危國飛 劉會軍 潘寧 冷典頌 吳啟樹 2
1 福建省災害天氣重點實驗室,福州 350001
2 福建省氣象臺,福州 350001
西北太平洋是全球臺風(包括熱帶風暴、強熱帶風暴、臺風、強臺風和超強臺風,下同)發生頻率最高、強度最大的海域。我國大陸位于西北太平洋沿岸,大陸海岸線長達18000 多千米,平均每年約有7 個臺風登陸我國,年均造成約占當年GDP 0.36%的直接經濟損失和約9412.8 人的人員傷亡,是全球受臺風影響最大的國家之一(雷小途等,2009)。提高臺風災害的監測、預警服務水平,增強我國防臺減災能力,關鍵是不斷提高我國臺風業務預報的準確率(許映龍等, 2010)。研究表明,對于單個登陸臺風而言,24 h 路徑預報誤差每減小1 km 可減少因災直接經濟損失約0.97 億元(人民幣,下同),24 h 強度預報誤差每減小1 m s?1可減少因災直接經濟損失約3.8 億元(吳影等,2017)。
臺風風雨預報與臺風路徑預報密切相關,因此臺風路徑預報是臺風風雨預報的基礎,歷來受到人們的關注和研究,特別是20 世紀80 年代以來,取得了豐碩的成果。國內外許多氣象學者進行了很多臺風路徑主、客觀預報方法的研究,其中臺風路徑客觀預報方法主要有以下三種:第一,統計學方法,即統計預報;第二,動力學方法,即數值模式預報;第三,統計—動力學方法,即基于數值模式預報的模式釋用技術。在數值預報被廣泛應用之前,人們進行主觀預報方法(包澄瀾等, 1979; 陳聯壽, 1979;王志烈, 1981; 丁金才和唐新章, 1985; 韋有暹和朱慶圻, 1985)和統計學方法的研究較多(上海臺風協作研究組, 1977; 董克勤和李曾中, 1980; 金一鳴,1983; 王作述和傅秀琴, 1983; 王長甫等, 1991; 何夏江等, 1996; 李建云和丁裕國, 1998)。得益于模式動力框架、物理過程、分辨率、初始化以及與海洋模式的耦合等方面的進展,全球模式臺風路徑預報誤差在各海域持續減小,但基于數值模式預報的統計—動力學方法仍然比數值模式預報具有更高的預報精度(Heming, 2017; 麻素紅和陳德輝, 2018; 端義宏等, 2020)。
早期的臺風路徑統計—動力學預報方法大多是基于單模式預報的(Neumann and Lawrence, 1975;倪允琪和薛宗元, 1980; 金一鳴和鐘元, 1997),后來人們發現臺風路徑集成預報技術是在現行模式、計算機資源條件下獲得最優預報效果的更有效方法(王晨稀, 2013)。Goerss(2000)采用等權集合平均方法對1995~1996 年大西洋颶風進行集成預報試驗,發現集成預報24 h、48 h 和72 h 路徑預報平均距離誤差分別比最好的單個模式預報減小了16%、20%和23%。Kumar et al.(2003)、張守峰等(2007)、周文友和智協飛(2012)、Zhi et al.(2012)、He et al.(2015)、智協飛等(2015)采用加權集合平均方法對西北太平洋臺風路徑進行了多模式集成預報試驗,均發現集成預報結果明顯好于各模式預報結果,也好于簡單的集合平均結果。Elsberry and Carr III(2000)利用5 個模式的預報結果對西北太平洋臺風路徑進行了多模式集成預報試驗,提出一種辨別并剔除誤差大的預報結果后再平均的集成方法,結果表明有選擇性的集成方法優于簡單的無選擇性的集成方法。錢奇峰等(2014)、Qi et al.(2014)、Dong and Zhang(2016)通過對集合預報成員的短時效預報誤差進行評估,并從中挑選出表現較好的成員進行長時效的預報集成,集成結果明顯優于所有成員等權集合平均,他們(錢奇峰等, 2014; Qi et al., 2014)還發現對篩選出的集合成員進行等權集合平均的預報效果要優于加權集合平均。
由于數值模式運行、后處理及資料傳輸等耗時,數值預報資料的獲得時間滯后于數值模式的起報時間,因此預報員在制作業務預報時可以利用實況數據來估計數值模式的短時效預報偏差。業務中發現臺風路徑數值預報的短時效預報偏差與隨后較長時效預報偏差有較好的正相關關系,預報員可以利用短時效預報偏差來估計隨后較長時效預報偏差,繼而對數值模式預報進行訂正。Qi et al.(2014)、Zhang and Yu(2017)、Guo et al.(2018)、郭蓉等(2019)使用一種平移訂正法對臺風路徑數值預報進行訂正試驗,該方法假設臺風路徑數值預報的短時效預報偏差與長時效預報偏差完全一致,結果表明該方法在48 h 之前有一定的訂正效果。平移訂正法簡單快捷,但訂正效果一般,其短時效預報偏差與長時效預報偏差完全一致的假設不合理。需要研究更有效的方法將這種預報思路客觀化、最優化。
