999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

“十四五”土壤質(zhì)量與食物安全前沿趨勢(shì)與發(fā)展戰(zhàn)略*

2020-10-22 08:05:42徐建明劉杏梅2
土壤學(xué)報(bào) 2020年5期
關(guān)鍵詞:污染質(zhì)量研究

徐建明劉杏梅2

“十四五”土壤質(zhì)量與食物安全前沿趨勢(shì)與發(fā)展戰(zhàn)略*

徐建明1,2?,劉杏梅1,2

(1. 浙江大學(xué)環(huán)境與資源學(xué)院,杭州 310058;2. 浙江省農(nóng)業(yè)資源與環(huán)境重點(diǎn)實(shí)驗(yàn)室,杭州 310058)

土壤質(zhì)量與食物安全和人體健康息息相關(guān)。土壤質(zhì)量與食物安全這一分支學(xué)科作為“十四五”土壤科學(xué)發(fā)展戰(zhàn)略重要的組成部分,致力于治理與改善耕地土壤質(zhì)量以應(yīng)對(duì)糧食安全危機(jī)。文獻(xiàn)計(jì)量結(jié)果表明,與發(fā)達(dá)國(guó)家相比,中國(guó)在該領(lǐng)域的研究起步較晚,但近年呈現(xiàn)加速上升甚至有超越的趨勢(shì)。隨著氣候及環(huán)境污染問(wèn)題凸顯,國(guó)際上的相關(guān)研究熱點(diǎn)集中于環(huán)境監(jiān)測(cè)、土地利用、施肥管理、污染修復(fù)(重金屬、抗生素、有機(jī)農(nóng)藥和病原微生物)及可持續(xù)發(fā)展等方面。本學(xué)科以土壤質(zhì)量、土壤污染和糧食安全為重點(diǎn)研究方向,通過(guò)與地理信息學(xué)、環(huán)境科學(xué)、應(yīng)用數(shù)學(xué)、醫(yī)學(xué)等學(xué)科的交叉融合,借助同位素源解析、生物地球化學(xué)循環(huán)、分子生物學(xué)等前沿性理論與技術(shù),未來(lái)將解決區(qū)域土壤質(zhì)量監(jiān)測(cè)、養(yǎng)分質(zhì)量管理、食物安全與人體健康風(fēng)險(xiǎn)、土壤-作物系統(tǒng)中污染物遷移轉(zhuǎn)化及阻控修復(fù)等關(guān)鍵科學(xué)問(wèn)題。

土壤質(zhì)量;食物安全;土壤污染;計(jì)量分析;未來(lái)需求

土壤質(zhì)量指土壤維持生態(tài)系統(tǒng)生產(chǎn)力,保障環(huán)境質(zhì)量,促進(jìn)動(dòng)物和人類(lèi)健康的能力[1],而在土壤學(xué)背景下食物安全主要指通過(guò)系列保障措施確保生產(chǎn)無(wú)毒、無(wú)害的農(nóng)產(chǎn)品,包括生產(chǎn)過(guò)程安全與產(chǎn)品安全[2]。土壤質(zhì)量與食物安全這一學(xué)科旨在綜合評(píng)估和改善土壤質(zhì)量,保障土壤生態(tài)安全和資源可持續(xù)利用,運(yùn)用規(guī)范的生產(chǎn)技術(shù)、方式及標(biāo)準(zhǔn),生產(chǎn)對(duì)人或動(dòng)物健康不產(chǎn)生危害或潛在危害的農(nóng)業(yè)食品[3]。

本學(xué)科致力于為我國(guó)農(nóng)業(yè)生產(chǎn)的可持續(xù)安全發(fā)展提供基礎(chǔ)理論和技術(shù)途徑,通過(guò)治理與改善耕地土壤質(zhì)量來(lái)應(yīng)對(duì)食物安全問(wèn)題的挑戰(zhàn)[4]。該研究過(guò)程具有周期長(zhǎng)、工程大、多技術(shù)手段、多學(xué)科交叉、區(qū)域管理多樣性等特點(diǎn)[5]。

學(xué)科本身涵蓋了土壤生產(chǎn)綜合指標(biāo)體系、土壤生態(tài)環(huán)境功能、食物安全及健康風(fēng)險(xiǎn)[6]、地理信息技術(shù)及數(shù)學(xué)模型[7-9]、土壤污染遷移轉(zhuǎn)化、農(nóng)業(yè)管理及品種篩選[10]、土壤質(zhì)量改良及污染修復(fù)[11]等多個(gè)分支方向。隨著世界溫飽問(wèn)題的解決及全球一體化進(jìn)程的加快,大部分國(guó)家和地區(qū)已從食物產(chǎn)量短缺的危機(jī)轉(zhuǎn)向由產(chǎn)地污染引起的食物安全問(wèn)題,繼而使得食物的質(zhì)量安全上升為人類(lèi)普遍關(guān)注的焦點(diǎn)。考慮土壤質(zhì)量與食物安全之間的關(guān)系需要從土壤質(zhì)量退化、農(nóng)業(yè)投入品施用、土壤環(huán)境污染風(fēng)險(xiǎn)管控、農(nóng)業(yè)管理對(duì)策及措施等各個(gè)方面進(jìn)行切入[12]。

本文介紹了土壤質(zhì)量與食物安全學(xué)科的研究進(jìn)展,從文獻(xiàn)計(jì)量分析[13-14]的角度闡述該學(xué)科現(xiàn)有方向及國(guó)內(nèi)外研究熱點(diǎn),并根據(jù)當(dāng)前的需求提出該學(xué)科的關(guān)鍵問(wèn)題、理論前沿及優(yōu)先交叉研究領(lǐng)域,為該學(xué)科的探索和發(fā)展提供啟示與未來(lái)方向。

1 學(xué)科發(fā)展現(xiàn)狀

1.1 研究方向

土壤質(zhì)量與食物安全這一學(xué)科共設(shè)置了三大研究方向。(1)土壤質(zhì)量。其主要關(guān)鍵詞包括土壤有機(jī)碳,土壤氮素管理,土壤微生物生物量,種植與耕作措施,土壤生物指標(biāo),土壤物理指標(biāo),土壤化學(xué)指標(biāo),土壤綜合指標(biāo),土壤質(zhì)量指數(shù),土壤生態(tài)功能,遙感監(jiān)測(cè),土壤肥力質(zhì)量,土壤環(huán)境質(zhì)量,土壤健康質(zhì)量,食物安全,地統(tǒng)計(jì)學(xué),地理信息系統(tǒng)。(2)土壤污染與農(nóng)產(chǎn)品安全。其主要關(guān)鍵詞為產(chǎn)地環(huán)境,污染物吸收,污染物遷移,污染物轉(zhuǎn)運(yùn),污染物轉(zhuǎn)化,農(nóng)產(chǎn)品安全,農(nóng)產(chǎn)品品質(zhì),綠色農(nóng)產(chǎn)品,農(nóng)產(chǎn)品重金屬積累,農(nóng)產(chǎn)品農(nóng)藥殘留,品種篩選,作物抗逆性,風(fēng)險(xiǎn)預(yù)警,風(fēng)險(xiǎn)評(píng)估,實(shí)驗(yàn)?zāi)M,模型模擬,生物污染,抗性基因,環(huán)境醫(yī)學(xué)。(3)土壤質(zhì)量與糧食安全。主要關(guān)鍵詞為農(nóng)田地力,農(nóng)田生產(chǎn)力,耕地質(zhì)量,土壤退化,土壤肥力,土壤肥力減退,鹽堿土改良,承載力,閾值,農(nóng)業(yè)管理,種植結(jié)構(gòu),商品糧基地,糧食安全,可持續(xù)發(fā)展,全球變化,情景分析,模型模擬,需求預(yù)測(cè)。

