, Maggi F, Ricciutelli M, Vittori S. Alkannin/shikonin mixture from roots of(L.) L.: Extraction method study and quantification., 2008, 31(6–7): 945– 952.
[8] Auber RP, Suttiyut T, McCoy RM, Ghaste M, Crook JW, Pendleton AL, Widhalm JR, Wisecaver JH. Hybrid de novo genome assembly of red gromwell () reveals evolutionary insight into shikonin biosynthesis., 2020, 7: 82.
[9] Assimopoulou AN, Sturm S, Stuppner H, Papageorgiou VP. Preparative isolation and purification of alkannin/shikonin derivatives from natural products by high-speed counter- current chromatography., 2009, 23(2): 182–198.
[10] Albreht A, Vovk I, Simonovska B, Srbinoska M. Identification of shikonin and its ester derivatives from the roots ofL., 2009, 1216(15): 3156–3162.
[11] Bergman ME, Davis B, Phillips MA. Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action., 2019, 24(21): 3961.
[12] Eisenreich W, Bacher A, Arigoni D, Rohdich F. Biosynthesis of isoprenoidsthe non-mevalonate pathway., 2004, 61(12): 1401–1426.
[13] Miziorko HM. Enzymes of the mevalonate pathway of isoprenoid biosynthesis., 2011, 505(2): 131–143.
[14] Banerjee A, Sharkey TD. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation., 2014, 31(8): 1043–1055.
[15] Gaisser S, Heide L. Inhibition and regulation of shikonin biosynthesis in suspension cultures of., 1996, 41(4): 1065–1072.
[16] Singh RS, Gara RK, Bhardwaj PK, Kaachra A, Malik S, Kumar R, Sharma M, Ahuja PS, Kumar S. Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxy-benzoate-m-geranyltransferase and genes of phenylpro-panoid pathway exhibits positive correlation with shikonins content in arnebia [(Royle) Johnston]., 2010, 11: 88–98.
[17] Szkopinska A. Ubiquinone. Biosynthesis of quinone ring and its isoprenoid side chain. Intracellular localization., 2000, 47(2): 469–480.
[18] Padilla S, Jonassen T, Jiménez-Hidalgo MA, Fernández- Ayala DJM, López-Lluch G, Marbois B, Navas P, Clarke CF, Santos-Oca?a C. Demethoxy-Q, an intermediate of coenzyme Q biosynthesis, fails to support respiration inand lacks antioxidant activity., 2004, 279(25): 25995–26004.
[19] Sommer S, K?hle A, Yazaki K, Shimomura K, Bechthold A, Heide L. Genetic engineering of shikonin biosynthesis hairy root cultures oftransformed with the bacterial ubiC gene., 1999, 39(4): 683–693.
[20] K?hle A, Sommer S, Yazaki K, Ferrer A, Boronat A, Li SM, Heide L. High level expression of chorismate pyruvate- lyase (UbiC) and HMG-CoA reductase in hairy root cultures of., 2002, 43(8): 894–902.
[21] Takanashi K, Nakagawa Y, Aburaya S, Kaminade K, Aoki W, Saida-Munakata Y, Sugiyama A, Ueda M, Yazaki K. Comparative proteomic analysis ofreveals regulation of a variety of metabolic enzymes leading to comprehensive understanding of the shikonin biosynthetic pathway., 2019, 60(1): 19–28.
[22] Heide L, Nishioka N, Fukui H, Tabata M. Enzymatic regulation of shikonin biosynthesis incell cultures., 1989, 28(7): 1873–1877.
[23] Wang S, Wang RS, Liu T, Lv CG, Liang JW, Kang CZ, Zhou LY, Guo J, Cui GH, Zhang Y, Werck-Reichhart D, Guo LP, Huang LQ. CYP76B74 catalyzes the 3''-hydroxylation of geranylhydroquinone in shikonin biosynthesis., 2019, 179(2): 402–414.