通過檢驗發現,歐洲中期天氣預報中心( European Center for Medium-Range Weather Forecasts,ECMWF)臺風路徑數值預報的短時效預報偏差與隨后較長時效預報偏差有較好的正相關關系,某時效的緯度預報與該時效的緯向預報偏差有較好的負相關關系。本文擬根據這種相關性,建立臺風路徑數值預報的偏差預估模型,繼而對臺風路徑數值預報進行偏差訂正,對訂正后的集合預報各成員開展集成預報實驗。研究結果對提高我國臺風業務路徑預報水平和增強我國防臺減災能力有所裨益。
本文的研究對象是2013~2018 年活動于西北太平洋(包括南海)的所有臺風。本文使用歐洲中期天氣預報中心確定性預報模式(Integrated Forecast System,ECMWF-IFS)和集合預報模式(Ensemble Prediction System,ECMWF-EPS)的臺風路徑預報資料,從中國氣象局上海臺風研究所的官方網站http://www.sti.org.cn [2020-10-04]下載,起報時間為08:00 和20:00(北京時,下同),集合預報的成員為51 個。臺風位置和強度的實況采用中央氣象臺臺風實時定位定強資料,臺風路徑官方預報采用中央氣象臺官方預報,均從中央氣象臺官方網站http://m.nmc.cn[2020-04-23]下載。由于本研究主要針對臺風業務預報使用,因此臺風位置實況使用的是中央氣象臺臺風實時定位資料,而沒有使用熱帶氣旋最佳路徑資料。
本文把臺風路徑預報偏差定義為臺風中心預報位置與觀測位置的球面距離差,臺風路徑預報偏差可分解為緯向預報偏差和經向預報偏差,如預報位置的經度為Jf,緯度為Wf,觀測位置的經度為Jo,緯度為Wo,則緯向預報偏差為(Jf?Jo)·R·cos(Wf)·π/180,經向預報偏差為(Wf?Wo)·R·π/180,其中R為地球半徑。2013~2017 年ECMWF-IFS 臺風路徑預報24 h、36 h、48 h、60 h、72 h、84 h 的平均緯向預報偏差分別為?12.3 km、?14.4 km、?14.8 km、?13.2 km、?10.3 km、?10.7 km,平均經向預報偏差分別為1.7 km、1.5 km、2.6 km、2.2 km、1.1 km、0.6 km,說明ECMWF-IFS 臺風路徑預報在24~84 h存在比實況偏西、偏北的系統性偏差,且緯向的系統性偏差比經向的系統性偏差要明顯得多。
業務中,若預報員在08 時制作0~24 h 的業務預報,其參考的一般是前一天20 時起報的ECMWF 模式資料12~36 h 的預報結果,即業務預報起報時間與最新模式預報的12 h 對應。本文以12 h 預報偏差作為短時效預報偏差為例建立臺風路徑數值預報實時訂正模型。從表1 可知,ECMWF-IFS 臺風路徑預報12 h 的緯向預報偏差與隨后較長時效的緯向預報偏差有較好的正相關關系,12 h 的經向預報偏差與隨后較長時效的經向預報偏差有較好的正相關關系,預報時效越長,相關系數越小。ECMWF-IFS 臺風路徑預報某時效的緯度預報與該時效的緯向預報偏差有較好的負相關關系,即緯度預報越高,臺風中心預報位置比實況偏西的趨勢越明顯;24~48 h 相關系數差別不大,48 h 之后相關系數的絕對值明顯減小。
由圖1 和圖2 可知,ECMWF-IFS 臺風路徑預報12 h 的緯向預報偏差與24 h 的緯向預報偏差、12 h 的經向預報偏差與24 h 的經向預報偏差、24 h的緯度預報與24 h 的緯向預報偏差都呈較好的線性關系。這種線性關系在24 h 之后的其他時效也有體現(圖略,相關系數見表1),但隨著預報時效的延長,線性關系逐漸變得不明顯。因此可以根據ECMWF-IFS 臺風路徑預報12 h 的緯向預報偏差、目標時效(指所需訂正的時效,下同)的緯度預報和緯向系統性偏差去預估目標時效的緯向預報偏差;可以根據12 h 的經向預報偏差和目標時效的經向系統性偏差,去預估目標時效的經向預報偏差,繼而對臺風路徑預報進行偏差訂正。