1.2 研究熱點(diǎn)——基于文獻(xiàn)計(jì)量

基于Web of Science(WoS)核心合集數(shù)據(jù)庫(kù),本文通過(guò)對(duì)關(guān)鍵文獻(xiàn)、研究主題、關(guān)鍵詞的聚類(lèi)分析,獲得了現(xiàn)階段關(guān)于土壤質(zhì)量與農(nóng)產(chǎn)品、糧食安全的研究熱點(diǎn),歸納總結(jié)了其變遷及未來(lái)的趨勢(shì)。

1.2.1 土壤質(zhì)量熱點(diǎn)分析文獻(xiàn)計(jì)量 近些年來(lái),國(guó)際上對(duì)于土壤質(zhì)量相關(guān)問(wèn)題的關(guān)注程度越來(lái)越高[15],發(fā)文數(shù)量逐年增大(圖1)。在該領(lǐng)域發(fā)文數(shù)量排名前5的國(guó)家是美國(guó)、中國(guó)、巴西、西班牙和印度。歐洲一些國(guó)家由于曾面臨嚴(yán)重的土壤質(zhì)量問(wèn)題[12,16-17],因而對(duì)土壤質(zhì)量問(wèn)題的關(guān)注較早[16,18-19]。亞洲國(guó)家對(duì)于土壤質(zhì)量問(wèn)題的相關(guān)研究起步較晚,但是近些年來(lái)呈加速上升趨勢(shì)。美國(guó)起步較早,前期開(kāi)展了大量研究,后期速度放緩。值得注意的是,中國(guó)在土壤質(zhì)量研究領(lǐng)域異軍突起,近些年來(lái)的發(fā)文量逐漸超過(guò)美國(guó),成為該領(lǐng)域發(fā)文量最大的國(guó)家。從發(fā)文的主要學(xué)科來(lái)看,土壤科學(xué)的發(fā)文比重最大,說(shuō)明關(guān)于土壤質(zhì)量問(wèn)題的研究,一直是土壤科學(xué)工作者關(guān)注的重點(diǎn),此外環(huán)境科學(xué)領(lǐng)域?qū)τ谕寥蕾|(zhì)量的關(guān)注程度也占有一定的比例。

圖1 土壤質(zhì)量研究領(lǐng)域主要國(guó)家(A)與主要學(xué)科發(fā)文數(shù)量(B)逐年變化

根據(jù)土壤質(zhì)量研究的關(guān)鍵詞共現(xiàn)網(wǎng)絡(luò),關(guān)于土壤管理、土壤有機(jī)質(zhì)、土壤微生物量、土壤氮素管理以及土壤質(zhì)量評(píng)價(jià)指標(biāo)是該領(lǐng)域研究的熱點(diǎn)(圖2)。隨著世界氣候及環(huán)境等問(wèn)題的逐漸凸顯[20],國(guó)際上對(duì)土壤環(huán)境監(jiān)測(cè)、碳匯的研究增加[21],最近幾年在生物質(zhì)炭[22]方面的研究也比較多。

圖2 土壤質(zhì)量領(lǐng)域關(guān)鍵詞共現(xiàn)網(wǎng)絡(luò)

1.2.2 土壤污染與農(nóng)產(chǎn)品安全熱點(diǎn)分析文獻(xiàn)計(jì)量

伴隨人類(lèi)劇烈的工業(yè)、農(nóng)業(yè)生產(chǎn)活動(dòng),各種無(wú)機(jī)、有機(jī)污染物不斷進(jìn)入土壤環(huán)境[23]。根據(jù)檢索結(jié)果可以發(fā)現(xiàn)(圖3),1974年出現(xiàn)了第一篇土壤污染與食物安全的相關(guān)文獻(xiàn),2002年后歷年文獻(xiàn)數(shù)量皆高于50篇,2005年后發(fā)文量逐年上升,同時(shí)農(nóng)產(chǎn)品安全領(lǐng)域越來(lái)越受研究者的關(guān)注。在發(fā)文量方面,中國(guó)、美國(guó)、巴西位居前三。在各國(guó)合作研究方面,美國(guó)與其他國(guó)家的合作交流最為廣泛,其次是中國(guó)。

圖3 土壤污染與食物安全領(lǐng)域的年文獻(xiàn)產(chǎn)出量

根據(jù)關(guān)鍵詞共存網(wǎng)絡(luò)(圖4),土壤污染與農(nóng)產(chǎn)品安全領(lǐng)域的關(guān)鍵詞可以主要?jiǎng)澐譃樗膫€(gè)聚類(lèi)。紅色關(guān)鍵詞聚類(lèi)的研究?jī)?nèi)容主要是土壤鎘、鉛等重金屬污染物對(duì)食物安全的影響,包括糧食作物的重金屬積累、土壤污染對(duì)作物生長(zhǎng)的影響等方面[24-25]。綠色關(guān)鍵詞聚類(lèi)的研究?jī)?nèi)容主要是病原微生物及其抗性基因?qū)ν寥郎鷳B(tài)系統(tǒng)多樣性和功能造成的毒害作用,從而引發(fā)對(duì)農(nóng)產(chǎn)品安全的影響,包括土傳病蟲(chóng)害、抗生素抗性基因、抗菌素耐藥性等方面[26]。藍(lán)色關(guān)鍵詞聚類(lèi)的研究?jī)?nèi)容主要是農(nóng)藥殘留對(duì)食物安全的影響,包括食物分析、農(nóng)藥快速提取檢測(cè)等方面[27]。黃色關(guān)鍵詞聚類(lèi)則主要集中在與農(nóng)產(chǎn)品安全相關(guān)的人與動(dòng)物健康風(fēng)險(xiǎn)評(píng)估方面[28-29]。

1.2.3 土壤質(zhì)量與糧食安全熱點(diǎn)分析文獻(xiàn)計(jì)量 在WoS核心合集數(shù)據(jù)庫(kù)檢索到1900―2019年共4 379篇文獻(xiàn)涉及本主題,文獻(xiàn)計(jì)量結(jié)果表明(圖5),1981年開(kāi)始出現(xiàn)第一篇關(guān)于土壤質(zhì)量和糧食安全的研究文獻(xiàn),到1996年每年文獻(xiàn)數(shù)量都在10篇以內(nèi);從1997年開(kāi)始相關(guān)發(fā)文量有所增加,至2007年后歷年文獻(xiàn)數(shù)量皆高于50篇,且有逐年上升的趨勢(shì),說(shuō)明土壤質(zhì)量和糧食安全相關(guān)領(lǐng)域越來(lái)越受到國(guó)內(nèi)外的重視。我國(guó)在土壤質(zhì)量和糧食安全領(lǐng)域的國(guó)際合作聯(lián)系密切,前三位主要合作國(guó)家是美國(guó)、英國(guó)和澳大利亞。

根據(jù)關(guān)鍵詞共存網(wǎng)絡(luò)(圖6),土壤質(zhì)量和糧食安全領(lǐng)域關(guān)鍵詞可以主要?jiǎng)澐譃槿齻€(gè)聚類(lèi)。紅色關(guān)鍵詞聚類(lèi)的研究?jī)?nèi)容主要是施肥、作物類(lèi)型和水肥管理對(duì)糧食安全的影響[30-31]。綠色關(guān)鍵詞聚類(lèi)的研究?jī)?nèi)容主要是氣候變化、農(nóng)業(yè)模式對(duì)糧食安全的影響[32-33]。藍(lán)色關(guān)鍵詞聚類(lèi)的研究?jī)?nèi)容主要與集約型農(nóng)業(yè)的可持續(xù)發(fā)展相關(guān),重點(diǎn)突出了生態(tài)系統(tǒng)服務(wù)功能、生物多樣性、固碳、土地利用方式等方面[34]。

圖4 土壤污染與食物安全領(lǐng)域關(guān)鍵詞共現(xiàn)網(wǎng)絡(luò)

