999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

新疆干旱區成齡核桃滴灌制度優化

2020-09-20 14:09:24虎膽吐馬爾白米力夏提米那多拉
農業工程學報 2020年15期
關鍵詞:制度模型

虎膽·吐馬爾白,焦 萍,米力夏提·米那多拉

新疆干旱區成齡核桃滴灌制度優化

虎膽·吐馬爾白,焦 萍,米力夏提·米那多拉

(新疆農業大學水利與土木工程學院,烏魯木齊 830052)

科學合理的灌溉制度是提高灌水利用效率的主要因素。該研究采用HYDRUS-2D模型結合尋優模型相結合的方法,研究新疆核桃滴灌優化制度。利用2018年和2019年定點觀測土壤水分數據進行模型率定與驗證;利用模型設定128種情景進行模擬研究,分析南疆干旱區滴灌成齡核桃不同灌溉制度下的深層滲漏和水分脅迫。應用模型結合灌溉制度尋優函數探求滴灌條件下成齡核桃各灌溉制度土壤水分通量。結果表明:HYDRUS-2D模型模擬土壤含水率精度較高,2為83.03%~83.73%,均方根誤差在0.016~0.017 cm3/cm3范圍。根據模型模擬結果,推薦新疆干旱區核桃滴灌制度為灌水定額35 mm,灌溉11次,灌水周期9 d,灌溉定額385 mm或者灌水定額50 mm,灌溉7次,灌水周期14 d,灌溉定額350 mm,在以上滴灌制度下,可最大限度減少農田水分損失和提高灌水利用效率。該研究可為制定南疆滴灌條件下成齡核桃適宜灌溉制度提供參考。

灌溉;優化;新疆;干旱區;核桃;滴灌制度;HYDRUS-2D

0 引 言

對處于典型干旱區的南疆地區來說,灌溉是決定其作物產量的關鍵因素[1]。適宜的灌溉制度不僅可以維持作物產量,而且可以提高作物水分利用效率,實現有限水資源高效利用。作物灌溉制度包括全生育期灌水次數、灌水周期、灌水定額和灌溉定額。確定灌溉制度的常用方法為小區試驗[2],但大田試驗耗時費力,易受天氣影響。因HYDRUS模型對土壤水鹽熱運移模擬的精確度高,模型可靠等優點[3-6]。很多學者都將其用于田間土壤水分的運移模擬[7-9]及灌溉制度的研究[10-14]。如,楊鵬年等[15]對干旱區不同地下水埋深膜下滴灌灌溉制度做了模擬研究,蔣光昱等[16]對疏勒河流域的辣椒灌溉制度做了優化分析,得到了畦灌條件下的灌溉制度,劉曉媛等[17]模擬冬小麥夏玉米節水灌溉模式下的土壤水分運移,得出了夏玉米、冬小麥季的灌溉量,王在敏等[18]對棉花微咸水膜下的滴灌灌溉制度做了優化。在農田中,作物生長耗水量主要源自降雨和灌溉,農田水分消耗包括蒸發、蒸騰和深層滲漏等[19]。HYDRUS-2D模型中包括的土壤水分動力學模型、根系吸水模型和蒸發蒸騰模型3個模塊可以精確模擬蒸發、蒸騰和深層滲漏。以深層滲漏量較小又無水分脅迫為判斷標準,減少無效農田水分消耗,提高灌溉水利用效率,可以解決大田試驗費時耗力和南疆成齡核桃樹灌溉水利用率低等問題。因此,通過模擬計算不同灌溉制度下的深層滲漏量與作物水分脅迫量確定最優灌溉制度,利用模型研究作物耗水規律,不受其研究地域影響,大大縮短試驗周期,增加試驗變量,可排除干擾因子,最終得到試驗因素間的關系[20]。本研究擬將HYDRUS-2D模型與成齡核桃田間滴灌灌溉制度尋優相結合,模擬各灌溉制度情景方案下的田間水分通量來選擇最適宜的滴灌灌溉制度,以期為南疆滴灌成齡核桃灌溉提供理論指導和科學依據。

1 材料與方法

1.1 研究區概況

研究區位于新疆阿克蘇地區紅旗坡農場,地處天山南坡中段,塔里木盆地邊緣。地理坐標為80°20′E,41°16′N,該地海拔1 130 m,屬暖溫帶干旱性氣候,年內及晝夜氣溫值變化較大,多年平均太陽總輻射量544.115~590.156 kJ/cm2,多年平均日照時數2 855~2 967 h,無霜期達205~219 d,多年平均降水量42.4~94.4 mm,多年平均氣溫11.2 ℃,年有效積溫為3 950 ℃。試驗區面積6 666.7 m2,0~120 cm土壤平均干容重1.39 g/cm3、田間持水量19.44%。地下水埋深在6 m以下,水質符合灌溉水質標準(GB5084-2005)。

