秦江生 宋朝霞



【摘 要】 本文考慮帶有奇異項的Kirchhoff-Schrodinger-Poisson系統,以獲得該系統正解的存在性結果。首先,利用嵌入定理與范數的弱下半連續性證明能量泛函可以達到全局極小值;其次,利用單調收斂定理證明全局極小值為正的;最后,利用變分方法以及一些技巧,得到該方程正解的存在性結果。
【關鍵詞】 Kirchhoff-Schrodinger-Poisson系統;奇異性;變分方法
【中圖分類號】 O177.91;O175.2 【文獻標識碼】 A 【文章編號】 2096-4102(2021)01-0094-03
【參考文獻】
[1]LEI Chun-yu,LIAO Jia-feng,TANG Chun-lei. Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents[J]. J. Math. Anal. Appl,2015,421(1):521-538.
[2]LIU Rui-qi,TANG Chun-lei,LIAO Jia-feng,et al. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four[J]. Commun. Pure Appl. Anal. 2016,15(5):1841-1856.
[3]廖家鋒,陳明,張鵬. 一類奇異Kirchhoff型問題正解的存在性[J]. 四川師范大學學報(自然科學版),2016,39(1):103-106.
[4]宋朝霞,張琦. 帶有奇異項Kirchhoff型方程正解的存在性[J]. 河南科技大學學報(自然科學版),2017,38(3):91-94.
[5]ZHANG Qi. Existence,uniqueness and multiplicity of positive solutions for Schrodinger-Poisson system with singularity[J]. J. Math. Anal. Appl,2016,437(1):160-180.
[6]JIANG Yong-sheng,ZHOU Huan-song. Schrodinger-Poisson system with singular potential[J]. J. Math. Anal. Appl, 2014,417(1):411-438.
[7]SUN Yi-jing,WU Shao-ping,LONG Yi-ming. Combined effects of singular and superlinear nonlinearities in some singular boundary value problems[J]. J. Differential Equations, 2001,176(2):511-531.
[8]YANG Hai-tao. Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem[J]. J. Differential Equations,2003,189(2):487-512.
[9]趙桂蘭. 一類Kirchhoff-Schrodinger-Poisson系統正解的存在性[J]. 紡織高校基礎科學學報,2015,28(2):198-204.
[10]張恭慶,林源渠.泛函分析講義[M].北京:北京大學出版社,2011.
[11]華東師范大學數學系.數學分析(上冊):第三版[M].北京:高等教育出版社,2008.
[12]LI Fuyi,ZHU Xiaoli,LIANG Zhanping. Multiple solutions to a class of generalized quasilinear Schrodinger equations with a Kirchhoff-type perturbation[J]. J. Math. Anal. Appl, 2016, 443(1):11-38.