圖5 土壤質(zhì)量與糧食安全領(lǐng)域的年文獻(xiàn)產(chǎn)出量

基于CiteSpace對(duì)土壤質(zhì)量和食物安全領(lǐng)域關(guān)鍵詞突現(xiàn)(Keyword Burstiness)指標(biāo)進(jìn)行全面分析[35],選擇2014年以后的突現(xiàn)詞來(lái)描述近五年來(lái)的研究熱點(diǎn)(表1)。近五年來(lái),突現(xiàn)強(qiáng)度較大關(guān)鍵詞有區(qū)域(Region,9.645)、策略(Strategy,8.946)、緩和(Mitigation,8.636)、營(yíng)養(yǎng)物(Nutrient,8.505)、農(nóng)業(yè)集約化(Agricultural intensification,8.022)、模式(Pattern,7.686)、家畜(Livestock,7.201)、環(huán)境影響(Environmental impact,7.176)、可持續(xù)集約化(Sustainable intensification,7.157)等,可見(jiàn)近期土壤質(zhì)量與食物安全領(lǐng)域的研究前沿和熱點(diǎn)在于土壤質(zhì)量區(qū)域化管理,因地制宜地制定相關(guān)策略或政策,通過(guò)土壤污染修復(fù)(包括物理、化學(xué)、生物手段)[36-38]、推行集約化模式等方法,提高土地利用率,發(fā)展可持續(xù)農(nóng)業(yè),以應(yīng)對(duì)可能存在的因土地日益減少及土壤質(zhì)量退化而引發(fā)的糧食安全危機(jī)[39]。

2 學(xué)科發(fā)展的關(guān)鍵問(wèn)題與前沿趨勢(shì)

2.1 關(guān)鍵科學(xué)問(wèn)題

綜合文獻(xiàn)檢索與文獻(xiàn)計(jì)量分析,北美、歐洲在土壤質(zhì)量和食物安全領(lǐng)域的研究起步時(shí)間較早,中國(guó)、印度等發(fā)展中國(guó)家在該方面研究起步晚,但后期發(fā)展較快,產(chǎn)出頗豐。此外,澳大利亞、德國(guó)、荷蘭等國(guó)家也表現(xiàn)不凡。我國(guó)“十三五”期間首次將環(huán)境質(zhì)量控制目標(biāo)列為約束性指標(biāo),逐漸形成環(huán)境質(zhì)量控制與污染總量控制并行的新形勢(shì),“十四五”期間將進(jìn)一步鞏固和提升環(huán)境質(zhì)量改善成果,其中就包括土壤質(zhì)量與食物安全問(wèn)題,集中的關(guān)鍵科學(xué)問(wèn)題主要有土壤質(zhì)量管理與食物安全評(píng)價(jià)、區(qū)域化土壤質(zhì)量與養(yǎng)分管理、污染物在土壤-作物系統(tǒng)的遷移轉(zhuǎn)化規(guī)律、土壤污染阻控與修復(fù)技術(shù)、土壤生物污染防控、土壤區(qū)域污染特征與環(huán)境風(fēng)險(xiǎn)、食物安全與人體健康風(fēng)險(xiǎn)[40]。

圖6 土壤質(zhì)量與糧食安全關(guān)鍵詞共現(xiàn)網(wǎng)絡(luò)

表1 近5年關(guān)鍵詞突現(xiàn)指標(biāo)

(1)土壤質(zhì)量管理與食物安全評(píng)價(jià)。根據(jù)土壤、作物的監(jiān)測(cè)調(diào)查結(jié)果,需要構(gòu)建土壤質(zhì)量控制和調(diào)節(jié)的方法以及優(yōu)化食物品質(zhì)和數(shù)量安全的評(píng)價(jià)體系[41-42]。

(2)區(qū)域化土壤質(zhì)量與養(yǎng)分管理。即在選定農(nóng)業(yè)研究區(qū)域內(nèi)進(jìn)一步進(jìn)行細(xì)分,以針對(duì)性的短期、長(zhǎng)期農(nóng)業(yè)施肥措施為基礎(chǔ)進(jìn)行精準(zhǔn)土壤養(yǎng)分質(zhì)量管理[43-44]。

(3)污染物在土壤-作物系統(tǒng)的遷移轉(zhuǎn)化規(guī)律。土壤污染最大的風(fēng)險(xiǎn)在于污染物在作物中積累并危及人類(lèi)健康,需明確土壤與作物復(fù)雜的交互作用對(duì)污染物遷移和積累的影響,以便制定應(yīng)對(duì)措施[4,25,45-46]。

(4)土壤污染阻控與修復(fù)技術(shù)。強(qiáng)調(diào)以降低有機(jī)、無(wú)機(jī)污染物在土壤中的生物有效性為主要目的的修復(fù)過(guò)程,使污染物盡可能少地進(jìn)入農(nóng)產(chǎn)品中,主要包括物理(客土、整地)、化學(xué)(鈍化、淋洗)修復(fù)技術(shù)和新興的生態(tài)修復(fù)措施[11,47-48]。

(5)土壤生物污染防控。不同于有機(jī)、無(wú)機(jī)污染,外源和土著病原體及其所攜帶的抗性基因?qū)ψ魑锂a(chǎn)量影響的監(jiān)測(cè)相對(duì)比較困難,外源病原菌一旦進(jìn)入土壤等自然環(huán)境,將極易造成生物污染,其在土壤中的存活時(shí)間越長(zhǎng),則對(duì)農(nóng)產(chǎn)品、生態(tài)環(huán)境和人類(lèi)健康的潛在風(fēng)險(xiǎn)就越大[49],亟需明確其在土壤中的成活時(shí)間、傳播途徑、演化機(jī)制及其影響因子,以制定針對(duì)性的防治方案[50]。

(6)土壤區(qū)域污染特征與環(huán)境風(fēng)險(xiǎn)。過(guò)去的研究對(duì)土壤質(zhì)量分區(qū)的科學(xué)性不足,分類(lèi)過(guò)于粗糙、缺乏統(tǒng)一規(guī)范,為土壤污染分級(jí)管控帶來(lái)困難,在“十四五”期間需重點(diǎn)對(duì)污染區(qū)域進(jìn)行更科學(xué)合理的空間類(lèi)型與空間單元?jiǎng)澐郑员銓?shí)施進(jìn)一步的精細(xì)化管治措施[51],如對(duì)典型污染區(qū)域中土壤污染物進(jìn)行源解析,明確污染物空間分布特征及關(guān)鍵成因,了解污染物持續(xù)輸入或消減的過(guò)程中對(duì)環(huán)境生態(tài)系統(tǒng)的影響和風(fēng)險(xiǎn)[6]。

(7)食物安全與人體健康風(fēng)險(xiǎn)。由于土壤中的有機(jī)、無(wú)機(jī)、生物污染物破壞土壤生態(tài)系統(tǒng),影響作物品質(zhì)和安全,且會(huì)通過(guò)食物鏈進(jìn)入人體積累,過(guò)量時(shí)引起健康危害,因此相應(yīng)的模型評(píng)估及管控措施的研究非常有必要,要盡快統(tǒng)一食物安全風(fēng)險(xiǎn)評(píng)估標(biāo)準(zhǔn)[52-53]。