1.2 試驗設計

試驗樣本樹為11 a成齡核桃樹,品種為“溫185”,屬早熟紙皮核桃。種植密度為1 667株/hm2,株行距為2 m×3 m。每年4月初開始進入新的生育周期,8月下旬進行采收。采用地表滴灌充分灌溉,灌水次數為8次(表1)。模擬基礎數據為2018年、2019年2 a的實測數據。生育期內對果樹進行常規施肥(溝施及隨水施肥),氮肥400 g/株、磷肥200 g/株、鉀肥200 g/株,定期除去雜草。滴灌帶為新疆坎兒井公司生產,滴頭流量為3.2 L/h,滴頭間距20 cm。滴灌帶距樹40 cm,一行兩管式鋪設。

表1 核桃灌溉制度

1.3 試驗測定項目

試驗小區為無底自由排水邊界的測坑(長3 m,寬2 m,高4 m),測坑內核桃樹種植與大田一致,測坑內土體為原狀土,土壤試驗設定3組重復(3個測坑)。試驗測定項目如下:

1)土壤含水率采用剖面土壤水分傳感器(TRIME-PICO-IPH,IMKO Inc.,Germany)測定。水平方向每40 cm設監測管,測定距離150 cm;垂直方向每10 cm設監測點,測定深度100 cm。

2)棵間土壤蒸發采用微型蒸滲儀測定,每天10:00左右測定1次,利用精度0.01 g的電子天平稱質量。微型蒸滲儀用直徑110 mm的PVC管制成,高度15 cm,為保持與田間土壤水分的交換,底部用1 mm間隔的網包扎封底。將微型蒸滲儀放入預埋管中,頂部與地面平齊。預埋管為直徑125 mm的PVC管,高度20 cm。每2~3 d更換1次微型蒸滲儀中的土壤。

3)根長密度采用分段分層掘進法,采用Delta-T scan(CB50EJ,Cambridge,UK)軟件計算根長密度。以30 cm×30 cm×10 cm的單元體取樣,取至行間150 cm,深度取至100 cm止。將核桃根長密度在核桃樹行方向進行平均,得到核桃樹二維根長密度分布函數。

4)葉面積指數(Leaf Area Index,LAI)采用Hemiview冠層分析系統(Delta-T,Self Levelling Mount SLM8,UK)每月對核桃樹冠層定期(15 d)測定1次,測定位置距樹干80 cm,選擇東西南北4個方向擇定,取四個方向核桃樹葉面積指數的平均值。

5)氣象數據根據試驗站架設的微型氣象站(Watch Dog2000,Spectrum,USA)測定,每30 min記錄1次,包括太陽輻射、氣溫、相對濕度、風速及降雨量等。2018年和2019年核桃生育期內有效降雨、灌水量及日均蒸騰速率如圖1所示。

圖1 2018和2019年各因子動態變化

2 模型構建與驗證

2.1 模型構建

2.1.1 土壤水分運動方程

采用HYDRUS-2D V 2.X版本軟件,二維土壤水分運動方程表示如下:

式中為水平向坐標,cm;為垂向坐標,cm;為時間,h;為土壤體積含水率,%;()為土壤水分運動擴散率,cm3/h;()為非飽和土壤導水率,cm/h;為根系吸水匯源項,1/h。

土壤水分運動方程的初始條件:以灌水前測定的剖面土壤含水率為初始含水率,水平向坐標同一土層內取平均值。

θ(,,0)=0n,0≤≤150 cm,0≤≤100 cm,=1,…,10(2)

式中θ為第層土壤實測體積含水率,%;0n為=0時土壤體積含水率,%;為土層數,共10層。

邊界條件設定:不灌水時,上邊界為大氣邊界。上邊界的其余部分(R≤≤150 cm)始終為大氣邊界。R為飽和半徑,本研究中實測飽和半徑為4.2 cm。大氣邊界土壤水分運動主要取決于降水或地面蒸發,為第一、二、三類邊界,隨著時間變化,可在各類邊界之間相互轉化。考慮地下水埋深大于6 m的情況,下邊界假定為自由排水邊界條件。左右邊界(=0、150 cm)處,假定為不透水邊界,即零通量邊界[23]。

上邊界條件:

下邊界條件:

左右邊界條件:

式中()為蒸發強度,cm/min;()為入滲強度,為滴頭流量與單位長度滴灌管表面積的比值, cm/min,。

2.1.2 根系吸水模型

式(1)中的采用Feddes等[21]提出的根系吸水模型計算:

=()S(6)

式中()為土壤水勢指定相應函數(0≤≤1);S為潛在根系吸水速率,1/h;(,)為根長密度分布函數;S為與蒸騰相關的土壤表面寬度,cm;T為潛在蒸騰強度,cm/h。

式中XZ為根系在和方向上最大根系伸展深度,cm。采用2018年根系實測數據利用DPS軟件進行二次多項式回歸擬合,獲得擬合參數P為1P為1.20為45.83x為1.78,擬合精度2為0.87。

根據試驗地土壤質地和機械組成,使用HYDRUS-2D軟件自帶的Rosetta軟件通過人工神經網絡預測得出各土層水力特性參數(土壤殘余含水率、土壤飽和含水率、飽和導水率、模型參數和)。以2019年土壤含水率數據為率定數據,以2018年土壤含水率數據為驗證數據,得到優化后的參數見表2。其中顆粒組成為實測結果,美國農業部土壤質地三角形篩分土粒,進行土壤顆粒劃分。

表2 模型參數求解結果

采用Penman-Monteith公式計算參考作物蒸騰量[22],公式如下:

式中ET0為參考作物蒸騰量,mm/d;R為作物表面凈輻射,MJ/(m2·d);為土壤熱通量,MJ/(m2·d);為平均空氣溫度,℃;2為2 m高度風速,m/s;(e?e)為水汽壓差,kPa;為水汽壓-溫度關系曲線的斜率,kPa/℃;為濕度計常數,kPa/℃;900為轉換系數。

作物潛在蒸散量采用單作物系數法計算,公式如下[22]:

ETc=KET0=T+E=ETc(1?e?0.6LAI)+ETce?0.6LAI(10)

式中ETc為作物潛在蒸散量,mm/d;K為實際作物系數,根據文獻[2]確定,%;T單位為mm/h;E為土壤潛在蒸發,mm/d;LAI為葉面積指數,%。農田耗水量計算采用水量平衡法計算,其中地下水補給量為0。

2.2 灌溉制度尋優模型

灌溉制度尋優目標函數如下:

式中DP為深層滲漏量,mm;WS為水分脅迫量,mm;為灌水時間間隔(=5,6,…,20),d;為灌水定額(=30,35,…,65),mm;為尋優目標函數值,值越小,灌溉制度越優。

通常情況下,當土壤含水率小于60%的田間持水量時,會產生水分脅迫影響。核桃生育期內水分總脅迫量計算公式如下[16]:

3 結果與分析

3.1 HYDRUS-2D模型模擬結果驗證

土壤體積含水率實測值與模擬值比較如圖2所示,2019年率定階段均方根誤差(Root Mean Square Error,RMSE)為0.016 cm3/cm3,2=83.03%;2018年驗證階段RMSE為0.017 cm3/cm3,2=83.73%。率定階段與驗證階段精度均較高,HYDRUS-2D模型模擬結果效果較好,表明模型可以用于土壤含水率模型。率定結果見表2。

圖2 土壤含水率模擬值與實測值對比

3.2 基于模型模擬結果的分析

3.2.1 現行灌溉制度評價

通過表1灌溉制度下2018和2019年的實測數據(氣象數據、葉面積指數、土壤含水率、棵間土壤蒸發、根系分布數據和土壤基本參數等)與HYDRUS-2D模型對農田水分通量模擬,可得到核桃耗水特性與田間水分通量(表3)。

表3 2018和2019年核桃耗水特性與田間水分通量

如表3所示,南疆成齡核桃2018年和2019年生育期耗水量為634.15~726.90 mm,日均耗水強度為5.51~6.29 mm/d,這與趙經華等[2]通過不同微灌技術下成齡核桃生育期耗水總量在585.6~840.3 mm間變化結論基本一致。成齡核桃各生育期內日均耗水強度由大到小分別為:油脂轉化期(6.87~7.64 mm/d)、硬核期(6.14~7.55 mm/d)、果實膨大期(5.29~5.93 mm/d)、開花結果期(3.72~4.02 mm/d)。生育期內水分總脅迫量為?25.57~?118.52 mm,深層滲漏量總量為11.02~109.75 mm,二者之和為總耗水量的19.96%~21.33%。

3.2.2 灌溉制度優化

從4月30日開始第1次灌水。在設定灌溉方案時參考當地核桃需水量來確定灌溉制度范圍。本研究共設定8個灌水定額(30~65 mm)、16個灌水時間間隔(5~20 d),共計128種灌水定額和灌水時間間隔不同的灌溉制度(M1~M128,表4)。