[24] Ohara K, Muroya A, Fukushima N, Yazaki K. Functional characterization of LePGT1, a membrane-bound preny-ltransferase involved in the geranylation of p-hydroxy-benzoic acid., 2009, 421(2): 231–241.
[25] Song W, Zhuang YB, Liu T. Potential role of two cyto-chrome P450s obtained fromin catalyzing the oxidation of geranylhydroquinone during shikonin biosynthesis., 2020, 175: 112375.
[26] Oshikiri H, Watanabe B, Yamamoto H, Yazaki K, Takanashi K. Two BAHD acyltransferases catalyze the last step in the shikonin/alkannin biosynthetic pathway., 2020, 184(2): 753–761.
[27] Lange BM, Severin K, Bechthold A, Heide L. Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase for shikonin biosynthesis incell suspension cultures., 1998, 204(2): 234–241.
[28] Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S. Production of curcuminoids bycarrying an artificial biosynthesis pathway., 2008, 154(Pt 9): 2620–2628.
[29] Syk?owska-Baranek K, Pietrosiuk A, Naliwajski MR, Kawiak A, Jeziorek M, Wyderska S, Lojkowska E, Chinou I. Effect of l-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of(Royle) Johnst., 2012, 48(5): 555–564.
[30] Yamamura Y, Ogihara Y, Mizukami H. Cinnamic acid 4-hydroxylase from: cDNA cloning and gene expression., 2001, 20(7): 655–662.
[31] Yazaki K, Kunihisa M, Fujisaki T, Sato F. Geranyl diphosphate: 4-hydroxybenzoate geranyltransferase from. Cloning and characterization of a ket enzyme in shikonin biosynthesis., 2002, 277(8): 6240–6246.
[32] Yazaki K, Matsuoka H, Shimomura K, Bechthold A, Sato F. A novel dark-inducible protein, LeDI-2, and its involvement in root-specific secondary metabolism in., 2001, 125(4): 1831–1841.
[33] Pré M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense., 2008, 147(3): 1347–1357.
[34] Zhu ZQ, An FY, Feng Y, Li PP, Li X, Mu A, Jiang ZQ, Kim JM, To TK, Li W, Zhang XY, Yu Q, Dong Z, Chen WQ, Seki M, Zhou JM, Guo HW. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in., 2011, 108(30): 12539–12544.
[35] Zhang W, Zou A, Miao J, Yin Y, Tian R, Pang Y, Yang R, Qi J, Yang Y., a novel AP2/ERF family gene within the B3 subcluster, is down-regulated by light signals in., 2011, 13(2): 343–348.
[36] Fang RJ, Zou AL, Zhao H, Wu FY, Zhu Y, Zhao H, Liao YH, Tang RJ, Pang YJ, Yang RW, Wang XM, Qi JL, Lu GH, Yang YH. Transgenic studies reveal the positive role ofin regulating shikonin biosynthesis inhairy roots., 2016, 16(1): 121–132.
[37] Sauter M, Lorbiecke R, Ouyang B, Pochapsky TC, Rzewuski G. The immediate-early ethylene response geneencodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-adenosylmethionine., 2005, 44(5): 718–729.
[38] Qi JL, Zhang WJ, Liu SH, Wang H, Sun DY, Xu GH, Shi MW, Liu Z, Zhang MS, Zhang HM, Yang YH. Expression analysis of light-regulated genes isolated from a full-length-enriched cDNA library ofcell cultures., 2008, 165(14): 1474–1482.
[39] Yazaki K, Bechthold A, Tabata M. Nucleotide sequence of a cDNA fromhomologous to PR-1 of parsley., 1995, 108(3): 1331–1332.
[40] Yamamura Y, Sahin FP, Nagatsu A, Mizukami H. Molecular cloning and characterization of a cDNA encoding a novel apoplastic protein preferentially expressed in a shikonin- producing callus strain of., 2003, 44(4): 437–446.