2.2 國(guó)際研究趨勢(shì)及理論前沿分析

2.2.1 土壤質(zhì)量的研究前瞻 在土壤質(zhì)量研究方面,國(guó)際上對(duì)土壤質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)體系建立[38]、評(píng)價(jià)模型方法等的關(guān)注度越來(lái)越高,同時(shí)也開(kāi)始注重改善土壤質(zhì)量在農(nóng)業(yè)和環(huán)境中的應(yīng)用,以及在全球范圍內(nèi)開(kāi)展不同尺度的土壤質(zhì)量評(píng)價(jià)工作[54-55]。當(dāng)前,有機(jī)農(nóng)業(yè)與農(nóng)業(yè)固碳在全球氣候變化(尤其是全球變暖)中的作用受到廣泛關(guān)注,且以生物質(zhì)炭為研究主體的土壤修復(fù)與土壤質(zhì)量關(guān)系研究迅速崛起[56]。此外,土壤質(zhì)量監(jiān)測(cè)及其對(duì)土壤修復(fù)、全球氣候變化的響應(yīng)也是未來(lái)研究的重點(diǎn)。國(guó)際上土壤質(zhì)量方面研究發(fā)展的主要趨勢(shì)包括[42]:(1)發(fā)展中國(guó)家將在土壤質(zhì)量研究領(lǐng)域中發(fā)揮越來(lái)越重要的作用;(2)土壤質(zhì)量對(duì)土壤修復(fù)、全球氣候變化的響應(yīng)以及應(yīng)對(duì)措施成為未來(lái)的研究熱點(diǎn);(3)不同國(guó)家及地區(qū)應(yīng)根據(jù)自身特點(diǎn)進(jìn)行區(qū)域土壤質(zhì)量的監(jiān)測(cè)、評(píng)價(jià)、修復(fù)研究,制定相關(guān)法律和政策,保障土壤管理的規(guī)范化和可持續(xù)化。我國(guó)在“十四五”期間也將繼續(xù)立足生態(tài)環(huán)境保護(hù)的實(shí)際需求,重點(diǎn)攻堅(jiān)土壤污染治理和修復(fù)工程,引進(jìn)國(guó)際人才的同時(shí)加強(qiáng)本土相關(guān)專(zhuān)業(yè)人才的培養(yǎng),致力于打造高水平的創(chuàng)新研究團(tuán)隊(duì),全面建立土壤環(huán)境質(zhì)量監(jiān)測(cè)網(wǎng)絡(luò),健全土壤污染防治相關(guān)技術(shù)標(biāo)準(zhǔn),推進(jìn)土壤污染綜合防治先行區(qū)建設(shè)和土壤污染治理與修復(fù)技術(shù)應(yīng)用試點(diǎn)項(xiàng)目,加強(qiáng)污染土地安全利用管理以防范和降低食物安全風(fēng)險(xiǎn),特別是發(fā)揮農(nóng)田土壤在農(nóng)業(yè)空間中的生態(tài)功能等[57]。

2.2.2 土壤質(zhì)量與食物安全的研究前瞻 在土壤質(zhì)量與食物安全方面,國(guó)際研究者在保障農(nóng)業(yè)可持續(xù)發(fā)展和滿足食物需求的基礎(chǔ)上,以食物安全性作為研究熱點(diǎn),主要表現(xiàn)為控制食品中污染物的含量,降低人體健康風(fēng)險(xiǎn)[58]。超過(guò)土壤承載和自凈能力的土壤污染是引起土壤質(zhì)量下降的重要因素[59],對(duì)其污染來(lái)源、過(guò)程、環(huán)境行為、效應(yīng)及修復(fù)機(jī)理的研究應(yīng)當(dāng)予以深入,并以解決實(shí)際生產(chǎn)問(wèn)題為導(dǎo)向[51,60]。以中國(guó)為首的發(fā)展中國(guó)家,由于人口眾多,土地資源緊張,一直受到環(huán)境問(wèn)題和糧食問(wèn)題的雙重困擾。進(jìn)入21 世紀(jì)以來(lái),糧食問(wèn)題與環(huán)境問(wèn)題之間的矛盾日益突出,更引發(fā)了各國(guó)對(duì)土壤質(zhì)量的關(guān)注,致力于尋求一條可持續(xù)發(fā)展的道路。在全球化背景下,國(guó)際研究的趨勢(shì)和理論前沿包括:(1)土壤污染源解析[61-62];(2)土壤區(qū)域污染特征與人體健康風(fēng)險(xiǎn);(3)土壤污染過(guò)程與機(jī)制;(4)土壤污染生態(tài)效應(yīng);(5)土壤污染修復(fù)機(jī)理及應(yīng)用推廣。例如,在土壤重金屬區(qū)域污染特征與源解析的研究中,現(xiàn)有手段僅對(duì)部分污染物具有較高的辨識(shí)能力與精度[63-64],但借助不斷發(fā)展的同位素分餾[65]等先進(jìn)技術(shù),有望更接近真實(shí)地表征實(shí)際污染土壤中復(fù)雜的污染特征,以更精確地判斷污染源。同時(shí),在典型重金屬與有機(jī)污染物的土壤污染過(guò)程、效應(yīng)與機(jī)制的研究中,后續(xù)工作一方面迫切需要在宏觀尺度上著眼于生態(tài)系統(tǒng)網(wǎng)絡(luò)的復(fù)雜效應(yīng),進(jìn)一步強(qiáng)調(diào)多要素-多界面-多過(guò)程的耦合,另一方面也需要在微觀尺度下借助分子生物學(xué)的迅猛發(fā)展,重點(diǎn)關(guān)注土壤生態(tài)功能(包括作物、土壤微生物和土壤動(dòng)物)基因水平上的介導(dǎo)機(jī)制[66]。此外,在重金屬污染土壤的綜合修復(fù)技術(shù)方面,應(yīng)以植物生長(zhǎng)與土壤污染的內(nèi)在聯(lián)系為基礎(chǔ)突出多種措施的聯(lián)合應(yīng)用,特別是對(duì)植物生理與分子機(jī)制方面的修復(fù)效果給與更多的關(guān)注[67]。值得注意的是,談及土壤污染修復(fù),土傳病原微生物等造成的生物污染往往容易忽視,未來(lái)的重點(diǎn)在于以分子生物學(xué)手段建立土壤微生物多樣性與土傳病害、寄主植物與病原微生物間的定量關(guān)系,通過(guò)選育抗病作物品種和接種拮抗微生物等環(huán)境友好型技術(shù)手段實(shí)現(xiàn)生物防控[68]。

2.3 學(xué)科交叉優(yōu)先領(lǐng)域

由于土壤質(zhì)量與食物安全這一分支學(xué)科的基礎(chǔ)數(shù)據(jù)涵蓋了農(nóng)業(yè)、環(huán)境、化學(xué)、醫(yī)學(xué)等方面,需要用到信息技術(shù)(地理及生物信息)和工程手段來(lái)實(shí)現(xiàn)研究目標(biāo),因此這些學(xué)科與本學(xué)科經(jīng)常相互借鑒、交叉和融合,從而促進(jìn)相關(guān)研究的發(fā)展。當(dāng)前條件下,有可能取得重大突破、解決重大污染、生態(tài)和災(zāi)害問(wèn)題的優(yōu)先領(lǐng)域主要為以下兩個(gè)部分:

2.3.1 學(xué)科內(nèi)部交叉的優(yōu)先領(lǐng)域 主要是與土壤化學(xué)、土壤生物學(xué)、土壤肥力與養(yǎng)分循環(huán)、土壤污染與修復(fù)的交叉,圍繞土壤污染過(guò)程與土壤微生物的相互作用,探究土壤污染背景下微生物群落結(jié)構(gòu)多樣性和功能的演變及生態(tài)效應(yīng)變化,在分子生物學(xué)基因水平上揭示重金屬、有機(jī)和生物污染物對(duì)土壤關(guān)鍵功能微生物群落結(jié)構(gòu)的影響及其長(zhǎng)期動(dòng)態(tài)演化過(guò)程[69]。其次,利用同步輻射、同位素標(biāo)記及基因組學(xué)等先進(jìn)技術(shù)手段,探究微觀尺度下重金屬(如鎘、砷等)、有機(jī)污染物(如有機(jī)氯農(nóng)藥等)、病原生物(如大腸桿菌、立枯絲核菌、尖孢鐮刀菌等)與土壤礦物-有機(jī)質(zhì)-微生物相互作用的多界面過(guò)程與機(jī)理[70]。在明確植物和微生物系統(tǒng)中響應(yīng)污染的相關(guān)功能基因表達(dá)機(jī)制基礎(chǔ)上,利用轉(zhuǎn)基因技術(shù)修飾改造植物或微生物,獲得污染土壤的生物高效修復(fù)技術(shù)[71];同時(shí)在土壤污染修復(fù)過(guò)程中根據(jù)土壤微生物的響應(yīng)特征,盡可能降低原位修復(fù)過(guò)程對(duì)微生物群落結(jié)構(gòu)和生態(tài)功能的擾動(dòng)。

