999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

機器學習方法在CO濃度中的預測研究

2021-01-29 03:06:44魏萊王新民長春工業大學數學與統計學院
數碼世界 2020年12期
關鍵詞:方法模型

魏萊 王新民 長春工業大學數學與統計學院

1 引言

近些年,空氣的污染對社會的危害愈發嚴重,它往往悄無聲息的存在于人們身邊并給人們的身體帶來傷害。多種有危害的氣體都能長時間的存在于人們生活的世界中,其中最主要的就是一氧化碳。CO的濃度受很多生活方面的影響,它會因為人類或者自然界的排放增加自己的濃度,想解決它的危害問題就要明確的預測它不同時間階段的濃度規律,但是它的不規則性和不穩定性讓了人們難于預測其濃度。想要精準的預測其濃度是有難度的。本文想要尋求一種滿足人們要求的預測方法對CO的濃度進行精準的預測。

人們最近幾年對CO的治理和對空氣質量的預測也進行了很多研究。葉珊珊等人在2020年對一氧化碳中毒的流行病例特征進行分析,同時提及急性CO中毒起與日均氣溫、平均氣壓和空氣相對濕度均存在相關性,同時也希望科普CO對社會的危害并正視它。蔡澤棟在2020年使用機器學習的算法對復雜的金融數據進行了預測,運用幾種機器學習方法進行對比,從其文章中可以了解到機器學習算法對于此類數據的預測精準度有很大的提升。劉紅等人2020年運用隨機森林算法對溫室氣溫進行預測,同時建立多種機器學習的方法與之進行對比,通過實驗驗證了隨機森林在預測模型方面的優越性。李畸勇等人2020年運用SVR算法建立預測模型,在其數據預測中SVR模型為結果最優模型,作者也表示文章中所提供的模型泛化性能很優越。張順航等人2019年根據往年江蘇省的氣象數據,探究氣象對小麥產量的影響,對小麥歷年的產量進行預測,結果表明Adaboost算法預測的最為精準??梢钥吹綑C器學習的算法在各個領域都大放光彩,本文將機器學習應用到空氣污染的成員之一的CO的濃度數據上進行結合,并觀察各個不同的算法在預測精準度上能達到怎樣的程度。

2 機器學習

2.1 機器學習

機器學習(Machine Learning)是一個多學科組成的專業,它在人們的認知內已經存在了很長時間了。直到今日,它漸漸成為各行各業研究數據分類和回歸的熱點,機器學習的目的是讓機器像人一樣思考學習,傳統的機器學習主要包括決策樹、隨機森林、人工神經網絡、支持向量回歸機、Adaboost、迭代決策樹等。近些時間,機器學習對人來說已經不陌生了,人們生活的現代社會處處都有機器學習的體現,機器學習的發展也讓人們的工作和生活有了良好的改變。

2.2 支持向量回歸機

支持向量回歸機(SVR)是支持向量機(SVM)中的一個重要的組成部分,支持向量機是一種按照監督學習的方法將數據分成兩類的分類器,SVM從被提出開始就被廣泛地應用于各個問題的應用,為人們解決了很多發展附帶的不利問題。

2.3 Adaboost

Adaboost是一種迭代算法,其思想是將多個不同的分類器組合成一個更強的分類器,它應用大多的分類問題上,也出現了一些回歸問題上的應用,它具有較高的檢測速率,且不易出現過適應現象

2.4 決策樹

決策樹(Decision Tree)是以諸多情況的概率為基礎,通過構成決策樹并通過決策樹的求取概率,判斷哪種方法是可行的,是一種非常直觀的圖解法,其運作并不復雜,在解決問題方面也有自己良好的性能。由于這種方法像一棵樹的樹干,所以稱它為決策樹。

2.5 隨機森林

隨機森林(Random Decision Forests)本質上就是一個包含多個決策樹的分類器,它具有很多優點。首先針對于很多數據它可以產生很優的分類器,其次它可以被延伸用在未被標記的資料上,另外它的學習過程也是很快速的。構建隨機森林需要兩個方面,首先從原數據中采取有放回的抽樣,構造出一個和原數據集數據量相同的子數據集,它控制決策樹各不相同的方法就是控制最優的特征,使其隨機選取。

