趙園園,李鵬飛,許勤智,安清明,孟金柱
山羊卵泡發育相關基因的篩選及分析
趙園園1,李鵬飛2,許勤智1,安清明1,孟金柱1
(1銅仁學院,貴州銅仁 554300;2山西農業大學生命科學學院,山西太谷 030801)
山羊第一卵泡波中的優勢卵泡(dominant follicles, DF)和從屬卵泡(subordinate follicles, SF)是整個卵泡發育過程中最為關鍵的兩個階段。隨著卵泡的進一步發育,最終DF可能發育成為成熟卵泡,直到排卵;SF將走向閉鎖,其中顆粒細胞的凋亡是導致卵泡發生閉鎖的關鍵因素。然而目前對促進卵泡的優勢化或導致其閉鎖的分子機理尚不清楚。【】通過對山羊第一卵泡波中DF和SF顆粒細胞進行高通量測序,旨在篩選影響卵泡發育的關鍵基因,為深入探究卵泡發育的調控機制提供理論依據。選取10只1歲齡健康的貴州白山羊分別注射前列腺素F2α,使其同期發情,此后每天用B超檢測并記錄卵泡的生長情況,發情3 d后,統一屠宰并采集第一卵泡波中DF (直徑4.5—6 mm)與SF (直徑3 —4.5 mm),分別分離其中的顆粒細胞,提取總RNA、構建文庫后通過Illumina Hiseq 2500平臺進行測序。利用FastQC對測序產出raw reads進行質量評估并經過過濾后,獲得品質較高的clean reads;使用Trinity對得到的clean reads進行重新組裝,從而獲得unigenes;使用CLC Genomics Workbench將unigenes與山羊RefSeq數據庫進行比對獲得mRNA;使用DESeq2 軟件對獲得的mRNA進行差異表達分析;分別采用goseq和kobas軟件對得到的差異表達基因進行GO分析及KEGG信號通路分析;最終通過qRT-PCR對篩選出的可能影響卵泡發育的關鍵基因進行驗證。分別對測序得到的raw reads進行過濾后,在DF顆粒細胞中獲得43 217 934條clean reads,占raw reads的比例為95.19%;SF顆粒細胞中獲得40 766 348條clean reads,占raw reads的比例為95.35%。將得到的unigenes與山羊的RefSeq 數據庫進行比對后,共得到33 896條帶有注釋的轉錄本,再通過設定FPKM>1, q value<0.05,共在兩種卵泡顆粒細胞中獲得13 644個基因。設定參數:FPKM≥1,SF-FPKM/DF-FPKM>1,<0.05,獲得695個差異表達mRNA,其中233個在SF顆粒細胞中表達顯著上調,462個表達顯著下調;對所獲得695個差異表達mRNA進行GO功能富集分析,共分為三大類42組:其中生物學過程占47.6%,細胞組分占47.6%,分子功能占4.8%;KEGG信號通路分析,發現20條通路,其中與核糖體通路相關的基因富集最為顯著。通過在Genecard中進行功能分析后,篩選6個可能與山羊卵泡發育密切相關的基因,其中、、在SF顆粒細胞中表現為上調;、、則表現為下調。qRT-PCR顯示、、、、的表達趨勢與高通量測序結果一致,且在從屬卵泡顆粒細胞中的表達量極顯著地高于優勢卵泡(<0.01);、、在優勢卵泡顆粒細胞中的表達量極顯著地高于從屬卵泡(<0.01)。、、和在優勢卵泡和從屬卵泡中表達量存在極顯著差異,推測在山羊卵泡發育過程中可能促進卵泡的優勢化或導致閉鎖,對深入探究卵泡發育的調控機制具有重要意義。
山羊;高通量測序;卵泡發育;顆粒細胞
【研究意義】哺乳動物卵泡發育是一個受多種因素調控的復雜生物學過程,在這個過程中有眾多激素或者調控因子直接或間接參與[1]。通過基因敲除,在小鼠的卵巢中已經發現有 1 000 多個基因共同調控著卵泡的發育[2]。然而目前對促進山羊卵泡的優勢化或導致其閉鎖的分子機理尚不清楚。通過對山羊第一卵泡波中DF和SF顆粒細胞進行高通量測序,篩選出影響卵泡發育的關鍵基因,為深入探究卵泡發育的調控機制具有重要意義。【前人研究進展】在哺乳動物的一個發情周期中,一簇卵泡經過募集、選擇及優勢化過程發育成為排卵卵泡[3]。在卵泡的優勢化過程中,細胞色素P450側鏈裂解酶(Pytochrome P450 side chain lyase, P450scc)和細胞色素P450芳構化酶(cytochrome P450 aromatase, P450arom)mRNA能夠促進卵泡的發育,推測P450arom和P450scc可能促進卵泡顆粒細胞分泌雌二醇(E2),從而參與負反饋調節作用并促進卵泡的優勢化[4]。