2.3.2 與其他學(xué)科交叉的優(yōu)先領(lǐng)域 這些領(lǐng)域涉及廣泛,主要為應(yīng)用數(shù)學(xué)、醫(yī)學(xué)、地理信息學(xué)等。全球土壤污染問(wèn)題呈現(xiàn)惡化趨勢(shì),進(jìn)而影響了農(nóng)作物的品質(zhì)(產(chǎn)量和污染物含量)以及攝入后的人體健康風(fēng)險(xiǎn)[72]。相比于有機(jī)污染物在農(nóng)產(chǎn)品表面的殘留,土壤重金屬污染物及病原菌更容易通過(guò)作物攝取而通過(guò)食物鏈進(jìn)入人體,對(duì)人體健康造成危害,但目前缺乏對(duì)人體健康風(fēng)險(xiǎn)的精準(zhǔn)評(píng)價(jià)手段,現(xiàn)階段使用的評(píng)價(jià)模型單一[73],較少考慮人體消化系統(tǒng)(如腸道致病性微生物的毒害)和新陳代謝等復(fù)雜生理活動(dòng),對(duì)人體內(nèi)污染物的吸收、轉(zhuǎn)運(yùn)、積累的機(jī)制缺乏明確認(rèn)識(shí)。因此,與醫(yī)學(xué)的交叉可獲得污染物在人體中傳輸轉(zhuǎn)化的毒理學(xué)規(guī)律,同時(shí)利用多種模擬預(yù)測(cè)的數(shù)學(xué)模型,結(jié)合地理信息獲取的大數(shù)據(jù),理清污染源-環(huán)境介質(zhì)(大氣、水、土壤、作物)-人體傳輸過(guò)程中的耦合作用及交互機(jī)制,可實(shí)現(xiàn)污染源對(duì)人體健康風(fēng)險(xiǎn)影響的量化評(píng)估。在上述研究的基礎(chǔ)上可建立區(qū)域污染物的“源-匯-人體”全過(guò)程動(dòng)態(tài)風(fēng)險(xiǎn)預(yù)測(cè)鏈模型[58],從而實(shí)現(xiàn)針對(duì)性管控土壤污染物的主要污染源,降低人體健康風(fēng)險(xiǎn),為預(yù)防和治理土壤污染提供新的重要思路和應(yīng)對(duì)機(jī)制,促進(jìn)區(qū)域環(huán)境與人體健康可持續(xù)發(fā)展。

3 學(xué)科展望

基于上述土壤質(zhì)量與食物安全分支學(xué)科的發(fā)展現(xiàn)狀、關(guān)鍵需求、理論前沿和重點(diǎn)交叉方向,到2025年有希望和必要形成的引領(lǐng)性研究方向總結(jié)如下:

(1)區(qū)域土壤污染特征及環(huán)境健康風(fēng)險(xiǎn)。包括對(duì)重金屬、有機(jī)、生物等污染物的原位測(cè)定技術(shù)的革新,區(qū)域尺度土壤及農(nóng)產(chǎn)品污染特征時(shí)空變異的表達(dá),主要污染物的溯源及定量解析,土壤-作物系統(tǒng)中污染物遷移規(guī)律及空間對(duì)應(yīng)機(jī)制的探索,不同污染物的“源-匯-人體”全過(guò)程動(dòng)態(tài)風(fēng)險(xiǎn)預(yù)測(cè)鏈模型的建立,以及實(shí)現(xiàn)對(duì)不同人群健康風(fēng)險(xiǎn)的動(dòng)態(tài)預(yù)測(cè)[74-75]。

(2)土壤重金屬及重金屬-有機(jī)復(fù)合污染過(guò)程、效應(yīng)及機(jī)制。涵蓋土壤-生物微界面過(guò)程與生物有效性、吸收動(dòng)態(tài)及毒理學(xué)的研究,土壤-作物系統(tǒng)中污染物遷移轉(zhuǎn)化規(guī)律的探討,分子、原子尺度上重金屬結(jié)合形態(tài)、價(jià)態(tài)變化的表征[76],相關(guān)氧化、還原、甲基化過(guò)程的微生物學(xué)機(jī)制揭示以及對(duì)應(yīng)功能基因表達(dá)的測(cè)定,界面過(guò)程中作物和微生物解毒機(jī)制的研究,重金屬?gòu)?fù)合污染、重金屬-有機(jī)復(fù)合污染土壤中污染物間交互作用的明確闡述以及土壤微生物群落對(duì)污染的響應(yīng)、適應(yīng)與反饋調(diào)控機(jī)制的可視化[77]。

(3)土壤系統(tǒng)典型殘留有機(jī)污染物的污染風(fēng)險(xiǎn)評(píng)價(jià)與阻控。包括土壤和農(nóng)產(chǎn)品中殘留的農(nóng)藥等有機(jī)污染物及其降解產(chǎn)物全程監(jiān)控、土壤地下生物系統(tǒng)響應(yīng)有機(jī)污染及不同類(lèi)型土壤有機(jī)污染物自凈功能的調(diào)控、農(nóng)藥等有機(jī)污染物在農(nóng)田系統(tǒng)殘留的暴露與風(fēng)險(xiǎn),生源要素循環(huán)耦合的有機(jī)污染物強(qiáng)化消減與阻控修復(fù)工程化技術(shù)等。

(4)土壤系統(tǒng)新型有機(jī)/生物污染與風(fēng)險(xiǎn)防控。主要為農(nóng)業(yè)土壤酞酸酯污染區(qū)域特征與風(fēng)險(xiǎn)評(píng)估的研究,不同設(shè)施種植模式下土壤新型有機(jī)物污染特征與源解析的探索[78],殘膜分解中微塑料和酞酸酯的土壤累積、生態(tài)效應(yīng)與機(jī)理的揭示,不同農(nóng)業(yè)種植模式下生物污染特征與微生物生態(tài)系統(tǒng)多樣性內(nèi)在聯(lián)系、土壤抗性基因庫(kù)潛在轉(zhuǎn)移風(fēng)險(xiǎn)的探討,土壤-植物系統(tǒng)中病原體(細(xì)菌、真菌、病毒)及攜帶的抗性基因污染的分布、遷移規(guī)律與協(xié)同效應(yīng)評(píng)價(jià)體系的建立,抗病作物育種-農(nóng)業(yè)投入品無(wú)害化-田間土壤質(zhì)量管理與生態(tài)防控模式的集成[79-80],以及設(shè)施農(nóng)業(yè)土壤污染源頭防控-過(guò)程治理-末端監(jiān)管全鏈條式高效防控技術(shù)與示范的應(yīng)用和推廣[81]。

(5)保障農(nóng)產(chǎn)品質(zhì)量的污染土壤安全利用技術(shù)原理。涵蓋針對(duì)復(fù)雜污染狀況下以降低土壤污染物(特別是重金屬、農(nóng)藥)生物有效性和同時(shí)提高土壤質(zhì)量為目標(biāo)的環(huán)境友好型土壤改良劑的研發(fā)制備[66],高效富集植物及低積累作物品種的篩選及其生理與分子機(jī)制的研究[82],特定復(fù)合污染區(qū)域特征下土壤-作物-水體系統(tǒng)中立體綜合防治技術(shù)和協(xié)同修復(fù)手段的建立(如重金屬的鈍化、低積累品種篩選、農(nóng)藥的生物降解),以及結(jié)合基因工程技術(shù)實(shí)現(xiàn)適應(yīng)復(fù)雜污染環(huán)境、可對(duì)多種污染物吸附降解的工程細(xì)菌人工培養(yǎng)和安全量產(chǎn)[80,83]。

[ 1 ] Zhao Q G,He J Z,Yan X Y,et al. Progress in significant soil science fields of China over the last three decades:A review[J]. Pedosphere,2011,21(1):1—10.