表1 2013~2017 年ECMWF-IFS 臺風路徑預報12 h 的緯向預報偏差與隨后較長時效的緯向預報偏差的相關系數(相關系數1)、12 h 的經向預報偏差與隨后較長時效的經向預報偏差的相關系數(相關系數2)、某時效的緯度預報與該時效的緯向預報偏差的相關系數(相關系數3)。表中除了括號中的相關系數外,其他全都通過95%信度水平的顯著性檢驗Table 1 Correlation coefficients between zonal forecast bias of typhoon tracks at 12 h and following lead times(corresponding to the second column in the table), between meridional forecast bias of typhoon tracks at 12 h and following lead times (corresponding to the third column in the table), and between latitude forecast of typhoon tracks at some lead time and zonal forecast bias of typhoon tracks at that lead time (corresponding to the fourth column in the table). The typhoon tracks are forecasted by ECMWF-IFS (Integrated Forecast System, European Center for Medium-Range Weather Forecasts)from 2013 to 2017. All correlation coefficients in the table, except the one in brackets, are statistically significant at the 95%confidence level

圖1 2013~2017 年ECMWF-IFS 臺風路徑預報12 h 和24 h 的緯向(左)預報偏差、經向(右)預報偏差的散點圖。樣本數為1199,斜線為線性趨勢線Fig.1 Scatter diagrams of zonal forecast bias (left) and meridional forecast bias (right) of typhoon tracks at 12 h and 24 h. Typhoon tracks are forecasted by ECMWF-IFS from 2013 to 2017. The number of samples is 1199. The diagonal line denotes the linear trend

圖2 2013~2017 年ECMWF-IFS 臺風路徑預報24 h 的緯度預報與24 h 的緯向預報偏差的散點圖。樣本數為1199,斜線為線性趨勢線Fig.2 Scatter diagram of latitude forecast and zonal forecast bias of typhoon tracks at 24 h. Typhoon tracks are forecasted by ECMWF-IFS from 2013 to 2017. The number of samples is 1199. The diagonal line denotes the linear trend
由以上分析可知,對于某個臺風的某次路徑預報,可以建立ECMWF-IFS 臺風路徑預報的偏差預估方程和訂正方程:

其中,i 為預報時效,Mi、Zi分別為i 時效經向預報偏差、緯向預報偏差的預估值(單位:km),M12、Z12分別為12 h 預報的經向預報偏差、緯向預報偏差(單位:km),Wi、Ji分別為i 時效訂正前的緯度、經度預報[單位:(°)],分別為i 時效訂正后的緯度、經度預報[單位:(°)],R 為地球半徑。ai、ci、di為i 時效的回歸系數,bi、ei為i 時效的常數項,根據一定長度(訓練期)的歷史資料采用最小二乘法求解。