[41] Zhao H, Baloch SK, Kong LR, Zhang WJ, Zou AL, Wang XM, Qi JL, Yang YH. Molecular cloning, characterization, and expression analysis offrom., 2014, 58(3): 436–444.
[42] Zhao H, Chang QS, Zhang DX, Fang RJ, Zhao H, Wu FY, Wang XM, Lu GH, Qi JL, Yang YH. Overexpression ofenhances shikonin formation by up-regulating key shikonin biosynthesis-related genes in., 2015, 59(3): 429–435.
[43] Andújar I, Recio MC, Giner RM, Ríos JL. Traditional Chinese Medicine Remedy to Jury: The Pharmacological basis for the use of shikonin as an anticancer therapy., 2013, 20(23): 2892–2898.
[44] Lin HY, Li ZK, Bai LF, Baloch SK, Wang F, Qiu HY, Wang X, Qi JL, Yang RW, Wang XM, Yang YH. Synthesis of aryl dihydrothiazol acyl shikonin ester derivatives as anticancer agents through microtubule stabilization., 2015, 96(2): 93–106.
[45] Lu L, Qin AP, Huang HB, Zhou P, Zhang CY, Liu NN, Li SJ, Wen GM, Zhang CG, Dong WH, Wang XJ, Dou QP, Liu JB. Shikonin extracted from medicinal Chinese herbs exerts anti-inflammatory effectproteasome inhibition., 2011, 658(2–3): 242–247.
[46] Yang F, Chen Y, Duan WH, Zhang C, Zhu H, Ding J. SH-7, a new synthesized shikonin derivative, exerting its potent antitumor activities as a topoisomerase inhibitor., 2006, 119(5): 1184–1193.
[47] Ahn BZ, Baik KU, Kweon GR, Lim K, Hwang BD. Acylshikonin analogues: Synthesis and inhibition of DNA topoisomerase-I., 1995, 38(6): 1044–1047.
[48] Qiu HY, Zhu X, Luo YL, Lin HY, Tang CY, Qi JL, Pang YJ, Yang RW, Lu GH, Wang XM, Yang YH. Identification of new shikonin derivatives as antitumor agents targeting STAT3 SH2 domain., 2017, 7(1): 2863–2875.
[49] Acharya BR, Bhattacharyya S, Choudhury D, Chakrabarti G. The microtubule depolymerizing agent naphthazarin induces both apoptosis and autophagy in A549 lung cancer cells., 2011, 16(9): 924–939.
[50] Wang XM, Lin HY, Kong WY, Guo J, Shi J, Huang SC, Qi JL, Yang RW, Gu HW, Yang YH. Synthesis and biological evaluation of heterocyclic carboxylic acyl shikonin derivatives., 2014, 83(3): 334–343.
[51] Guo J, Chen XF, Liu J, Lin HY, Han HW, Liu HC, Huang SC, Shahla BK, Kulek A, Qi JL, Wang XM, Ling LJ, Yang YH. Novel shikonin derivatives targeting tubulin as anticancer agents., 2014, 84(5): 603–615.
[52] Baloch SK, Ling LJ, Qiu HY, Ma L, Lin HY, Huang SC, Qi JL, Wang XM, Lu GH, Yang YH. Synthesis and biological evaluation of novel shikonin ester derivatives as potential anti-cancer agents., 2014, 4(67): 35588–35596.
[53] Lin HY, Han HW, Bai LF, Qiu HY, Yin DZ, Qi JL, Wang XM, Gu HW, Yang YH. Design, synthesis and biological evaluation of shikonin thio-glycoside derivatives: new anti-tubulin agents., 2014, 4(91): 49796–49805.