表4 核桃灌溉制度集

將基于2019年數據率定獲得的土壤特性參數、基于式(9)計算出的蒸散量值、基于式(8)計算獲得的參數值輸入HYDRUS-2D模型,對128組灌溉制度進行數值模擬,可獲得農田耗水量、根系吸水量、深層滲漏量和水分脅迫量模擬值(圖3)。由圖3可知,農田耗水量范圍在149.0~1 284.5 mm之間,深層滲漏量范圍在50.77~928.88 mm之間,當地地下水深度超過6 m,不考慮地下水補給。各灌溉制度的農田耗水量和深層滲漏量均隨灌水間隔增大而減小。根系吸水量在灌水定額和灌水時間間隔雙變量變化因素下,根系吸水量隨灌水時間間隔變化幅度逐漸減?。喝绻嗨~為30 mm時,根系吸水量范圍為245.02~406.37 mm。而灌水定額為65 mm時,根系吸水量范圍為307.80~400.09 mm。

模型模擬結果耗水量與深層滲漏量跨度較大,因此尋優時剔除深層滲漏量和水分脅迫量大于作物耗水量1倍的灌溉制度。結合式(11)所得圖3可知,尋優目標函數值越接近零值線,則此灌溉制度灌溉水浪費最少。通過對不同灌水定額條件下農田中尋優目標函數值的比較,可以得出如表5所示的較佳的8種灌溉制度,其中以M34的尋優目標函數值最低,其次為M77,隨后為M94、M112、M51、M119、M60、M25。M34灌溉制度的尋優目標函數值為農田耗水量的0.002倍,M77灌溉制度的尋優目標函數值為農田耗水量的0.004倍。若考慮目標函數值最小,則M34灌溉制度最優;若考慮農戶田間工作量應拉大灌溉時間,則M77灌溉制度更適宜。

圖3 各參數隨灌水間隔的變化

表5 核桃灌溉制度優選

注:占比指尋優目標值與農田耗水量的比值。

Note: Proportion refers to ratio of target value for optimization to farmland water consumption.

以2019年干旱年為例進行模擬,優化灌溉制度(M34和M77)下的農田水分通量模擬結果如圖4所示,M34和M77灌溉制度下,干旱年水平下水分脅迫量和深層滲漏量均較小。綜上,推薦南疆地區成齡核桃滴灌灌溉定額350~385 mm,灌水定額35~50 mm,灌溉次數7~11次,灌水間隔9~14 d。

a. M34

b. M77

注:0指每年灌水開始日期(04-30)。

Note: 0 refers to the date when irrigation starts (04-30).

圖4 核桃灌溉制度模擬尋優結果

Fig.4 Optimization of irrigation scheme for walnut based simulation results

4 討 論

試驗觀測與模擬期為2018年4月30日-2018年8月9日,2019年4月30日-2019年8月9日,生育期內有效降雨及日均蒸騰速率如圖1所示,2018年與2019年2 a降雨量差異顯著,2018年觀測模擬期內總降雨量為133.3 mm,而2019年阿克蘇地區雨季提前至4月觀測模擬期內總降雨量只有24.8 mm。取降水量距平百分率[?10%, 10%]為正常年份,[10%, 30%]為偏濕年和[?30%, ?10%]為偏干年,大于30%為濕潤年,小于?30%為干旱年;以阿克蘇河流域15世紀—20世紀平均值40 mm降雨量為標準[23],小于28 mm為干旱年,[28, 35] mm偏干年,(35, 44] mm是正常年,(44, 52] mm是偏濕年,大于52 mm是濕潤年??梢耘袛喑?018年為濕潤年,2019年為干旱年。模型率定采用干旱年數據,而模型驗證采用的是濕潤年的數據,2 a模型模擬精度都較高。這表明,不管是模擬干旱年還是濕潤年,HYDRUS-2D模型模擬土壤水分狀況的可靠性均較高,因此,根據本文結果,基于HYDRUS-2D模型模擬和尋優結果獲得的灌溉制度對干旱年和濕潤年均具有適用性。這需要進一步的試驗驗證。

HYDRUS-2D模型模擬精度高,能較好地模擬農田土壤水分通量的動態變化[24-26]。本文采用HYDRUS-2D模型模擬了不同灌溉情景方案下的深層滲漏量和水分脅迫量。而且,將模擬結果用于尋優模型進行灌溉制度優化,為果園灌溉制度優化提供了一種有效的方法。

成齡果樹根系分布較為復雜,且根系分布會隨時間變化。為提高灌溉制度模擬結果的可靠性,今后應在各生育期均對根系取樣,建立隨時間變化的二維根系吸水模型,灌溉制度優化設計時分不同生育階段進行,以實現更加精準的優化灌溉制度。后續試驗也可通過采用智能土壤墑情儀對土壤水分進行實時監測,或結合優化算法使灌溉制度優化系統更加精準。