胰島素樣生長因子(insulin-like growth factor,IGF)會顯著促進顆粒細胞分泌E2,并加快卵泡選擇與優勢化過程[5],然而成纖維細胞生長因子(fibroblast growth factor, FGF)與IGF的作用卻相反,它通過抑制卵泡顆粒細胞分泌E2和抑制卵泡LH受體的表達從而抑制卵泡的選擇與優勢化過程[6]。卵泡一旦確定了優勢化地位后,優勢化卵泡會通過分泌E2和INH等調控因子維持自己的優勢化地位[7]。LI等[8]通過對水牛不同大小卵泡的顆粒細胞進行高通量測序,發現免疫系統可能在卵泡的成熟和排卵過程中起了重要作用。TERENINA等[9]通過對豬的正常卵泡與閉鎖卵泡顆粒細胞進行轉錄組測序,篩選出了等11個基因可能在卵泡顆粒細胞的增殖過程中起了抑制作用,從而引起卵泡閉鎖。【本研究切入點】山羊第一卵泡波中的DF最終可能發育成為成熟卵泡,直到排卵;而SF則會受到各種調控因子而作用而走向閉鎖,其中顆粒細胞的凋亡是導致卵泡發生閉鎖的關鍵因素[10]。然而目前對促進卵泡的優勢化或導致其閉鎖的分子機理尚不清楚。【擬解決的關鍵問題】通過對山羊第一卵泡波中DF和SF顆粒細胞進行高通量測序,并通過qRT-PCR進行驗證分析,篩選出影響卵泡發育的關鍵基因,為深入探究其調控卵泡發育機制提供理論依據。
本試驗于2018年12月至2019年4月在銅仁學院完成。
在貴州省銅仁市沿河土家族自治縣華珍牧業有限公司,選取10只1歲齡健康的貴州白山羊分別注射前列腺素F2α,使其同期發情,此后每天用B超檢測并記錄卵泡的生長情況,發情3 d后,統一屠宰并采集第一卵泡波中DF(直徑4.5—6 mm)與SF(直徑3—4.5 mm),迅速置于4℃滅菌杜氏磷酸緩沖液(DPBS)中,迅速運輸到銅仁學院動物學實驗室。將處于DPBS中的DF和SF分別放到盛有0.9%的生理鹽水的培養皿上,使用眼科剪刀剪開并用細胞刮刀刮取位于卵泡內膜上的顆粒細胞(GCs)后置于-80℃冰箱中保存。
1.2.1 總RNA提取、文庫構建及測序 將保存在-80℃冰箱中的GCs取出后置于冰盒中解凍,加入1 mL Trizol(購自Invitrogen公司,美國)分別提取兩種卵泡中GCs的總RNA,經RNeasy mini kit(購自QIAGEN公司,德國)純化,Agilent Bioanalyzer 2100完整性檢測,Qubit 2.0 Flurometer測量濃度后,交由北京諾和致源生物信息科技有限公司進行文庫構建并通過Illumina Hiseq 2500平臺測序。
1.2.2 數據處理及分析 FastQC(http://www. bioinformatics.babraha m.ac.uk/projects/fastqc/)用于對測序產出原始數據進行質量評估,然后清除原始數據(raw reads)中帶接頭的、低質量的reads,從而獲得品質較高的有效讀段(clean reads)。使用Trinity(http://trinityrnaseq.sourceforge.net/)對得到的clean reads進行重新組裝,以便得到單一序列(singleton)及重疊群(contigs)此時得到的序列稱為unigenes。使用CLC Genomics Workbench將unigenes與山羊RefSeq數據庫進行比對。基于負二項分布的DESeq2軟件用于差異表達mRNA的分析,之后使用goseq軟件對得到的差異表達基因進行GO分析,使用kobas軟件進行KEGG信號通路分析。
1.2.3 反轉錄及引物合成 通過EasyScript? One-Step gDNA Removal and cDNA Synthesis SuperMix(購自北京全式金生物技術有限公司)將提取到的總RNA反轉錄成cDNA,條件為:42℃孵育15 min,85℃加熱5 s失活TransScript RT與gDNA Remover。Primer 5.0設計引物(表1),使用作為內參基因,引物合成委托生工生物工程(上海)股份有限公司完成。
1.2.4 qRT-PCR分析 qRT-PCR用于驗證貴州白山羊DF與SF GCs中差異表達mRNA的相對表達水平。采用3個樣本重復,3個技術重復,通過TransStart? Tip Green qPCR SuperMix(購自北京全式金生物技術有限公司)對各基因進行相對定量分析,根據產品使用說明書構建20 μL PCR反應體系:2×Transstart?Tip Green qPCR super mix 10 μL,上下游引物各0.4 μL,cDNA 4 μL(100 ng),RNA-free H2O 5.2 μL。反應程序為:94℃預變性1 min;94℃ 10 s,60℃ 30 s,72℃ 10 s,45個循環。結果使用2-△△CT法來計算各基因的相對表達情況。