[54] Sun WX, Han HW, Yang MK, Wen ZL, Wang YS, Fu JY, Lu YT, Wang MY, Bao JX, Lu GH, Qi JL, Wang XM, Lin HY, Yang YH. Design, synthesis and biological evaluation of benzoylacrylic acid shikonin ester derivatives as irreversible dual inhibitors of tubulin and EGFR., 2019, 27(23): 115153–115169.
[55] Huang ZS, Wu HQ, Duan ZF, Xie BF, Liu ZC, Feng GK, Gu LQ, Chan ASC, Li YM. Synthesis and cytotoxicity study of alkannin derivatives., 2004, 39(9): 755–764.
[56] Deng R, Tang J, Xie BF, Feng GK, Huang YH, Liu ZC, Zhu XF. SYUNZ-16, a newly synthesized alkannin derivative, induces tumor cells apoptosis and suppresses tumor growth through inhibition of PKB/AKT kinase activity and blockade of AKT/FOXO signal pathway., 2010, 127(1): 220–229.
[57] Zhang X, Cui JH, Zhou W, Li SS. Design, Synthesis and anticancer activity of shikonin and alkannin derivatives with different substituents on the naphthazarin scaffold., 2015, 31(3): 394–400.
[58] Wang RB, Zhou W, Meng QQ, Zhang X, Ding J, Xu Y, Song HL, Yang K, Cui JH, Li SS. Design, synthesis, and biological evaluation of shikonin and alkannin derivatives as potential anticancer agentsa prodrug approach., 2014, 9(12): 2798–2808.
[59] Huang G, Meng QQ, Zhou W, Zhang QJ, Dong JY, Li SS. Design and synthesis of biotinylated dimethylation of alkannin oxime derivatives., 2017, 28(2): 453–457.
[60] Chang MX, Wang HG, Niu JJ, Song Y, Zou ZH. Alkannin-induced oxidative DNA damage synergizes with PARP inhibition to cause cancer-specific cytotoxicity., 2020, 11: 610205–610218.
[61] Yang Y, Wang J, Yang Q, Wu SS, Yang ZG, Zhu HH, Zheng M, Liu WX, Wu W, He JL, Chen Z. Shikonin inhibits the lipopolysaccharide-induced release of HMGB1 in RAW264.7 cells via IFN and NF-κB signaling pathways., 2014, 19(1): 81–87.
[62] Komi Y, Suzuki Y, Shimamura M, Kajimoto S, Nakajo S, Masuda M, Shibuya M, Itabe H, Shimokado K, Oettgen P, Nakaya K, Kojima S. Mechanism of inhibition of tumor angiogenesis by beta-hydroxyisovalerylshikonin., 2009, 100(2): 269–277.
[63] Woo HJ, Jun DY, Lee JY, Park HS, Woo MH, Park SJ, Kim SC, Yang CH, Kim YH. Anti-inflammatory action of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) suppresses both the MyD88-dependent and TRIF-dependent pathways of TLR4 signaling in LPS-stimulated RAW264.7 cells., 2017, 205: 103–115.
[64] Fan XH, Cheng L, Yan AH. Ameliorative effect of acetylshikonin on ovalbumin (OVA)-induced allergic rhinitis in mice through the inhibition of Th2 cytokine production and mast cell histamine release., 2019, 127(10): 688–695.
[65] Zeng JC, Zhu BH, Su ML. Autophagy is involved in acetylshikonin ameliorating non-alcoholic steatohepatitis through AMPK/mTOR pathway., 2018, 503(3): 1645–1650.
[66] Cui LB, Yan Y, Zhang M, Wu JF, Tang XX, Yang J, Li LL, Yao K, Zou WG, Jiang CH. Acetylshikonin suppresses atherogenesis by attenuating vascular inflammation in apolipoprotein E-deficient mice., 2018, 11(3): 1882–1890.
[67] Zhang ZL, Fan HY, Yang MY, Zhang ZK, Liu K. Therapeutic effect of a hydroxynaphthoquinone fraction on dextran sulfate sodium-induced ulcerative colitis., 2014, 20(41): 15310–15318.