考慮到模式預報能力在持續不斷地升級,較遠的歷史資料對當前預報訂正的參考意義不大,故本文采用滑動訓練期訓練偏差預估方程的相關參數。即對某次預報進行訂正,取距其起報時間最近的過去N 組有效的模式數據和實況數據作為訓練樣本,這樣對于每次預報都由新的訓練樣本來確定偏差預估方程的相關參數,使訂正效果更加穩定。圖3 給出了2016~2017 年訂正后的ECMWF-IFS 臺風路徑預報的訂正技巧隨滑動訓練期樣本數N 的變化,訂正技巧指訂正前的平均距離誤差減去訂正后的平均距離誤差,正值越大,技巧水平越高。可以看出,24 h、36 h、48 h 的訂正技巧隨著N 的增大先快速波動式增大、后趨于穩定;60 h、72 h、84 h 的訂正技巧隨著N 的增大先快速波動式增大、達到最高點后波動式減小。24 h、36 h、48 h、60 h,N取450,72 h,N 取430,84 h,N 取375,各時效的訂正技巧達到或接近最大,因此確定24 h、36 h、48 h、60 h、72 h、84 h 的最優滑動訓練期樣本數分別為450、450、450、450、430、375。
2016~2017 年回報結果(表2)表明,24 h、36 h、48 h、60 h、72 h、84 h ECMWF-IFS 臺風路徑預報訂正前的平均距離誤差分別為62.2 km、79.3 km、105.8 km、145.8 km、193.2 km、236.8 km;如果只對緯向預報偏差進行訂正,訂正后的平均距離誤差分別比訂正前減小了4.4 km、3.5 km、2.0 km、0.8 km、0.5 km、1.2 km;如果只對經向預報偏差進行訂正,訂正后的平均距離誤差分別比訂正前減小了2.0 km、0.4 km、0.5 km、1.2 km、1.0 km、0.3 km??傮w來看緯向預報偏差的訂正效果比經向預報偏差的訂正效果好。如果對經向預報偏差和緯向預報偏差都進行訂正,訂正后的平均距離誤差分別比訂正前減小了6.6 km、4.3 km、2.8 km、2.0 km、1.5 km、1.6 km。
為了驗證臺風路徑數值預報實時訂正技術的訂正效果,對2018 年ECMWF-IFS 臺風路徑預報進行了獨立樣本訂正試驗。結果(表3)表明,24 h、36 h、48 h、60 h、72 h、84 h ECMWF-IFS 臺風路徑預報訂正前的平均距離誤差分別為63.5 km、85.4 km、109.2 km、131.9 km、162.1 km、195.6 km,訂正后的平均距離誤差分別比訂正前減小了7.3 km、9.3 km、8.9 km、6.5 km、6.9 km、2.6 km。嘗試用平移訂正法對2018 年ECMWF-IFS 臺風路徑預報
進行訂正,24 h、36 h、48 h、60 h、72 h、84 h 訂正后的平均距離誤差分別比訂正前減小了3.1 km、3.8 km、4.5 km、1.3 km、0.1 km、?2.9 km,平移訂正法的訂正效果不如本文所提出的預估偏差訂正法。

表2 2016~2017 年ECMWF-IFS 臺風路徑預報訂正前后的平均距離誤差(單位:km)。括號內數字表示樣本數Table 2 Mean track errors of uncorrected and corrected typhoon tracks forecasted by ECMWF-IFS from 2016 to 2017. The numbers in brackets indicate the number of samples

表3 2018 年ECMWF-IFS 臺風路徑預報訂正前后的平均距離誤差(單位:km)。括號內數字表示樣本數Table 3 Mean track errors of uncorrected and corrected typhoon tracks forecasted by ECMWF-IFS in 2018. The numbers in brackets indicate the number of samples

