安海龍 史賽 龐春麗 陳婭斐 郭帥 紀秋爽 展永



摘要 TMEM16A(也稱ANO1)是鈣激活氯離子電流(CaCCs)的分子基礎。研究表明,TMEM16A參與調節卵母細胞的受精、氣道和外分泌腺分泌、嗅覺和感覺信號的傳導、平滑肌的收縮以及心臟細胞的興奮。TMEM16A的功能障礙或表達異常與多種疾病的發生發展有關,包括胃腸道功能障礙、神經性疼痛和多種癌癥。本文綜述了本課題組和其他課題組對TMEM16A通道的研究進展,主要聚焦于TMEM16A通道的結構和功能,TMEM16A通道的生理、病理功能及以該通道作為靶點的藥物發現。最終討論了TMEM16A藥理調節劑可能的藥理作用方案。TMEM16A的結構和相關疾病的知識將對TMEM16A調節劑藥物的發現和應用產生積極影響。
關 鍵 詞 離子通道;TMEM16A/CaCCs;結構; 功能;藥物靶標
中圖分類號 Q6-3 ? ? 文獻標志碼 A
Abstract TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels (CaCCs). Studies have shown that TMEM16A is involved in regulating fertilization of oocytes, transport of matter across cell membranes, transduction of olfactory and sensory signals, contraction of smooth muscle, and excitement of heart cells. The dysfunction or aberrant expression of TMEM16A is associated with the development of various diseases including gastrointestinal motility disorders neuropathic pain and various cancers. The article reviews the research progress of the TMEM16A channel of our research group and other groups, focusing on the structure and function of the TMEM16A channel, (patho)physiological function and drug discovery using this channel as target. Finally, the scheme of possible pharmacological effects of TMEM16A pharmacological modulators were discussed. Understanding well the structure and related diseases of TMEM16A will have a positive impact on the discovery and application of TMEM16A modulator drugs.
Key words ion channel; TMEM16A/CaCCs; structure; function; drug target
0 引言
鈣激活的氯離子通道(Calcium-activated Chloride Channels, CaCCs)是陰離子選擇性通道[1-2]。該通道存在于大多數生理組織中,其可以由胞內鈣庫釋放的Ca2+或者由胞外流入的Ca2+激活[3-4]。30多年來,人們一直沒能鑒定CaCCs的分子基礎,這阻礙了對該通道的進一步研究。2008年,世界上3個獨立的研究小組發現,在體外和體內實驗中沉默TMEM16A基因可導致內源性CaCCs活性抑制。另一方面,外源表達的TMEM16A通道蛋白具有CaCCs的電生理特性。因此,他們得出一致的結論:TMEM16A是CaCCs的分子基礎[5-7],后來人們發現TMEM16B也具有CaCCs的特性[8]。
TMEM16A屬于TMEM16家族的一員,在脊椎動物中,該家族共有10個成員,它們具有較高的序列保守性[9]。其中,TMEM16A和TMEM16B屬于鈣激活氯離子通道。TMEM16C,TMEM16D,TMEM16E,TMEM16F,TMEM16G和TMEM16J為Ca2+依賴性脂質爬行酶。TMEM16H,TMEM16J和TMEM16K在細胞膜上表達很少,大部分保留在細胞質中。TMEM16F可同時作為脂質爬行酶和非特異性離子通道[10]。除此之外,在血球菌和煙曲霉中也分別發現了脂質爬行酶nhTMEM16和afTMEM16[11-12]。
TMEM16A具有典型的CaCCs特性,包括Ca2+和電壓依賴性激活以及陰離子選擇性。值得注意的是,TMEM16A的序列具有至少4個可變剪接的外顯子(分別命名為a, b, c和d),產生的蛋白質具有712至1 006個氨基酸[5]。最近的研究發現,除鈣離子,電壓和陰離子調節外,TMEM16A還受磷脂酰肌醇4,5-二磷酸[PI(4,5)P2]調節[13-15]。