5 結 論

1)基于田間試驗數據驗證HYDRUS-2D模型表明,模型對土壤含水率的模擬精度較高,2為83.03%~83.73%,均方根誤差在0.016~0.017 cm3/cm3范圍,表明HYDRUS-2D模型可用于滴灌核桃園土壤含水率的模擬。

2)基于模型模擬及尋優模型結果,推薦南疆地區成齡核桃的滴灌制度為灌水定額35 mm,灌溉次數11次,灌水間隔9 d,灌溉定額385 mm或者灌水定額50 mm,灌溉次數7次,灌水間隔14 d,灌溉定額350 mm。

可見,HYDRUS-2D模型結合尋優方法用于灌溉制度優化時具有潛在優勢,研究可為果樹灌溉制度優化提供參考。

[1] 王軍,李久生,關紅杰. 北疆膜下滴灌棉花產量及水分生產率對灌水量響應的模擬[J]. 農業工程學報,2016,32(3):62-68.

Wang Jun, Li Jiusheng, Guan Hongjie. Simulation of response of cotton yield and water productivity under mulch drip irrigation to irrigation amount in Northern Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 62-68. (in Chinese with English abstract)

[2] 趙經華,洪明,馬英杰,等. 不同微灌灌水技術下成齡核桃耗水規律的研究[J]. 灌溉排水學報,2010,29(5):94-97.

Zhao Jinghua, Hong Ming, Ma Yingjie, et al. Study on water consumption of mature walnut under different micro irrigation techniques [J]. Journal of Irrigation and Drainage, 2010, 29(5): 94-97. (in Chinese with English abstract)

[3] 衛新東,汪星,汪有科,等. 黃土丘陵區紅棗經濟林根系分布與土壤水分關系研究[J]. 農業機械學報,2015,46(4):88-97.

Wei Xindong, Wang Xing, Wang Youke, et al. Study on the relationship between root distribution and soil moisture of jujube economic forest in Loess Hilly Area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 88-97. (in Chinese with English abstract)

[4] Dario Autovino, Giovanni Rallo, Giuseppe Provenzano. Predicting soil and plant water status dynamic in olive orchards under different irrigation institutions with HYDRUS-2D: Model performance and scenario analysis[J]. Agricultural Water Management, 2018, 203(4): 225-235.

[5] Matteau J P, Gumiere S J, Gallichand J, et al. Coupling of a nitrate production model with HYDRUS to predict nitrate leaching[J]. Agricultural Water Management, 2019, 213(3): 616-626.

[6] 李仙岳,陳寧,史海濱,等. 膜下滴灌玉米番茄間作農田土壤水分分布特征模擬[J]. 農業工程學報,2019,35(10):50-59.

Li Xianyue, Chen Ning, Shi Haibin, et al. Simulation of soil water distribution characteristics of maize tomato inter cropping under mulch drip irrigation [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 50-59. (in Chinese with English abstract)

[7] 郭復興,常天然,林瑒焱,等. 陜西不同區域蘋果林土壤水分動態和水分生產力模擬[J]. 應用生態學報,2019,30(2):379-390.

Guo Fuxing, Chang Tianran, Lin Changyan, et al. Simulation of soil water dynamics and water productivity of apple trees in different regions of Shaanxi Province[J]. Journal of Applied Ecology, 2019, 30(2): 379-390. (in Chinese with English abstract)

[8] Fatemeh Karandwash, Ji?í ?im?nek. A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint[J]. Agricultural Water Management, 2019, 213(3): 809-820.

[9] Serhat Tonkul, Alper Baba, Celalettin ?im?ek, et al. Groundwater recharge estimation using HYDRUS 1D model in Ala?ehir sub-basin of Gediz Basin in Turkey[J]. Environmental Monitoring and Assessment, 2019, 191(10):610-621.

[10] 范雷雷,史海濱,李瑞平,等. 河套灌區畦灌灌水質量評價與優化[J]. 農業機械學報,2019,50(6):315-321,337.

Fan Leilei, Shi Haibin, Li Ruiping, et al. Evaluation and optimization of border irrigation quality in Hetao Irrigation Area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 315-321, 337. (in Chinese with English abstract)

[11] 魏光輝,馬亮. 干旱區不同地下水埋深與棉花膜下滴灌灌溉制度的響應研究[J]. 灌溉排水學報,2015,34(12):9-13.