圖3 2016~2017 年訂正后的ECMWF-IFS 臺風路徑預報的訂正技巧隨滑動訓練期樣本數N 的變化Fig.3 Skill score of corrected typhoon tracks forecasted by ECMWF-IFS from 2016 to 2017, changing with number of samples N in a moving training period
臺風路徑數值預報實時訂正技術的訂正效果顯然和12 h 臺風路徑預報偏差的可靠性密切相關,而12 h 臺風路徑預報偏差的可靠性又與中央氣象臺臺風實時定位的誤差大小密切相關。一般來說,臺風越強,其結構特征就越成熟、顯著,定位也就相對要容易且準確些,因而定位誤差較小;而當臺風較弱時,由于其云系等結構特征不很明顯,難于較準確地確定其中心位置,因而定位誤差較大(雷小途, 2001)。所以從理論上來說,對較強臺風,本文所提出的臺風路徑數值預報實時訂正技術的訂正效果更好。根據12 h 臺風近中心最大風速的實況把2018 年的樣本分為臺風及以上強度和強熱帶風暴及以下強度兩類,兩類在各預報時效的樣本數基本相當。對于臺風及以上強度類,24 h、36 h、48 h、60 h、72 h、84 h 訂正后的平均距離誤差分別比訂正前減小了19.9%、11.5%、6.8%、6.7%、6.0%、2.2%;對于強熱帶風暴及以下強度類,訂正后的平均距離誤差分別比訂正前減小了6.5%、10.5%、9.0%、3.7%、3.0%、0.7%,除了48 h 外,臺風及以上強度類的訂正效果明顯好于強熱帶風暴及以下強度類的訂正效果。
根據集合預報每個成員的歷史資料建立各自的臺風路徑預報實時訂正模型,繼而對集合預報各成員的臺風路徑預報進行訂正,對基于集合預報的臺風路徑統計—動力學預報方法,基于訂正后的集合預報可能會比基于訂正前的集合預報有更好的效果。
錢奇峰等(2014)研究發現,根據臺風實時位置,選擇最新ECMWF-EPS 各成員臺風路徑中路徑誤差最小的M 條路徑進行算術平均,得到的訂正路徑24 h、48 h、72 h、96 h 的平均距離誤差分別比“所有集合預報成員集合平均”減小了15%、6%、10%、8%。應用于本研究時M 在24 h、36 h時取15,在48~84 h 時取20。根據ECMWF-EPS各成員臺風路徑預報12 h 的路徑誤差大小優選M個集合預報成員,對優選出的成員取集合平均得到的臺風路徑簡稱為“優選集合預報成員集合平均”,對優選出的成員先進行路徑預報訂正再取集合平均得到的臺風路徑簡稱為“優選集合預報成員先訂正再集合平均”。對ECMWF-EPS 每個成員的臺風路徑預報先進行訂正,再對所有成員取集合平均,得到的臺風路徑簡稱為“所有集合預報成員先訂正再集合平均”。
2018 年試報結果(表4)表明,24 h、36 h、48 h、60 h、72 h、84 h“優選集合預報成員集合平均”的平均距離誤差分別比“所有集合預報成員集合平均”減小了10.3 km、10.3 km、6.4 km、7.2 km、4.9 km、3.1 km,說明有選擇性的集合方法優于簡單的無選擇性的集合方法,與錢奇峰等(2014)、Qi et al.(2014)、Dong and Zhang(2016)得出的結論類似。24 h、36 h、48 h、60 h、72 h、84 h“所有集合預報成員先訂正再集合平均”的平均距離誤差分別比“所有集合預報成員集合平均”減小了12.1 km、10.8 km、10.9 km、8.1 km、4.4 km、?1.4 km,訂正效果較顯著的時段主要在72 h 之內,84 h 沒有訂正效果。24 h、36 h、48 h、60 h、72 h、84 h“優選集合預報成員先訂正再集合平均”的平均距離誤差分別比“優選集合預報成員集合平均”減小了3.0 km、1.4 km、3.6 km、0.4 km、?0.9 km、?4.8 km,比中央氣象臺官方預報減小了0.7 km、2.0 km、3.9 km、2.4 km、?1.4 km、?5.6 km,訂正效果較顯著的時段主要在60 h 之內,之后沒有訂正效果??傮w來看,“優選集合預報成員集合平均”、“所有集合預報成員先訂正再集合平均”和“優選集合預報成員先訂正再集合平均”的預報效果要好于“所有集合預報成員集合平均”和“訂正后的確定性預報”。在客觀預報之間比較,24 h和36 h“優選集合預報成員先訂正再集合平均”的平均距離誤差最小,48 h 和60 h“所有集合預報成員先訂正再集合平均”的平均距離誤差最小,72 h和84 h“優選集合預報成員集合平均”的平均距離誤差最小。

