◇ 廣西 周立安
(作者單位:廣西柳州高級中學)
人教版高中物理《必修1》第三章學習彈力時,課本并沒有對探究彈簧彈力與伸長量的關系的實驗作詳細介紹,只在介紹胡克定律時簡單描述:實驗表明,彈簧發生彈性形變時,彈力的大小F 跟彈簧伸長(或縮短)的長度x 成正比,即F=kx,式中的k 稱為彈簧的勁度系數,單位是牛頓每米,單位的符號是N·m-1.人教版教材上雖然未對探究彈簧彈力與伸長量的關系的實驗作詳細介紹及說明,但《普通高等學校招生全國統一考試大綱》的考試范圍與要求在實驗欄目里卻清楚地列出這一實驗,因此“探究彈力與彈簧伸長量的關系”是高中物理教學過程中一個很重要的探究性實驗.
“探究彈力與彈簧伸長量的關系”的實驗步驟并不復雜,實驗采用懸掛法,所用裝置如圖1所示,采用的處理數據方法是圖象法,在平面直角坐標系里,以縱坐標表示鉤碼的重力即彈簧的彈力F (F=mg),橫坐標表示彈簧的伸長量x,把測量結果描點到平面直角坐標系里面,只要實驗正確,描出的F-x 圖象是一條過原點的傾斜直線,如圖2所示.由于實驗原理比較簡單,學生很容易理解.

歷年來,對本實驗的誤差分析通常有兩點:一是實驗過程的讀數誤差,造成的結果是描點時點跡會偏離直線,如圖3;二是實驗過程先水平擺放彈簧,測量彈簧的原長,再懸掛起來在未掛鉤碼前測量彈簧的長度,沒有考慮彈簧自身重力的影響所造成的誤差,造成的結果將使所描的直線不過坐標原點,如圖4.

然而,本學期筆者所帶的高一學生做本實驗時,卻發現了一種新的情況,實驗步驟、數據記錄以及數據處理結果如下:
1)如圖1所示,將彈簧的一端掛在鐵架臺上,讓其自然下垂,旁邊固定一把刻度尺,并讀出彈簧自然伸長狀態時的長度l0,即原長.
2)將已知質量的鉤碼掛在彈簧下端,在平衡時測出彈簧的總長,并計算鉤碼的重力以表示彈簧的彈力,在記錄表格里填寫測量結果.
3)依次增加鉤碼個數,多次重復步驟2實驗過程.
4)用公式x=l-l0計算出每次彈簧的伸長量并填入表格.
5)以彈力F 為縱坐標,以彈簧伸長量x 為橫坐標,用描點法作圖,并用直線連接各點,得出彈簧彈力隨伸長量x 變化的圖象.
按照以上步驟,實驗結果并沒有得到我們期望的過原點的傾斜直線,而是得到了如圖5所示的F-x 圖象.對于圖5的情況,筆者起初以為是學生測量誤差或畫圖沒注意造成的,但是后來發現全班同學都出現同樣的情況,引起了筆者的注意.需要說明的是,筆者所在的柳州高中南校區是新校區,所用的實驗器材幾乎都是全新的,實驗室給每組實驗桌提供的都是5個質量為50g的砝碼.
表1是筆者親自測量的實驗數據,所用鉤碼每個質量m=50g,重力加速度g 取9.8N·kg-1(所用器材與實驗室提供給學生的器材一致).

表1

圖6
在平面直角坐標系里,以F 為縱坐標,x 為橫坐標,把上面表格里的數據描繪到坐標系里,得到如圖6 所 示 的 F-x 圖象.由圖6可見,在誤差允許范圍內,該彈簧彈力和伸長量呈線性關系,但不能得出彈力和伸長量成正比關系,即胡克定律.仔細檢查該彈簧發現,相鄰的彈簧絲緊密繃在一起,如果把它拉長一點,在金屬絲之間插一張白紙,可以把白紙緊緊夾住.因此,猜測出現上述結果的原因可能是新彈簧繃得過緊,為進一步探究其中原因,筆者把鉤碼質量改用m =10g(這已經是實驗室能提供的最小質量的鉤碼),使得測量數據更精細,同時除以上新彈簧外,還選擇兩根同一型號,但被適當拉伸過變長了一點的彈簧進行測量作對比,三根彈簧外形如圖7 所示,三根彈簧從上到下依次記為甲、乙、丙,測量結果如表2、表3、表4所示.

表2 甲彈簧:單個鉤碼質量m=10g

表3 乙彈簧:單個鉤碼質量m=10g

表4 丙彈簧:單個鉤碼質量m=10g

圖7

以F 為縱坐標,x 為橫坐標,把上面表2、表3、表4的數據分別描繪到平面直角坐標系里,得到如圖8、圖9、圖10所示的F-x 圖象.

圖10
從圖8 可發現,甲彈簧在形變量很小時,彈力變化很明顯,因此,需要相對較大的彈力才能把該彈簧拉伸微小的伸長量,彈簧的彈力和伸長量在一開始并沒有很好地符合胡克定律.而圖9 和圖 10 都是過原點的傾斜直線,說明乙彈簧和丙彈簧的彈力和彈簧伸長量的關系能很好地遵守胡克定律.進一步計算它們的勁度系數得k甲=8.75 N·m-1,k乙=8.21 N·m-1,k丙=8.42N·m-1.考慮到這三根彈簧屬于同一批次彈簧,勁度系數有一點不同的原因可能是產品的一致性不夠嚴格,也可能是由于它們被充分拉伸過.為了探究清楚這一點,筆者把甲彈簧進行適當的反復拉伸,使它跟乙彈簧類似不再繃得過緊,重新進行測量,測量結果如表5所示.

表5 充分拉伸過的甲彈簧:單個鉤碼質量m=10g
把表5的數據描到平面直角坐標系里,得到如圖11所示的F-x 圖象,把同一彈簧被充分拉伸前的表2數據和被充分拉伸后的表5數據描繪到同一直角坐標系里,對比可以發現兩條線直線部分的斜率有細微差別,進一步計算彈簧被充分拉伸后勁度系數k′甲=8.65N·m-1,略小于被充分拉伸前的勁度系數k甲=8.75N·m-1.但這個勁度系數的變化并不影響實驗的目的(探究彈力與彈簧伸長量的關系).相反,從圖11可見,原來繃得過緊的甲彈簧在微小形變時不能嚴格遵守胡克定律,被拉伸后反而能夠很好地遵守胡克定律了,在中學物理實驗室里完全能夠滿足學生實驗.

綜上所述,本實驗雖然簡單,但由于新彈簧繃得過緊造成的系統誤差,已經無法忽略了,致使由測量結果描繪出的F-x 圖象不過原點,這會給學生對彈簧彈力的認識帶來誤解.為了減小這種誤差,筆者提出兩條建議:一是實驗室在采購彈簧儀器時要對彈簧質量進行嚴格審核,盡量采購高質量、符合教學要求的儀器;二是對于新彈簧在給學生使用前要進行適當的拉伸,達到滿足教學的基本要求.