Wei Guanghui, Ma Liang. Response of different groundwater depth and drip irrigation institution under cotton film in arid area[J]. Journal of Irrigation and Drainage, 2015, 34 (12): 9-13. (in Chinese with English abstract)

[12] 郝遠遠,徐旭,任東陽,等. 河套灌區土壤水鹽和作物生長的HYDRUS-EPIC模型分布式模擬[J]. 農業工程學報,2015,31(11):110-116.

Hao Yuanyuan, Xu Xu, Ren Dongyang, et al. Distributed simulation of hydrous-epic model for soil water, salt and crop growth in Hetao Irrigation Area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 110-116. (in Chinese with English abstract)

[13] 孫林,羅毅,楊傳杰,等. 干旱區滴灌棉田灌水量與灌溉周期關系[J]. 資源科學,2012,34(4):668-676.

Sun Lin, Luo Yi, Yang Chuanjie, et al. Relationship between irrigation amount and irrigation cycle of drip irrigation cotton field in arid area [J]. Resource Science, 2012, 34 (4): 668-676. (in Chinese with English abstract)

[14] 王鵬,宋獻方,袁瑞強,等. 基于HYDRUS-1d模型的農田SPAC系統水分通量估算:以山西省運城市董村農場為例[J]. 地理研究,2011,30(4):622-634.

Wang Peng, Song Xianfang, Yuan Ruiqiang, et al. Estimation of water flux in SPAC institution of farmland based on HYDRUS-1D model: A case study of Dongcun farm, Yuncheng City, Shanxi Province [J]. Geographic Research, 2011, 30(4): 622-634. (in Chinese with English abstract)

[15] 楊鵬年,吳彬,王水獻,等. 干旱區不同地下水埋深膜下滴灌灌溉制度模擬研究[J]. 干旱地區農業研究,2014,32(3):76-82.

Yang Pengnian, Wu Bin, Wang Shuixian, et al. Simulation study on drip irrigation institution under different underground water depths in arid areas[J]. Agricultural Research in Arid Areas, 2014, 32(3): 76-82. (in Chinese with English abstract)

[16] 蔣光昱,王忠靜,尚松浩,等. 基于觀測與模擬結合的疏勒河流域辣椒灌溉制度優化[J]. 農業工程學報,2018,34(增刊1):207-213.

Jiang Guangyu, Wang Zhongjing, Shang Songhao, et al. Optimization of pepper irrigation institution in Shule River Basin Based on observation and simulation [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.1): 207-213. (in Chinese with English abstract)

[17] 劉曉媛,徐紹輝,崔峻嶺,等. 基于水分供需關系的冬小麥夏玉米節水灌溉模式研究[J]. 中國生態農業學報,2013,21(8):951-958.

Liu Xiaoyuan, Xu Shaohui, Cui Junling, et al. Study on water saving irrigation model of winter wheat and summer maize based on water supply and demand [J]. Chinese Journal of Ecological Agriculture, 2013, 21(8): 951-958. (in Chinese with English abstract)

[18] 王在敏,何雨江,靳孟貴,等. 運用土壤水鹽運移模型優化棉花微咸水膜下滴灌制度[J]. 農業工程學報,2012,28(17):63-70.

Wang Zaimin, He Yujiang, Jin Menggui, et al. Using soil water salt transport model to optimize drip irrigation institution under brackish water film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 63-70. (in Chinese with English abstract)

[19] 李惠,梁杏,劉延鋒. 干旱區膜下滴灌棉田SPAC系統水分通量模擬[J]. 水文地質工程地質,2018,45(2):21-28.

Li Hui, Liang Xing, Liu Yanfeng. Simulation of water flux in SPAC institution of drip irrigation cotton field under film in arid area [J]. Hydrogeology and Engineering Geology, 2018, 45(2): 21-28. (in Chinese with English abstract)

[20] 彭致功,張寶忠,劉鈺,等. 華北典型區冬小麥區域耗水模擬與灌溉制度優化[J]. 農業機械學報,2017,48(11):238-246.

Peng Zhigong, Zhang Baozhong, Liu Yu, et al. Simulation of winter wheat regional water consumption and optimization of irrigation institution in typical areas of North China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 238-246. (in Chinese with English abstract)

[21] Feddes R A, Kowalik P J, Zaradny H. Simulation of field water use and crop yield[R]. Wageningem: Center for Agricultural Publishing and Documentation, 1978: 189.

[22] 郭向紅,孫西歡,馬娟娟,等. 冬小麥不同深度灌水條件下土壤水分運動數值模擬[J]. 農業機械學報,2018,49(8):237-244,209.