[ 2 ] Oliver M A. Soil and human health:A review[J]. European Journal of Soil Science,1997,48(4):573—592.

[ 3 ] Liu Y,Wen C,Liu X. China’s food security soiled by contamination[J]. Science,2013,339(6126):1382—1383.

[ 4 ] Zhu H H,Chen C,Xu C,et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution,2016,219:99—106.

[ 5 ] Koptsik G N. Modern approaches to remediation of heavy metal polluted soils:A review[J]. Eurasian Soil Science,2014,47(7):707—722.

[ 6 ] Bedná?ová Z,Kalina J,Hájek O,et al. Spatial distribution and risk assessment of metals in agricultural soils[J]. Geoderma,2016,284:113—121.

[ 7 ] Kaczynski R,Siebielec G,Hanegraaf M C,et al. Modelling soil carbon trends for agriculture development scenarios at regional level[J]. Geoderma,2017,286:104—115.

[ 8 ] Reimann C,Négrel P,Ladenberger A,et al. Comment on “Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment” by Tóth G,Hermann T,Szatmári G,Pásztor L[J]. Science of the Total Environment,2017,578:236—241.

[ 9 ] Mirzaeitalarposhti R,Demyan M S,Rasche F,et al. Mid-infrared spectroscopy to support regional-scale digital soil mapping on selected croplands of South-West Germany[J]. Catena,2017,149:283—293.

[ 10 ] Wang L,Yang D,Li Z,et al. A comprehensive mitigation strategy for heavy metal contamination of farmland around mining areas - Screening of low accumulated cultivars,soil remediation and risk assessment[J]. Environmental Pollution,2018,245:820—828.

[ 11 ] Li Z,Wang L,Meng J,et al. Zeolite-supported nanoscale zero-valent iron:New findings on simultaneous adsorption of Cd(II),Pb(II),and As(III)in aqueous solution and soil[J]. Journal of Hazardous Materials,2018,344:1—11.

[ 12 ] Virto I,Imaz M,F(xiàn)ernández-Ugalde O,et al. Soil degradation and soil quality in western Europe:Current situation and future perspectives[J]. Sustainability,2015,7(1):313—365.

[ 13 ] Eck N J,Waltman L. Software survey:VOSviewer,a computer program for bibliometric mapping[J]. Scientometrics,2010,84(2):523—538.

[ 14 ] Song X F,Chi P J. Comparative study of the data analysis results by vosviewer and citespace[J]. Information Science,2016,34(7):108—112,146. [宋秀芳,遲培娟. Vosviewer與Citespace應(yīng)用比較研究[J]. 情報(bào)科學(xué),2016,34(7):108—112,146.]

[ 15 ] Li B B,Xu M X,Gong C,et al. Hotspots and trends in international soil quality research[J]. Journal of Natural Resources,2017,32(11):1983—1998. [李彬彬,許明祥,鞏晨,等. 國(guó)際土壤質(zhì)量研究熱點(diǎn)與趨勢(shì)——基于大數(shù)據(jù)的Citespace可視化分析[J]. 自然資源學(xué)報(bào),2017,32(11):1983—1998.]

[ 16 ] Paleari S. Is the European Union protecting soil? A critical analysis of community environmental policy and law[J]. Land Use Policy,2017,64:163—173.

[ 17 ] Panagos P,Imeson A,Meusburger K,et al. Soil conservation in Europe:Wish or reality?[J]. Land Degradation & Development,2016,27(6):1547—1551.

[ 18 ] Juhos K,Czigány S,Madarász B,et al. Interpretation of soil quality indicators for land suitability assessment – A multivariate approach for Central European arable soils[J]. Ecological Indicators,2019,99:261—272.

[ 19 ] Stone D,Ritz K,Griffiths B G,et al. Selection of biological indicators appropriate for European soil monitoring[J]. Applied Soil Ecology,2016,97:12—22.

[ 20 ] Song X P,Hansen M C,Stehman S V,et al. Global land change from 1982 to 2016[J]. Nature,2018,560(7720):639—643.

[ 21 ] Davidson G R,Phillips-Housley A,Stevens M T. Soil-zone adsorption of atmospheric CO2as a terrestrial carbon sink[J]. Geochimica Et Cosmochimica Acta,2013,106:44—50.

[ 22 ] Wang M,Zhu Y,Cheng L,et al. Review on utilization of biochar for metal-contaminated soil and sediment remediation[J]. Journal of Environmental Sciences,2017,63(1):156—173.

[ 23 ] Duan Q,Lee J,Liu Y,et al. Distribution of heavy metal pollution in surface soil samples in China:A graphical review[J]. Bulletin of Environmental Contamination and Toxicology,2016,97(3):303—309.

[ 24 ] Tóth G,Hermann T,Da Silva M R,et al. Heavy metals in agricultural soils of the European Union with implications for food safety[J]. Environment International,2016,88:299—309.

[ 25 ] He M,Shen H,Li Z,et al. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety[J]. Environmental Pollution,2019,244:431—439.

[ 26 ] Fisher M C,Hawkins N J,Sanglard D,et al. Worldwide emergence of resistance to antifungal drugs challenges human health and food security[J]. Science,2018,360(6390):739—742.

[ 27 ] Hwang J,Zimmerman A R,Kim J. Bioconcentration factor-based management of soil pesticide residues:Endosulfan uptake by carrot and potato plants[J]. Science of the Total Environment,2018,627:514—522.

[ 28 ] Yang Q,Li Z,Lu X,et al. A review of soil heavy metal pollution from industrial and agricultural regions in China:Pollution and risk assessment[J]. Science of the Total Environment,2018,642:690—700.

[ 29 ] Zhang Y,Chen J,Wang L,et al. Establishing a health risk assessment for metal speciation in soil-A case study in an industrial area in China[J]. Ecotoxicology and Environmental Safety,2018,166:488—497.

[ 30 ] Szeles A,Horvath E,Vad A,et al. The impact of environmental factors on the protein content and yield of maize grain at different nutrient supply levels[J]. Emirates Journal of Food and Agriculture,2018,30(9):764—777.

[ 31 ] Solgi E,Sheikhzadeh H,Solgi M. Role of irrigation water,inorganic and organic fertilizers in soil and crop contamination by potentially hazardous elements in intensive farming systems:Case study from Moghan agro-industry,Iran[J]. Journal of Geochemical Exploration,2018,185:74—80.

[ 32 ] Miraglia M,Marvin H J P,Kleter G A,et al. Climate change and food safety:An emerging issue with special focus on Europe[J]. Food & Chemical Toxicology,2009,47(5):1009—1021.

[ 33 ] Tirado M C,Clarke R,Jaykus L A,et al. Climate change and food safety:A review[J]. Food Research International,2010,43(7):1745—1765.

[ 34 ] Wang J,Lin Y,Glendinning A,et al. Land-use changes and land policies evolution in China’s urbanization processes[J]. Land Use Policy,2018,75:375—387.

[ 35 ] Xiang C,Wang Y,Liu H. A scientometrics review on nonpoint source pollution research[J]. Ecological Engineering,2017,99:400—408.

[ 36 ] Liu L,Li W,Song W,et al. Remediation techniques for heavy metal-contaminated soils:Principles and applicability[J]. Science of the Total Environment,2018,633:206—219.

[ 37 ] Sun J,Pan L,Tsang D C W,et al. Organic contamination and remediation in the agricultural soils of China:A critical review[J]. Science of the Total Environment,2017,615:724—740.

[ 38 ] Song B,Zeng G,Gong J,et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals[J]. Environment International,2017,105:43—55.