目前,在上皮細胞,神經元細胞,平滑肌細胞,血管內皮細胞和心肌細胞中均鑒定出TMEM16A的存在[3,16-21]。它在各種組織中的廣泛分布表明其具備生理功能的多樣性[22]。研究表明,TMEM16A參與調節卵母細胞的受精,氣道和外分泌腺分泌,嗅覺和感覺信號的轉導,平滑肌的收縮以及心臟細胞的興奮等生理過程[19,23-30]。除了在正常的生理功能中發揮作用外,TMEM16A通道的突變或功能異常與眾多疾病的發生和發展有關,例如:胃腸功能障礙,神經性疼痛以及諸多癌癥[31]。鑒于TMEM16A通道與眾多疾病之間的關系,它正日益成為治療上述疾病的藥物的潛在靶點。
為了發現TMEM16A特異性調節劑并開發有效的靶向藥物,當前迫切需要了解TMEM16A與眾多疾病的關系,以及TMEM16A與藥物的相互作用關系。作為眾多疾病潛在藥物靶標,TMEM16A結構的發現為基于結構的藥物設計和篩選提供了關鍵的靶點結構信息。在這里首先介紹TMEM16A通道的結構與門控機制,以及TMEM16A與眾多疾病的關系,最終總結TMEM16A調節劑的藥理功能以及部分調節劑的分子機制。本文試圖為TMEM16A的靶向調節劑的研發提供思路,并希望在基于結構的藥物發現方面為讀者提供全面的了解。
1 TMEM16A的結構
1.1 TMEM16A通道的結構特征
2017年5月,分辨率為6.6 ×10-10m的小鼠的mTMEM16A結構(PDB ID:5NL2)[32]獲得解析。人們首次認識了TMEM16A通道的分子架構。該蛋白是一個同源二聚體,每個亞基包含2個Ca2+結合位點和10個跨膜螺旋(如圖1)。在細胞外,連接α螺旋的α1-α2,α5-α6和α9-α10的氨基酸形成環狀的折疊結構域。N-末端與C-末端均位于膜的細胞質側。該結構與2014年獲得的真菌的nhTMEM16[12]最大的區別在于“亞單位腔”跨膜螺旋的排布方式。在mTMEM16A中,跨膜區的亞單位腔是密封的,可防止脂質進入并僅允許離子滲透。在nhTMEM16的結構中,亞基腔是一個親水的跨膜凹槽。這體現了TMEM16家族中脂質爬行酶和離子通道之間的結構性差異。
2017年12月,研究人員得到了4個處于不同狀態的高分辨率mTMEM16A結構,包括雙Ca2+結合態(PDB ID:5OYB, 6BGI),單Ca2+結合態(PDB ID:6BGJ)和Ca2+游離態(PDB ID:5OYG)[33-34]。其中,5OYB是迄今為止解析最全,分辨率最高的TMEM16A結構。Cyro-EM結構顯示,帶負電荷的5個殘基E654,E702,E705,E734和D738共同形成了TMEM16A的Ca2+結合位點,該位點可以結合2個鈣離子(如圖1)。這些殘基分布在跨膜螺旋α6-α8中。除上述5個關鍵酸性殘基外,研究還發現N650,N651和N730突變為丙氨酸會降低Ca2+的親和力,這表明這3個殘基對鈣離子的結合也是有幫助的。肖慶桓教授課題組和我們課題組在第1個細胞內環中鑒定了一段對Ca2+和電壓敏感性都很重要的區域(EEEEEAVK)[35-37]。但是尚不清楚該區域如何調控通道的鈣依賴性門控,其詳細的分子機制值得進一步研究。
TMEM16A結構中的亞基腔部位是介導離子滲透的離子傳導孔。跨膜螺旋α3-α7在周圍排布,形成如沙漏一樣的封閉通道。通過誘變和電生理實驗發現,孔道中的殘基有的與離子滲透性有關,有的影響陰離子的選擇性,有些則與孔收縮區域的門控功能相互關聯[33]。其中, R515(位于α3)和K603(位于α5-α6)對陰離子選擇性起著關鍵作用。K588(位于α5)可以部分影響陰離子對陽離子的選擇性。除了N546,D554,N591和V599之外, Q709和F716以及S639也影響陰離子的選擇性。誘變研究還發現,孔中的7個殘基可能與TMEM16A的鈣依賴性門控有關。N546A,I550A,Y593A,I596A和F712A這5個突變增加了Ca2+的表觀親和力。然而,V599A和L643A則降低了Ca2+的表觀親和力[33]。雖然通道內殘基的相關功能性鑒定已經較為全面,但是關于通道的離子通透過程缺乏系統性的認識和見解。因此,有關通道的分子機制的研究將是亟待解決的課題。
1.2 鈣依賴性的門控機制
TMEM16A屬于鈣激活的氯離子通道,其可以被低濃度(<600 nmol/L)的Ca2+激活,因此明晰Ca2+依賴性的門控過程對了解通道的分子機制尤為重要。2017年12月,有研究基于Ca2+游離態(5OYG)和雙Ca2+結合態(5OYB)的TMEM16A結構,提供了對mTMEM16A激活機制的理解[34]。結合位點的Ca2+離子吸引α6末端的E654,這導致α6的下半部分重新定向。在此過程中,G644充當門軸。為了進一步確定α6在門控過程中的作用,Peters等[38]通過分子動力學模擬和實驗誘變,在第6個跨膜片段中鑒定出幾個關鍵的位點。其中,α6中間的K645是調節通道門控的關鍵殘基。同年,Lam等[39]發現Ca2+與α5上的K588和α6上的K645之間存在長程庫侖相互作用,并且這些庫倫相互作用可以影響孔道頸部的靜電特征,從而影響離子的滲透。總之,α6是TMEM16A通道門控的關鍵元素,特別是α6中的E654和K645分別在Ca2+的結合和離子滲透過程中起著關鍵作用。