表4 2018 年臺風路徑客觀預報和中央氣象臺官方預報的平均距離誤差(單位:km)。括號內數字表示樣本數Table 4 Mean track errors of objective forecasts and the Central Meteorological Office official forecast in 2018. The numbers in brackets indicate the number of samples
本文提出了一種業務上可用的針對確定性預報或集合預報各成員的臺風路徑預報實時訂正技術,通過對ECMWF-IFS 和ECMWF-EPS 的臺風路徑預報的應用,得到以下幾點結論。
(1)ECMWF-IFS 臺風路徑預報的短時效預報偏差與隨后較長時效預報偏差有較好的線性關系,某時效的緯度預報與該時效的緯向預報偏差有較好的線性關系。以短時效預報偏差和目標時效的緯度預報為預報因子,采用多元線性回歸方法建立了臺風路徑預報的偏差預估方程,繼而對臺風路徑預報進行偏差訂正。采用滑動訓練期訓練偏差預估方程的相關參數,24 h、36 h、48 h、60 h、72 h、84 h的最優滑動訓練期樣本數分別為450、450、450、450、430、375。
(2)2016~2017 年回報結果表明,在24 h、36 h、48 h、60 h、72 h、84 h,訂正后的ECMWFIFS 臺風路徑預報的平均距離誤差分別比訂正前減小了6.6 km、4.3 km、2.8 km、2.0 km、1.5 km、1.6 km,且緯向預報偏差的訂正效果比經向預報偏差的訂正效果好。2018 年試報結果表明,在24 h、36 h、48 h、60 h、72 h、84 h,訂正后的ECMWFIFS 臺風路徑預報的平均距離誤差分別比訂正前減小了7.3 km、9.3 km、8.9 km、6.5 km、6.9 km、2.6 km,訂正效果明顯優于平移訂正法。總體來說,較強臺風(指12 h 的臺風強度實況≥32.7 m s?1)路徑預報的訂正效果更好。
(3)嘗試了先對ECMWF-EPS 各成員的臺風路徑預報進行訂正,再進行集成預報,并對比了以下5 種方式得到的臺風路徑預報:“訂正后的確定性預報”、“所有集合預報成員集合平均”、“優選集合預報成員集合平均”、“所有集合預報成員先訂正再集合平均”和“優選集合預報成員先訂正再集合平均”,2018 年試報結果表明,24 h 和36 h“優選集合預報成員先訂正再集合平均”的平均距離誤差最小,48 h 和60 h“所有集合預報成員先訂正再集合平均”的平均距離誤差最小,72 h 和84 h“優選集合預報成員集合平均”的平均距離誤差最小,如果在業務中有針對性地進行應用,有望獲得一個在各預報時效表現都較優異的臺風路徑客觀綜合預報結果。24 h、36 h、48 h、60 h“優選集合預報成員先訂正再集合平均”的平均距離誤差分別比“所有集合預報成員集合平均”減小了13.3 km、11.7 km、10.0 km、7.6 km,比中央氣象臺官方預報(對應的時效為12 h、24 h、36 h、48 h)減小了0.7 km、2.0 km、3.9 km、2.4 km。
對于每次預報,都需要根據歷史資料重新計算偏差預估方程的相關參數,在處理器為Intel(R)Core(TM) i7-4790 CPU@3.60 GHz、內存為4.00 GB的臺式計算機上運算一次最長耗時不會超過15 s。中央氣象臺臺風實時定位一般在整點后30 min 內可以獲得,在獲得臺風實時定位后進行臺風路徑數值預報實時訂正的相關運算并發布訂正后的臺風路徑數值預報,可以滿足我國臺風客觀預報方法參加氣象廣播的時效性要求。
本文以12 h 預報偏差作為短時效預報偏差建立了臺風路徑數值預報實時訂正模型,業務應用時可根據需求把其他時效的預報偏差作為短時效預報偏差。對基于集合預報的臺風路徑統計—動力學預報方法,可以先對每個集合預報成員進行偏差訂正,再進行后續的優選成員、加權集合等處理,可能會比直接利用未訂正的集合預報成員有更好的效果。本研究結果在預報業務中具有較好的實用性和推廣價值。