[68] Andújar I, Ríos JL, Giner RM, Cerdá JM, Recio MDC. Beneficial effect of shikonin on experimental colitis induced by dextran sulfate sodium in Balb/C mice., 2012, 38: 271606.
[69] Haghbeen K, Pourmolaei S, Mareftjo MJ, Mousavi A, Noghabi KA, Shirazi FH, Meshkat A. Detailed investigations on the solid cell culture and antimicrobial activities of the Iranian., 2011, 165852.
[70] Li HM, Tang YL, Zhang ZH, Liu CJ, Li HZ, Li RT, Xia XS. Compounds fromand their related anti-HCV and antibacterial activities., 2012, 78(1): 39–45.
[71] Shen CC, Syu WJ, Li SY, Lin CH, Lee GH, Sun CM. Antimicrobial activities of naphthazarins from., 2002, 65(12): 1857–1862.
[72] Kuo HM, Hsia TC, Chuang YC, Lu HF, Lin SY, Chung JG. Shikonin inhibits the growth and N-acetylation of 2-aminofluorene in Helicobacter pylori from ulcer patients., 2004, 24(3a): 1587–1592.
[73] Chen X, Yang L, Zhang N, Turpin JA, Buckheit RW, Osterling C, Oppenheim JJ, Howard OMZ. Shikonin, a component of Chinese herbal medicine, inhibits chemokinereceptor function and suppresses human immunodeficiency virus type 1., 2003, 47(9): 2810–2816.
[74] Zhang Y, Han H, Sun L, Qiu H, Lin H, Yu L, Zhu W, Qi J, Yang R, Pang Y, Wang X, Lu G, Yang Y. Antiviral activity of shikonin ester derivative PMM-034 against enterovirus 71., 2017, 50(10): e6586.
[75] Zhang YH, Han HW, Qiu HY, Lin HY, Yu LG, Zhu WZ, Qi JL, Yang RW, Pang YJ, Wang XM, Lu GH, Yang YH. Antiviral activity of a synthesized shikonin ester against influenza A (H1N1) virus and insights into its mechanism., 2017, 93: 636–645.
[76] Lee H, Bae S, Kim K, Kim W, Chung SI, Yang Y, Yoon Y. Shikonin inhibits adipogenesis by modulation of the WNT/beta-catenin pathway., 2011, 88(7–8): 294–301.
[77] Lee H, Kang R, Yoon Y. Shikonin inhibits fat accumulation in 3T3-L1 adipocytes., 2010, 24(3): 344–351.
[78] Wang ZH, Liu T, Gan L, Wang T, Yuan XA, Zhang B, Chen HY, Zheng QS. Shikonin protects mouse brain against cerebral ischemia/reperfusion injury through its antioxidant activity., 2010, 643(2–3): 211–217.
[79] Wang LN, Li ZZ, Zhang XJ, Wang S, Zhu CH, Miao JY, Chen LY, Cui LL, Qiao HM. Protective effect of shikonin in experimental ischemic stroke: attenuated TLR4, p-p38MAPK, NF-κB, TNF-α and MMP-9 expression, up-regulated Claudin-5 expression, ameliorated BBB permeability., 2014, 39(1): 97–106.
[80] Shan ZL, Zhong L, Xiao CL, Gan LG, Xu T, Song H, Yang R, Li L, Liu BZ. Shikonin suppresses proliferation and induces apoptosis in human leukemia NB4 cells through modulation of MAPKs and c-Myc., 2017, 16(3): 3055–3060.
[81] Lan WJ, Wan SB, Gu WQ, Wang HY, Zhou SW. Mechanisms behind the inhibition of lung adenocarcinoma cell by shikonin., 2014, 70(2): 1459–1467.
[82] Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update., 2015, 89(6): 867–882.