2.6 迭代決策樹

迭代決策樹(GBDT/Gradient Boosting Decision Tree) 又叫MART(Multiple Additive Regression Tree),是一種迭代的決策樹算法,它與隨機森林一樣都是由多個決策樹組成,不同的是,它是由這些決策樹的結論加起來生成最終的答案并加以運算的。它與SVM也有共同點,它們的構造讓它們的泛化能力很優秀,GBDT更是因為機器學習的發展更加受大家的關注。

3 實驗結果與分析

3.1 數據集

本文選擇UCI數據集上的空氣質量數據,從數據中挑選出CO濃度數據并對其進行缺失值處理。本文選擇前70%的處理后的數據作為訓練數據,其他作為測試數據,共7819條數據。其中使用均值填充和刪除缺失數據兩種方法處理數據。

3.2 實驗結果與分析

為了對比出算法在本文數據上預測精準度的優劣,本文將Adaboost、SVR、隨機森林、GBDT進行比較,用MSE和R2作為其評價指標,四種方法的 MSE 分別為:0.70、0.78、0.63、0.60,四種方法的 R2分別為:0.67、0.63、0.70、0.71。由實驗結果可以看出無論評價指標是MSE還是R2最優的模型是GBDT模型算法,其MSE為0.60,R2為0.71。隨機森林的結果也不錯但是跟GBDT還是有一部分差距。

4 結論

本文出于運用機器學習預測CO濃度的角度,對本數據進行處理,并同時運用Adaboost、SVR、隨機森林、GBDT進行比較,對比它們結果,其中MSE的結果是:Adaboost為、SVR為、隨機森林為、GBDT為,MAPE的結果是:Adaboost為、SVR為、隨機森林為、GBDT為,可以看出在這四種機器學習算法中,結果最優,預測最精準的是GBDT。未來的研究可以圍繞著各個空氣質量指標進行深度的解剖研究,也可以引入更多的算法模型進行預測,對比各個模型的優劣。

猜你喜歡
方法模型
一半模型
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
學習方法
3D打印中的模型分割與打包
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
主站蜘蛛池模板: 成人av专区精品无码国产 | 欧美激情二区三区| 国产成人综合网在线观看| 白浆视频在线观看| 亚洲欧美成aⅴ人在线观看| 97色婷婷成人综合在线观看| 激情成人综合网| 日本国产在线| 小蝌蚪亚洲精品国产| 亚洲最新网址| 91极品美女高潮叫床在线观看| 国产精品成人免费视频99| 亚洲性视频网站| 久久不卡精品| 99在线视频精品| 国产成人综合久久精品尤物| aaa国产一级毛片| 国产一级毛片网站| 亚洲一区二区日韩欧美gif| 亚洲无码一区在线观看| 久久国语对白| 99成人在线观看| 国内精品手机在线观看视频| 日韩在线2020专区| 日韩欧美国产中文| 又猛又黄又爽无遮挡的视频网站| 色婷婷丁香| 九色91在线视频| 亚洲人成影院在线观看| 欧美午夜在线播放| 亚洲综合日韩精品| 91久草视频| 91娇喘视频| 国产又黄又硬又粗| 亚洲精品国偷自产在线91正片 | 三上悠亚在线精品二区| 日韩东京热无码人妻| 四虎影院国产| 国产女主播一区| 91黄色在线观看| 97久久人人超碰国产精品| 性做久久久久久久免费看| 精品国产网| 午夜福利免费视频| 青青极品在线| 四虎国产在线观看| 亚洲精品欧美日本中文字幕| 538精品在线观看| 亚洲va视频| av无码久久精品| 久久精品丝袜| 欧美a在线视频| 国产99久久亚洲综合精品西瓜tv| 人妻一区二区三区无码精品一区| 人妖无码第一页| 99久久免费精品特色大片| 91精品综合| 婷婷久久综合九色综合88| 91在线播放免费不卡无毒| 日韩乱码免费一区二区三区| vvvv98国产成人综合青青| 国产一区二区福利| 色综合久久88| 久久女人网| 国产毛片基地| 亚洲AV无码久久天堂| 午夜综合网| 欧美人在线一区二区三区| 亚洲黄色高清| 香蕉久人久人青草青草| 国产一区在线观看无码| 精品视频第一页| 午夜精品久久久久久久无码软件| 午夜激情婷婷| 国产精品成人久久| 国产亚洲精品97在线观看| 91久久大香线蕉| 97免费在线观看视频| 色婷婷啪啪| 国产麻豆精品手机在线观看| 91久久偷偷做嫩草影院免费看| 欧美特黄一级大黄录像|