除了α6之外,α3和α4也被認為是與門控過程相關的元素。楊黃河教授[14]課題組發現PI(4,5)P2可以調節TMEM16A通道的激活和脫敏,并通過模擬和誘變實驗確定了PI(4,5)P2的結合位點(R455, K465, R486, K571, R579和K583)。他們提出TMEM16A的離子滲透孔由2個模塊組成。α3-α5的“PI(4,5)P2結合模塊”控制通道脫敏,而α6-α8的“Ca2+結合模塊”控制Ca2+依賴性激活。盡管α3和α4在TMEM16A的2種狀態下幾乎沒有差異,但α4在同源蛋白(nhTMEM16和afTMEM16)的門控過程中顯示出明顯的構象變化[40-41]。Falzone等[40]和Kalienkoa等[41]發現nhTMEM16處于打開狀態時,α4和α6在其整個長度上彼此分離,從而形成了暴露于脂質雙層的半圓形凹槽。并提出脂質途徑的開放主要由2個結構元素α4和α6控制。值得關注的是,在hTMEM16k中發生了相同的現象[42]。因此,在下一步的研究中有必要明確mTMEM16A在滲透離子過程中α4和α6是否會產生同源蛋白類似的構象重排。需要指出的是,目前還沒有在TMEM16A通道內發現諸如鉀離子通道、鈉離子通道類似的門控位置和機制。
[15] ?YU K,JIANG T,CUI Y Y,et al. A network of phosphatidylinositol 4,5-bisphosphate binding sites regulate gating of the Ca2+-activated Cl- channel ANO1 (TMEM16A) [J]. Proc Natl Acad Sci U S A,2019,116(40):19952-19962.
[16] ?BADER C R,BERTRAND D,SCHLICHTER R. Calcium-activated chloride current in cultured sensory and parasympathetic quail neurones[J]. The Journal of Physiology,1987,394(1):125-148.
[17] ?ZYGMUNT A C. Intracellular calcium activates a chloride current in canine ventricular myocytes[J]. American Journal of Physiology-Heart and Circulatory Physiology,1994,267(5):H1984-H1995.
[18] ?CURRIE K P,WOOTTON J F,SCOTT R H. Activation of Ca2+-dependent Cl- currents in cultured rat sensory neurones by flash photolysis of DM-nitrophen[J]. The Journal of Physiology,1995,482(2):291-307.
[19] ?LARGE W A,WANG Q. Characteristics and physiological role of the Ca2+-activated Cl- conductance in smooth muscle[J]. American Journal of Physiology-Cell Physiology,1996,271(2):C435-C454.
[20] ?NILIUS B,PRENEN J,SZ?CS G,et al. Calcium-activated chloride channels in bovine pulmonary artery endothelial cells[J]. The Journal of Physiology,1997,498(2):381-396.
[21] ?DURAN C,THOMPSON C H,XIAO Q H,et al. Chloride channels:often enigmatic,rarely predictable[J]. Annual Review of Physiology,2010,72(1):95-121.
[22] ?FERRERA L,CAPUTO A,UBBY I,et al. Regulation of TMEM16A chloride channel properties by alternative splicing[J]. Journal of Biological Chemistry,2009,284(48):33360-33368.
[23] ?LOWE G,GOLD G H. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells[J]. Nature,1993,366(6452):283-286.