[ 39 ] Rickson R J,Deeks L K,Graves A,et al. Input constraints to food production:The impact of soil degradation[J]. Food Security,2015,7(2):351—364.

[ 40 ] Tian X,Qiu J. From challenges to demands and solutions of environmental pollution control in the coming 14th Five-Year Plan period[J]. Chinese Journal of Environmental Management,2019,11(3):46—49. [田欣,秋婕. “十四五”時(shí)期污染物總量控制的挑戰(zhàn)、需求與應(yīng)對(duì)研究[J]. 中國(guó)環(huán)境管理,2019,11(3):46—49.]

[ 41 ] Poggio L,Vr??aj B,Hepperle E,et al. Introducing a method of human health risk evaluation for planning and soil quality management of heavy metal-polluted soils—An example from Grugliasco(Italy)[J]. Landscape and Urban Planning,2008,88(2/4):64—72.

[ 42 ] Bai Z,Thomas C,Ruiperez G M,et al. Effects of agricultural management practices on soil quality:A review of long-term experiments for Europe and China[J]. Agriculture Ecosystems & Environment,2018,265:1—7.

[ 43 ] Tang H,Xiao X,Li C,et al. Impact of long-term fertilization practices on the soil aggregation and humic substances under double-cropped rice fields[J]. Environmental Science & Pollution Research,2018,25(4):11034—11044.

[ 44 ] Moreno J L,Bastida F,Ondo?o S,et al. Agro-forestry management ofplantations and their impact on soil biological quality:The effects of fertilization and irrigation treatments[J]. Applied Soil Ecology,2017,117/118:46—56.

[ 45 ] Wang M,Chen W,Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan,southern China[J]. Chemosphere,2016,144:346—351.

[ 46 ] Zhang X,Yang H,Cui Z. Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings[J]. Journal of Cleaner Production,2018,172:475—480.

[ 47 ] Zhang R,Li Z,Liu X,et al. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar[J]. Ecological Engineering,2017,98:183—188.

[ 48 ] Yoo J,Lee C,Lee J,et al. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals[J]. Journal of Environmental Management,2017,186:314—319.

[ 49 ] Xu J M. Soil Science[M]. 4th ed. Beijing:China Agriculture Press,2019. [徐建明. 土壤學(xué)[M]. 第4版. 北京:中國(guó)農(nóng)業(yè)出版社,2019.]

[ 50 ] Bradford S,Morales V,Zhang W,et al. Transport and fate of microbial pathogens in agricultural settings[J]. Critical Reviews in Environmental Science and Technology,2013,43(8):775—893.

[ 51 ] Gao X L,Liao L W,Wu D X,et al. Strategic direction of regional governance upon eco-environment in the 14th Five-Year Plan[J]. Environmental Protection,2019,47:27—32. [高曉路,廖柳文,吳丹賢,等. “十四五”生態(tài)環(huán)境分區(qū)管治的戰(zhàn)略方向[J]. 環(huán)境保護(hù),2019,47:27—32.]

[ 52 ] Lu Y,Song S,Wang R,et al. Impacts of soil and water pollution on food safety and health risks in China[J]. Environment International,2015,77:5—15.

[ 53 ] Wei J,Cen K. Assessment of human health risk based on characteristics of potential toxic elements (PTEs)contents in foods sold in Beijing,China[J]. Science of the Total Environment,2020,703:134747.

[ 54 ] Mueller L,Schindler U,Shepherd T G,et al. A framework for assessing agricultural soil quality on a global scale[J]. Archives of Agronomy & Soil Science,2012,58:S76—S82.

[ 55 ] Stone D,Costa D,Daniell T J,et al. Using nematode communities to test a European scale soil biological monitoring programme for policy development[J]. Applied Soil Ecology,2016,97:78—85.

[ 56 ] Agegnehu G,Srivastava A K,Bird M I. The role of biochar and biochar-compost in improving soil quality and crop performance:A review[J]. Applied Soil Ecology,2017,119:156—170.

[ 57 ] Liu Z Y,Mao X Q,Jiang H. Directions and strategies of eco-environmental protection during “the 14th Five-Year Plan” period[J]. Environmental Protection,2019,47:37—41. [劉崢延,毛顯強(qiáng),江河. “十四五”時(shí)期生態(tài)環(huán)境保護(hù)重點(diǎn)方向和策略[J]. 環(huán)境保護(hù),2019,47:37—41.]

[ 58 ] Yang S,Zhao J,Chang S X,et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China:A synthesis[J]. Environment International,2019,128:165—174.

[ 59 ] Plekhanova I O. Self-purification of agrosoddy-podzolic sandy loamy soils fertilized with sewage sludge[J]. Eurasian Soil Science,2017,50(4):491—497.

[ 60 ] Jiang R,Wang M,Chen W,et al. Ecological risk evaluation of combined pollution of herbicide siduron and heavy metals in soils[J]. Science of the Total Environment,2018,626:1047—1056.

[ 61 ] Zhang H,Yao Q,Zhu Y,et al. Review of source identification methodologies for heavy metals in solid waste[J]. Chinese Science Bulletin,2013,58(2):162—168.

[ 62 ] Wang C,Wu S,Zhou S,et al. Characteristics and source identification of polycyclic aromatic hydrocarbons(PAHs)in urban soils:A review[J]. Pedosphere,2017,27(1):17—26.

[ 63 ] Reimann C,de Caritat P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil[J]. Science of the Total Environment,2017,578:633—648.

[ 64 ] St. Luce M,Ziadi N,Gagnon B,et al. Visible near infrared reflectance spectroscopy prediction of soil heavy metal concentrations in paper mill biosolid- and liming by-product-amended agricultural soils[J]. Geoderma,2017,288:23—36.

[ 65 ] Wang W,Song X,Ma Y. Identification of nitrate source using isotopic and geochemical data in the lower reaches of the Yellow River irrigation district(China)[J]. Environmental Earth Sciences,2016,75(11):936.

[ 66 ] Li Z,Wang L,Wu J,et al. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium,lead,and arsenic in farmland soils:Encapsulation mechanisms and indigenous microbial responses[J]. Environmental Pollution,2020,260:114098.

[ 67 ] Jiang J,Liu H,Li Q,et al. Combined remediation of Cd–phenanthrene co-contaminated soil byandFQ1 and the antioxidant responses in[J]. Ecotoxicology & Environmental Safety,2015,120:386—393.

[ 68 ] Cai Z C,Huang X Q. Soil-borne pathogens should not be ignored by soil science[J]. Acta Pedologica Sinica,2016,53(2):305—310. [蔡祖聰,黃新琦. 土壤學(xué)不應(yīng)忽視對(duì)作物土傳病原微生物的研究[J]. 土壤學(xué)報(bào),2016,53(2):305—310.]

[ 69 ] Xie Y,F(xiàn)an J,Zhu W,et al. Effect of heavy metals pollution on soil microbial diversity and Bermudagrass genetic variation[J]. Frontiers in Plant Science,2016,7(245):1—12.

[ 70 ] Xia S,Song Z,Jeyakumar P,et al. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater[J]. Critical Reviews in Environmental Science and Technology,2019,49(12):1027—1078.

[ 71 ] Manoj S,Karthik C,Kadirvelu K,et al. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria:A review[J]. Journal of Environmental Management,2020,254:109779.

[ 72 ] Rehman Z U,Khan S,Brusseau M L,et al. Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan[J]. Chemosphere,2017,168:1589—1596.

[ 73 ] Liu X,Zhong L,Meng J,et al. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health[J]. Environmental Pollution,2018,239:308—317.

[ 74 ] Wang P,Chen H,Kopittke P,et al. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution,2019,249:1038—1048.

[ 75 ] Yang S,He M,Zhi Y,et al. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities[J]. Environment International,2019,133(B):105239.