Guo Xianghong, Sun Xihuan, Ma Juanjuan, et al. Numerical simulation of soil water movement under different depth irrigation of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 237-244, 209. (in Chinese with English abstract)

[23] 張瑞波,魏文壽,袁玉江,等. 1396-2005年天山南坡阿克蘇河流域降水序列重建與分析[J]. 冰川凍土,2009,31(1):27-33.

Zhang Ruibo, Wei Wenshou, Yuan Yujiang, et al. Reconstruction and analysis of precipitation sequence in Aksu River Basin on the south slope of Tianshan Mountains from 1396 to 2005[J]. Glacial Permafrost, 2009, 31(1): 27-33. (in Chinese with English abstract)

[24] 虎膽·吐馬爾白,王一民,牟洪臣,等. 膜下滴灌棉花根系吸水模型研究[J]. 干旱地區農業研究,2012,30(1):66-70.

Hudan Tumarday, Wang Yimin, Mu Hongchen, et al. Study on water absorption model of cotton roots under mulch drip irrigation[J]. Agricultural Research in Arid Areas, 2012, 30(1): 66-70. (in Chinese with English abstract)

[25] 余根堅,黃介生,高占義. 基于HYDRUS模型不同灌水模式下土壤水鹽運移模擬[J]. 水利學報,2013,44(7):826-834.

Yu Genjian, Huang Jiesheng, Gao Zhanyi. Simulation of soil water and salt transport under different irrigation modes based on hydras model[J]. Journal of Hydraulic Engineering, 2013, 44(7): 826-834. (in Chinese with English abstract)

[26] 吳元芝,黃明斌. 基于Hydrus-1D模型的玉米根系吸水影響因素分析[J]. 農業工程學報,2011,27(增刊2):66-73.

Wu Yuanzhi, Huang Mingbin. Analysis of factors affecting water absorption of maize root institution based on HYDRUS-1D model [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 66-73. (in Chinese with English abstract)

Optimization of drip irrigation scheme for mature walnut in arid areas of Xinjiang, China

Hudan Tumarday, Jiao Ping, Milixiati Minadola

(830052)

Scientific and reasonable irrigation schedules are the keys to improve the efficiency of irrigation utilization. In this study, the reliability of HYDRUS model combined with optimization model proposed used for irrigation scheme optimization was investigated. The arid area of southern Xinjiang, China was taken as the research area. In this area, the groundwater depth was target than 6 m. The soil dry bulk density was 1.39 g/cm3. The experimental data in 2018 and 2019 were used for model calibration and verification, respectively. In the experiments of both years, the irrigation quota was same as 45 mm and the irrigation norm was 360 mm. The irrigation stages were same. The walnut tree was eleven years old. It was drip irrigated every year. It started new growth period in April and was harvested in August. The soil water content was measured. In addition, the leaf area index was calculated and root-related indexes were determined. Meteorological parameter values were obtained. In this study, the rainfall amounts in 2018 and 2019 during the whole walnut growth stage were 133.3 and 24.8 mm, respectively. The years of 2019 and 2018 were respectively dry and wet years based on multi-year rainfall data. A total of 128 irrigation schedules were designed and they included eight irrigation quota (30-65 mm) and 16 irrigation intervals (5-20 d). The deep leakage and water stress under the 128 irrigation scheme were simulated by using HYDRUS-2D model. An optimization model was proposed. In this model, the target value for optimization was the difference between the amount of deep leakage and absolute of crop water stress. The values of amount of deep leakage and crop water stress both could be obtained by model simulation. By simulation, the irrigation scheme with small target value for optimization were considered to be optimal. The model calibration and verification results showed that the model accuracy was high with root mean square error of 0.016-0.017 cm3/cm3and2of 83.03%-83.73%, which indicated that the model was well in simulating soil water content in the field of walnut of Xinjiang regardless of wet or dry years. Under the condition of the irrigation quota 45 mm and irrigation intervals of 8-20 days, the water consumption and the daily average water consumption intensity of mature walnut during its whole growing stage in Southern Xinjiang were 634.15 mm and 5.51 mm/d. The daily average water consumption intensity was the highest during the oil transformation stage (6.87 mm), followed by the hard core stage (6.14 mm), fruit expanding stage (5.29 mm), and flowering-fruiting stage (3.72 mm). During the whole growth stage, the total water stress was -25.57 mm, and the total deep leakage was 109.75 mm. It accounted for 21.33% of the total water consumption and exceeded the 20% of the total water consumption. Soil water flux in different irrigation scheme of mature walnut under drip irrigation was simulated by using the HYDRUS-2D model. Then, the optimal irrigation scheme was screened by using the optimization model. By the optimization model, the lowest target value for optimization indicated small water loss. Thus, two irrigation scheme were recommended: 1) the irrigation quota was 35 mm, irrigation intervals was 9 days, the irrigation times were 11 and the irrigation norm was 385 mm; 2) the irrigation quota was 50 mm, irrigation intervals was 14 days, the irrigation times were 7 and the irrigation norm was 350 mm. This study provided an effective way to formulate irrigation scheme of mature walnut under drip irrigation in Southern Xinjiang.