[24] ?KLEENE S J. High-gain,low-noise amplification in olfactory transduction[J]. Biophysical Journal,1997,73(2):1110-1117.
[25] ?BEGENISICH T,MELVIN J E. Regulation of chloride channels in secretory epithelia[J]. Journal of Membrane Biology,1998,163(2):77-85.
[26] ?FRINGS S,REUTER D,KLEENE S J. Neuronal Ca2+-activated Cl- channels:homing in on an elusive channel species[J]. Progress in Neurobiology,2000,60(3):247-289.
[27] ?KIDD J F,THORN P. Intracellular Ca2+ and Cl- channel activation in secretory cells[J]. Annual Review of Physiology,2000,62(1):493-513.
[28] ?HARTZELL C,PUTZIER I,ARREOLA J. Calcium-activated chloride channels[J]. Annual Review of Physiology,2005,67(1):719-758.
[29] ?KUNZELMANN K,TIAN Y M,MARTINS J R,et al. Anoctamins[J]. Pflügers Archiv-European Journal of Physiology,2011,462(2):195-208.
[30] ?ERTONGUR-FAUTH T,HOCHHEIMER A,BUESCHER J M,et al. A novelTMEM16Asplice variant lacking the dimerization domain contributes to calcium-activated chloride secretion in human sweat gland epithelial cells[J]. Experimental Dermatology,2014,23(11):825-831.
[31] ?VERKMAN A S,GALIETTA L J V. Chloride channels as drug targets[J]. Nature Reviews Drug Discovery,2009,8(2):153-171.
[32] ?PAULINO C,NELDNER Y,LAM A K,et al. Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A [J]. eLife,2017,6:e27933
[33] ?DANG S Y,FENG S J,TIEN J,et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel[J]. Nature,2017,552(7685):426-429.
[34] ?PAULINO C,KALIENKOVA V,LAM A K M,et al. Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM[J]. Nature,2017,552(7685):421-425.
[35] ?XIAO Q H,YU K,PEREZ-CORNEJO P,et al. Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(21):8891-8896.
[36] ?XIAO Q H,CUI Y Y. Acidic amino acids in the first intracellular loop contribute to voltage- and calcium- dependent gating of Anoctamin1/TMEM16A[J]. PLoS One,2014,9(6):e99376. DOI:10. 1371/journal. pone. 0099376.
[37] ?PANG C L,YUAN H B,CAO T G,et al. Molecular simulation assisted identification of Ca2+ binding residues in TMEM16A[J]. Journal of Computer-Aided Molecular Design,2015,29(11):1035-1043.
[38] ?PETERS C J,GILCHRIST J M,TIEN J,et al. The sixth transmembrane segment is a major gating component of the TMEM16A calcium-activated chloride channel[J]. Neuron,2018,97(5):1063-1077. e4.
[39] ?LAM A,DUTZLER R. Calcium-dependent electrostatic control of anion access to the pore of the calcium-activated chloride channel TMEM16A[J]. eLife,2018,7:e39122. DOI:10. 7554/eLife. 39122.
[40] ?FALZONE M E,RHEINBERGER J,LEE B C,et al. Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase[J]. eLife,2019,8:e43229.
[41] ?KALIENKOVA V,MOSINA V C,BRYNER L,et al. Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM [J]. eLife,2019,8. DOI:10. 7554/eLife. 44364.
[42] ?BUSHELL S R,PIKE A C W,FALZONE M E,et al. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K[J]. Nature Communications,2019,10:3956.
[43] ?BENEDETTO R,OUSINGSAWAT J,WANITCHAKOOL P,et al. Epithelial chloride transport by CFTR requires TMEM16A[J]. Scientific Reports,2017,7:12397.
[44] ?RIORDAN J R. CFTR function and prospects for therapy[J]. Annual Review of Biochemistry,2008,77(1):701-726.
[45] ?SONDO E,CACI E,GALIETTA L J V. The TMEM16A chloride channel as an alternative therapeutic target in cystic fibrosis[J]. The International Journal of Biochemistry & Cell Biology,2014,52:73-76.
[46] ?HUANG F,ZHANG H,WU M,et al. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(40):16354-16359.
[47] ?KUMAR R,HERBERT C,FOSTER P. The “classical” ovalbumin challenge model of asthma in mice[J]. Current Drug Targets,2008,9(6):485-494.