[83] Fu DJ, Shang XF, Ni Z, Shi GG. Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis., 2016, 12(4): 2735–2740.
[84] Fan C, Zhang XF, Upton Z. Anti-inflammatory effects of shikonin in human periodontal ligament cells., 2018, 56(1): 415–421.
[85] Yan Y, Tan F, Miao H, Wang H, Cao YY. Effect of shikonin againstbiofilms., 2019, 10: 1085–1095.
[86] Shishodia SK, Shankar J. Proteomic analysis revealed ROS-mediated growth inhibition ofby shikonin., 2020, 224: 103849–103860.
[87] Liao ZB, Zhu ZY, Li L, Wang L, Wan H, Jian YY, Cao YY. Metabonomics onindicate the excessive H3K56ac is involved in the antifungal activity of shikonin., 2019, 8(1): 1243–1253.
[88] Liao ZB, Yan Y, Dong HH, Zhu ZY, Jiang YY, Cao YY. Endogenous nitric oxide accumulation is involved in the antifungal activity of shikonin against., 2016, 5(8): e88.
Progress on biosynthesis and function of the natural products of Zi Cao as a traditional Chinese medicinal herb
Hongyan Lin, Xuan Wang, Cong He, Ziling Zhou, Minkai Yang, Zhongling Wen, Hongwei Han, Guihua Lu, Jinliang Qi, Yonghua Yang
Zi Cao is an important traditional medicinal plant resource in China. Shikonin and its derivatives, as the purple-red naphthoquinones among natural products of its roots, are commonly used clinically in the treatment of sores and skin inflammations. Over the past few decades, due to their highly effective multiple biological activities, pharmacological effects, good clinical efficacy and high utilization value, shikonin and its derivatives have attracted increasing attention of domestic and foreign researchers. For this reason, the wild plant germplasm resources have been suffering a grievous exploitation, leading to a serious threat to the habitat. With the development of the biosynthesis, molecular metabolism and biotechnology, as well as the continuous innovation of research methods on the biological activities and pharmacological effects of plant natural products, significant progress has been made in the research on the biosynthetic pathways and related regulatory genes of shikonin. The pharmacological action and its mechanism of shikonin have also been deeply elucidated, which greatly promoted the basic research and clinical application development of shikonin. In this review, we briefly introduce and analyze the classification of Zi Cao, structure and composition of natural shikonin and its biosynthesis pathway, functional genes related to the regulation of shikonin biosynthesis, and biological activities and pharmacological functions of shikonin. Finally, we address possible prospective for the trend on the future research and development of natural shikonin and its derivatives, hoping to provide a useful reference for the deep mining and development of medicinal natural products from important Chinese medicinal materials, and to promote the modern development of traditional Chinese medicine.
Zi Cao; shikonin; biosynthesis; gene regulation; pharmacological activity
2020-10-10;
2021-03-04
國家自然科學基金項目(編號:U1903201, 31670298, 31771413, 21702100, 21907051)和教育部創新團隊項目(編號:IRT_14R27)資助[Supported by the National Natural Science Foundation of China (Nos. U1903201, 31670298, 31771413, 21702100, 21907051), and the Program for Changjiang Scholars and Innovative Research Team in University from the Ministry of Education of China (No. IRT_14R27)]
林紅燕,博士,助理研究員,研究方向:藥用植物天然產物化學和分子藥理。E-mail: linhy@nju.edu.cn
王煊,博士研究生,研究方向:植物分子代謝。E-mail: dg1930043@smail.nju.edu.cn
林紅燕和王煊并列第一作者。
楊永華,教授,博士生導師,研究方向:分子代謝與生物技術安全。E-mail: yangyh@nju.edu.cn
10.16288/j.yczz.20-341
2021/3/29 11:37:11
URI: https://kns.cnki.net/kcms/detail/11.1913.R.20210326.0956.002.html
(責任編委: 陳德富)