irrigation; optimization; Xinjiang; arid area; walnut; drip irrigation scheme; HYDRUS-2D

虎膽·吐馬爾白,焦萍,米力夏提·米那多拉. 新疆干旱區成齡核桃滴灌制度優化[J]. 農業工程學報,2020,36(15):134-141.doi:10.11975/j.issn.1002-6819.2020.15.017 http://www.tcsae.org

Hudan Tumarday, Jiao Ping, Milixiati Minadola. Optimization of drip irrigation scheme for mature walnut in arid areas of Xinjiang, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 134-141. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.017 http://www.tcsae.org

2019-11-01

2020-05-10

國家重點實驗室資助項目(2018nkms02);國家自然科學基金(51469033);塔里木河流域阿克蘇管理局資助項目(TGJAKS-SKS-2019-001)

虎膽·吐馬爾白,教授,博士生導師,主要從事土壤水鹽運移理論及節水灌溉技術研究。Email:hudant@hotmail.com.

10.11975/j.issn.1002-6819.2020.15.017

S274.1

A

1002-6819(2020)-15-0134-08

猜你喜歡
制度模型
一半模型
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
淺探遼代捺缽制度及其形成與層次
簽約制度怎么落到實處
中國衛生(2016年7期)2016-11-13 01:06:26
構建好制度 織牢保障網
中國衛生(2016年11期)2016-11-12 13:29:18
一項完善中的制度
中國衛生(2016年9期)2016-11-12 13:27:58
3D打印中的模型分割與打包
論讓與擔保制度在我國的立法選擇
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
主站蜘蛛池模板: 亚洲一道AV无码午夜福利| 四虎永久免费地址在线网站| 91po国产在线精品免费观看| 国产成人AV综合久久| 国产麻豆永久视频| 国产不卡在线看| 日韩高清欧美| 一级毛片不卡片免费观看| 国产成人AV大片大片在线播放 | 在线国产欧美| 欧美一区福利| 亚洲乱码在线视频| 欧美精品在线免费| 久久五月天综合| 粉嫩国产白浆在线观看| 欧美成人区| 亚洲三级电影在线播放| 中文字幕1区2区| 亚洲精品亚洲人成在线| 欧美日韩激情| 精品伊人久久大香线蕉网站| 91丝袜在线观看| 色婷婷在线播放| 精品精品国产高清A毛片| 欧美国产菊爆免费观看| 国产无码在线调教| 无码高清专区| 国产日韩欧美一区二区三区在线| 亚洲美女久久| 国产无遮挡猛进猛出免费软件| 一本大道AV人久久综合| 999国内精品视频免费| 一级毛片免费高清视频| 人妻丰满熟妇AV无码区| 久久婷婷五月综合97色| 亚洲日韩精品无码专区97| 热这里只有精品国产热门精品| 亚洲bt欧美bt精品| 日韩国产另类| 亚洲全网成人资源在线观看| 精品一区二区三区无码视频无码| 国产亚洲精久久久久久无码AV| 亚洲无线视频| 亚洲熟妇AV日韩熟妇在线| 亚洲色图欧美一区| 日韩欧美中文| 国产成人综合久久精品尤物| 国产亚洲精品97AA片在线播放| 国产精品久久久久久久久kt| 欧美亚洲国产一区| 亚洲另类国产欧美一区二区| 欧美97欧美综合色伦图| 无码视频国产精品一区二区| 午夜性刺激在线观看免费| 亚洲精品另类| 成人小视频网| 国产成人精品2021欧美日韩| 亚洲综合婷婷激情| 久久黄色毛片| 不卡视频国产| 亚洲日本中文综合在线| av大片在线无码免费| 国产精品无码久久久久久| 99精品高清在线播放| 一级成人a毛片免费播放| 久久精品电影| 国产亚洲第一页| 精品三级在线| 69av免费视频| 制服无码网站| 久久亚洲国产最新网站| 亚洲欧美另类日本| 亚洲美女一级毛片| 亚洲日韩精品无码专区97| 在线看片免费人成视久网下载| 免费欧美一级| 亚洲乱码在线视频| 思思99热精品在线| 欧美一级片在线| 伊人久久综在合线亚洲2019| 思思99热精品在线| 这里只有精品在线|