[48] ?KONDO M,NAKATA J,ARAI N,et al. Niflumic acid inhibits goblet cell degranulation in a Guinea pig asthma model[J]. Allergology International,2012,61(1):133-142.
[49] ?WANG B X,LI C L,HUAI R T,et al. Overexpression of ANO1/TMEM16A,an arterial Ca2+-activated Cl- channel,contributes to spontaneous hypertension[J]. Journal of Molecular and Cellular Cardiology,2015,82:22-32.
[50] ?LI R S,WANG Y,CHEN H S,et al. TMEM16A contributes to angiotensin II-induced cerebral vasoconstriction via the RhoA/ROCK signaling pathway[J]. Molecular Medicine Reports,2016,13(4):3691-3699.
[51] ?WANG Q,LEO M D,NARAYANAN D,et al. Local coupling of TRPC6 to ANO1/TMEM16A channels in smooth muscle cells amplifies vasoconstriction in cerebral arteries[J]. American Journal of Physiology-Cell Physiology,2016,310(11):C1001-C1009.
[52] ?SANDERS K M,KOH S D,WARD S M. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract[J]. Annual Review of Physiology,2006,68(1):307-343.
[53] ?DAM V S,BOEDTKJER D M B,NYVAD J,et al. TMEM16A knockdown abrogates two different Ca2+-activated Cl- currents and contractility of smooth muscle in rat mesenteric small arteries[J]. Pflügers Archiv-European Journal of Physiology,2014,466(7):1391-1409.
[54] ?MALYSZ J,GIBBONS S J,SARAVANAPERUMAL S A,et al. Conditional genetic deletion of Ano1 in interstitial cells of Cajal impairs Ca2+ transients and slow waves in adult mouse small intestine[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2017,312(3):G228-G245.
[55] ?SINGH R D,GIBBONS S J,SARAVANAPERUMAL S A,et al. Ano1,a Ca2+-activated Cl-channel,coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal[J]. The Journal of Physiology,2014,592(18):4051-4068.
[56] ?HWANG S J,BASMA N,SANDERS K M,et al. Effects of new-generation inhibitors of the calcium-activated chloride channel anoctamin 1 on slow waves in the gastrointestinal tract[J]. British Journal of Pharmacology,2016,173(8):1339-1349.
[57] ?GOMEZ-PINILLA P J,GIBBONS S J,BARDSLEY M R,et al. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2009,296(6):G1370-G1381.
[58] ?GUO S,CHEN Y F,PANG C L,et al. Ginsenoside Rb1,a novel activator of the TMEM16A chloride channel,augments the contraction of Guinea pig ileum[J]. Pflügers Archiv-European Journal of Physiology,2017,469(5/6):681-692.
[59] ?CHAI R,CHEN Y F,YUAN H B,et al. Identification of resveratrol,an herbal compound,as an activator of the calcium-activated chloride channel,TMEM16A[J]. The Journal of Membrane Biology,2017,250(5):483-492.
[60] ?GUO S,WANG H,PANG C L,et al. Entering the spotlight:Chitosan oligosaccharides as novel activators of CaCCs/TMEM16A[J]. Pharmacological Research,2019,146:104323.
[61] ?GUO S,CHEN Y F,SHI S,et al. The molecular mechanism of ginsenoside analogs activating TMEM16A[J]. Biophysical Journal,2020,118(1):262-272.
[62] ?CHO H,OH U. Anoctamin 1 mediates thermal pain as a heat sensor[J]. Current Neuropharmacology,2013,11(6):641-651.
[63] ?LEE B,CHO H,JUNG J,et al. Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity[J]. Molecular Pain,2014,10:1744-8069-10-5.
[64] ?PERL E R. Ideas about pain,a historical view[J]. Nature Reviews Neuroscience,2007,8(1):71-80.
[65] ?CHO H,YANG Y D,LEE J,et al. The calcium-activated chloride channel anoctamin 1 Acts as a heat sensor in nociceptive neurons[J]. Nature Neuroscience,2012,15(7):1015-1021.
[66] ?LIU B Y,LINLEY J E,DU X N,et al. The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl- channels[J]. Journal of Clinical Investigation,2010,120(4):1240-1252.
[67] ?ZHANG X,ZHANG H R,ZHOU N J,et al. Tannic acid modulates excitability of sensory neurons and nociceptive behavior and the Ionic mechanism[J]. European Journal of Pharmacology,2015,764:633-642.