[ 76 ] Kopittke P M,Wang P,Lombi E,et al. Synchrotron-based X-ray approaches for examining toxic trace metal(loid)s in soil–plant systems[J]. Journal of Environmental Quality,2017,46(6):1175—1189.

[ 77 ] Xiao S,Zhang Q,Chen X,et al. Speciation distribution of heavy metals in uranium mining impacted soils and impact on bacterial community revealed by high-throughput sequencing[J]. Frontiers in Microbiology,2019,10:1867.

[ 78 ] Zhang Y,Wang P,Wang L,et al. The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China[J]. Science of the Total Environment,2015,506:118—125.

[ 79 ] Salanoubat M,Genin S,Artiguenave F,et al. Genome sequence of the plant pathogen[J]. Nature,2002,415(6871):497—502.

[ 80 ] Zhao F J,Xie W Y,Wang P. Soil and human health[J]. Acta Pedologica Sinica,2020,57(1):1—11. [趙方杰,謝婉瀅,汪鵬. 土壤與人體健康[J]. 土壤學(xué)報(bào),2020,57(1):1—11.]

[ 81 ] Ma Y,Liu Z,Xi B,et al. Characteristics of groundwater pollution in a vegetable cultivation area of typical facility agriculture in a developed city[J]. Ecological Indicators,2019,105:709—716.

[ 82 ] Guo H,Hong C,Xiao M,et al. Real-time kinetics of cadmium transport and transcriptomic analysis in low cadmium accumulator[J]. Planta,2016,244(6):1289—1302.

[ 83 ] Liu L,Bilal M,Duan X,et al. Mitigation of environmental pollution by genetically engineered bacteria - Current challenges and future perspectives.[J]. Science of the Total Environment,2019,667:444—454.

Frontier Trends and Development Strategies of Soil Quality and Food Safety in the 14th Five-Year Plan

XU Jianming1, 2?, LIU Xingmei1, 2

(1. Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China; 2. Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China)

The comprehensive evaluation and improvement of soil quality are closely linked with food security and human health. As an important component of the development strategy of soil science during the 14th Five-Year Plan, the subdiscipline about the soil quality and food security is making contribution to govern and improve the quality of cultivated soil, which will cope with the food security crisis. The results of bibliometric analysis show that although China has started late in the research of this subdiscipline compared with the developed countries, it is accelerating upward and even has the tendency to surpass all of the other countries in recent years. With the erupting of the climate and environmental pollution issues, the international research hotpots of this subdiscipline are mainly focused on the environmental monitoring, soil utilization, fertilization management, remediation of pollution (heavy metal (loid), antibiotic, organic pesticide, and pathogenic microorganism) and sustainable development. Meanwhile, this subdiscipline takes the soil quality, soil pollution, and food security as the key research directions. Combined with the fields of geomatics, environmental science, applied mathematics, and medicine to form new prior interdisciplines, this subdiscipline can utilize their advanced theories and techniques of isotope tracer, biogeochemical cycling, molecular biology, and health risk model to solve some key scientific problems in the soil quality monitoring under regional scale, quality management of soil nutrients, human health risk assessment, migration and transformation of pollutants in soil-crop systems, and immobilization and remediation of soil pollution in the future.

Soil quality; Food security; Soil pollution; Bibliometric analysis; Future demand

S15

A

10.11766/trxb202003300110

徐建明,劉杏梅. “十四五”土壤質(zhì)量與食物安全前沿趨勢(shì)與發(fā)展戰(zhàn)略[J]. 土壤學(xué)報(bào),2020,57(5):1143–1154.

XU Jianming,LIU Xingmei. Frontier Trends and Development Strategies of Soil Quality and Food Safety in the 14th Five-Year Plan [J]. Acta Pedologica Sinica,2020,57(5):1143–1154.

* 國(guó)家自然科學(xué)基金創(chuàng)新研究群體項(xiàng)目(41721001)和重大項(xiàng)目(41991334)資助 Supported by the National Natural Science Foundation of China Innovation Research Group Project(No. 41721001)and the Major Program of the National Natural Science Foundation of China(No. 41991334)

,E-mail:jmxu@zju.edu.cn

徐建明(1965—),男,浙江桐鄉(xiāng)人,博士,教授,主要從事土壤化學(xué)與生物化學(xué)、土壤污染控制與修復(fù)、產(chǎn)地環(huán)境質(zhì)量與農(nóng)產(chǎn)品安全等領(lǐng)域的研究。

2020–03–30;

2020–05–03;

優(yōu)先數(shù)字出版日期(www.cnki.net):2020–05–26

(責(zé)任編輯:陳德明)

猜你喜歡
污染質(zhì)量研究
FMS與YBT相關(guān)性的實(shí)證研究
“質(zhì)量”知識(shí)鞏固
遼代千人邑研究述論
質(zhì)量守恒定律考什么
視錯(cuò)覺(jué)在平面設(shè)計(jì)中的應(yīng)用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
做夢(mèng)導(dǎo)致睡眠質(zhì)量差嗎
EMA伺服控制系統(tǒng)研究
堅(jiān)決打好污染防治攻堅(jiān)戰(zhàn)
堅(jiān)決打好污染防治攻堅(jiān)戰(zhàn)
質(zhì)量投訴超六成
主站蜘蛛池模板: 一个色综合久久| 无码国内精品人妻少妇蜜桃视频| 日本日韩欧美| 婷婷亚洲综合五月天在线| 伊人久久久久久久| 国产成人成人一区二区| 亚洲国产中文欧美在线人成大黄瓜| 久久这里只有精品2| 精品人妻一区二区三区蜜桃AⅤ | 久久国产精品波多野结衣| 国产永久免费视频m3u8| 国产香蕉一区二区在线网站| 亚洲精品天堂自在久久77| 狠狠色狠狠综合久久| 亚洲乱伦视频| 国产草草影院18成年视频| 国产国语一级毛片在线视频| 91口爆吞精国产对白第三集 | 亚洲第一黄色网| 中文字幕有乳无码| 国产XXXX做受性欧美88| 久久久精品无码一区二区三区| 欧美午夜网| 国产成人91精品| 国产成人av一区二区三区| 国产成人精品三级| 国产三级毛片| 国产精品毛片在线直播完整版| 在线毛片网站| 成年网址网站在线观看| 国产精品护士| 国产免费怡红院视频| 狠狠色成人综合首页| 一区二区在线视频免费观看| 国产成人在线小视频| 国产91蝌蚪窝| 第九色区aⅴ天堂久久香| 人妻一区二区三区无码精品一区| 亚洲成人黄色网址| 一级高清毛片免费a级高清毛片| 欧美成在线视频| 国产h视频在线观看视频| 欧美97色| 2024av在线无码中文最新| 国产丝袜丝视频在线观看| 色综合中文综合网| 亚洲天堂在线视频| 国产第一福利影院| 三上悠亚在线精品二区| 一级毛片在线播放| 亚洲人成人无码www| 国产XXXX做受性欧美88| 成人午夜精品一级毛片| 亚洲天堂网视频| 夜夜操国产| 114级毛片免费观看| 又爽又大又黄a级毛片在线视频| 亚洲天堂自拍| 精品福利视频网| 欧美一级高清视频在线播放| 国产网站免费| 亚洲人成色77777在线观看| 精品伊人久久大香线蕉网站| 国内精品自在欧美一区| 亚洲色无码专线精品观看| 国产香蕉97碰碰视频VA碰碰看| 国产小视频免费| 东京热av无码电影一区二区| 欧美国产菊爆免费观看| 亚洲成在线观看| 亚洲国产中文在线二区三区免| 成人国产三级在线播放| 日韩av无码精品专区| 极品私人尤物在线精品首页| 99国产精品免费观看视频| 亚洲欧美日本国产专区一区| 色综合色国产热无码一| 国产91精品最新在线播放| 亚洲欧美自拍视频| 在线观看精品自拍视频| 国产无码精品在线| 国产女人18水真多毛片18精品|