[68] ?ESPINOSA I,LEE C H,KIM M K,et al. A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors[J]. The American Journal of Surgical Pathology,2008,32(2):210-218.
[69] ?LIU F,CAO Q H,LU D J,et al. TMEM16A overexpression contributes to tumor invasion and poor prognosis of human gastric cancer through TGF-β signaling[J]. Oncotarget,2015,6(13):11585-11599.
[70] ?DIXIT R,KEMP C,KULICH S,et al. TMEM16A/ANO1 is differentially expressed in HPV-negative versus HPV-positive head and neck squamous cell carcinoma through promoter methylation[J]. Scientific Reports,2015,5:16657.
[71] ?SUI Y J,SUN M Y,WU F,et al. Inhibition of TMEM16A expression suppresses growth and invasion in human colorectal cancer cells[J]. PLoS One,2014,9(12):e115443. DOI:10. 1371/journal. pone. 0115443.
[72] ?SAUTER D R P,NOVAK I,PEDERSEN S F,et al. ANO1 (TMEM16A) in pancreatic ductal adenocarcinoma (PDAC)[J]. Pflügers Archiv-European Journal of Physiology,2015,467(7):1495-1508.
[73] ?KASHYAP M K,MARIMUTHU A,KISHORE C J H,et al. Genomewide mRNA profiling of esophageal squamous cell carcinoma for identification of cancer biomarkers[J]. Cancer Biology & Therapy,2009,8(1):36-46.
[74] ?JIA L H,LIU W,GUAN L Z,et al. Inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer[J]. PLoS One,2015,10(8):e0136584. DOI:10. 1371/journal. pone. 0136584.
[75] ?LIU Z T,ZHANG S S,HOU F,et al. Inhibition of Ca2+-activated chloride channel ANO1 suppresses ovarian cancer through inactivating PI3K/Akt signaling[J]. International Journal of Cancer,2019,144(9):2215-2226.
[76] ?DUVVURI U,SHIWARSKI D J,XIAO D,et al. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression[J]. Cancer Research,2012,72(13):3270-3281.
[77] ?JACOBSEN K S,ZEEBERG K,SAUTER D R P,et al. The role of TMEM16A (ANO1) and TMEM16F (ANO6) in cell migration[J]. Pflügers Archiv-European Journal of Physiology,2013,465(12):1753-1762.
[78] ?AYOUB C,WASYLYK C,LI Y,et al. ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines[J]. British Journal of Cancer,2010,103(5):715-726.
[79] ?JI Q S,GUO S,WANG X Z,et al. Recent advances in TMEM16A:Structure,function,and disease[J]. Journal of Cellular Physiology,2019,234(6):7856-7873.
[92] ?YU B,XIE R F,JIN L L,et al. Trans-δ-Viniferin inhibits Ca2+-activated Cl- channels and improves diarrhea symptoms[J]. Fitoterapia,2019,139:104367.
[93] ?OH S J,HWANG S J,JUNG J,et al. MONNA,a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1[J]. Molecular Pharmacology,2013,84(5):726-735.
[94] ?SEO Y,LEE H K,PARK J,et al. Ani9,A novel potent small-molecule ANO1 inhibitor with negligible effect on ANO2[J]. PLoS One,2016,11(5):e0155771. DOI:10. 1371/journal. pone. 0155771.
[95] ?LIU Y N,ZHANG H R,HUANG D Y,et al. Characterization of the effects of Cl- channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Cl- channels[J]. Pflügers Archiv-European Journal of Physiology,2015,467(7):1417-1430.
[96] ?BURRIS S K,WANG Q,BULLEY S,et al. 9-Phenanthrol inhibits recombinant and arterial myocyte TMEM16A channels[J]. British Journal of Pharmacology,2015,172(10):2459-2468.
[97] ?DE LA FUENTE R,NAMKUNG W,MILLS A,et al. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel[J]. Molecular Pharmacology,2008,73(3):758-768.
[98] ?NAMKUNG W,PHUAN P W,VERKMAN A S. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells[J]. Journal of Biological Chemistry,2011,286(3):2365-2374.
[99] ?DAVIS A J,SHI J,PRITCHARD H A,et al. Potent vasorelaxant activity of the TMEM16A inhibitor T16Ainh-A01[J]. British Journal of Pharmacology,2013,168(3):773-784.
[100] ?PETERS C J,YU H B,TIEN J,et al. Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(11):3547-3552.
[責任編輯 ? ?楊 ? ?屹]