表1 熒光定量引物基因列表
高通量測序得到的raw reads,經過濾帶接頭的、含N的及低質量的reads,最終在DF中獲得43 217 934條clean reads,占95.19%;在SF中獲得40 766 348條clean reads,占95.35%(圖1)。將得到的clean reads比對到山羊RefSeq數據庫中,共得到33 896條帶有注釋的轉錄本。設定FPKM >1, q value<0.05,在兩種卵泡顆粒細胞中共獲得13 644個基因,其中438個基因高表達(FPKM≥1),表2中列出了表達量排名前20的基因。

圖1 DF和SF顆粒細胞中原始數據的分類

表2 SF和DF顆粒細胞中表達量最高的20個基因
在差異轉錄本分析過程中,將DF和SF的FPKM (Fragmentsperkilobaseoftranscriptpermillionfragmentsmapped)進行標準化,使用DESeq2軟件對獲得13 644個mRNA進行差異表達分析,設定參數:FPKM≥1,SF-FPKM/DF-FPKM>1,<0.05,共獲得695個差異表達mRNA,其中233個在從屬卵泡顆粒細胞中表達顯著上調,462個則表達下調(圖2)。
通過goseq軟件對得到的695個差異表達基因進行GO功能富集分析, 共分為三大類42組:其中生物學過程占47.6%,細胞組分占47.6%,分子功能占4.8% (圖3)。

圖2 DF和SF顆粒細胞中差異表達基因火山圖

1:RNA加工;2:RNA拼接;3:核酸代謝過程;4:含堿基化合物的代謝過程;5:核糖核蛋白復雜生物合成;6:細胞大分子代謝過程;7:核糖體生物合成;8:雜環代謝過程;9:細胞芳香族化合物的代謝過程;10:細胞氮化合物代謝過程;11:基因表達;12:RNA代謝過程;13:核糖體小亞基生物合成;14:核糖體RNA加工;15:大分子代謝過程;16:氮化物代謝過程;17:ncRNA加工;18:ncRNA代謝過程;19:有機循環化合物代謝過程;20:核糖體RNA代謝過程;21:下撥核內腔;22:細胞核部分;23:細胞核;24:細胞內的細胞器;25:細胞器;26:細胞膜內腔;27:細胞內細胞器內腔;28:細胞器內腔;29:細胞內細胞器的部分;30:細胞內的;31:細胞內的部分;32:細胞器的部分;33:細胞內膜上細胞器;34:膜上細胞器;35:核質;36:核糖核蛋白復合體;37:胞質核糖體小亞基;38:胞質核糖體;39:核質部分;40:大分子復合體;41:RNA結合;42:mRNA結合
通過kobas軟件對差異表達基因進行KEGG信號通路分析,共發現20條通路(圖4),其中與核糖體通路相關的基因最為顯著富集,達到50個;另外,還發現5個基因參與了卵母細胞的減數分裂。
通過功能分析,我們篩選出6個可能與山羊卵泡發育密切相關的基因(表3)。其中、、在SF顆粒細胞中表現為上調;、、則表現為下調。QRT-PCR結果顯示、、、、的表達趨勢與高通量測序結果一致,且在SF顆粒細胞中的表達量極顯著地高于DF(<0.01);、、在DF顆粒細胞中的表達量極顯著地高于SF(<0.01),的熒光定量結果雖然與高通量測序結果的表達趨勢相反,但不存在顯著差異(>0.05)(圖5)。

圖4 DF和SF顆粒細胞中差異表達基因KEGG通路富集散點圖

圖5 候選基因在山羊DF和SF顆粒細胞中的相對表達量(**表示P<0.01)

表3 可能與山羊卵泡發育相關的候選基因
雌性哺乳動物卵巢上的DF持續生長、成熟并排出卵子是依賴于顆粒細胞中FSH通過激活cAMP-蛋白激酶A通路,進而誘導芳香化酶將膜細胞分泌的雄激素轉化為E2,而SF由于生長速率和E2分泌降低,從而走向閉鎖[11]。HUSSEIN等[10]研究發現,顆粒細胞的凋亡是引起卵泡閉鎖的關鍵因素;顆粒細胞受到凋亡蛋白酶激活壞死因子(TNF)、Fas等刺激后,使促凋亡蛋白的構象發生變化,從而由細胞液轉移到線粒體外膜上,并與膜上及膜內的抗凋亡蛋白相互作用,最終導致其凋亡[12-13]。LI等[14]通過對牛發生偏差前的最大卵泡(PDF1)和發生偏差后的最大卵泡(ODF1)顆粒細胞進行轉錄組測序,獲得83個差異表達基因,其中、和在卵泡發育過程中可能起抑制作用。本研究通過對貴州白山羊DF和SF顆粒細胞進行高通量測序篩選出695個差異表達基因,其中233個在SF顆粒細胞中表達顯著上調,462個表達下調。結合功能分析,篩選出具有代表性的6個可能與山羊卵泡發育密切相關的基因,qRT-PCR驗證結果表明,、、、和在DF和SF顆粒細胞中的表達趨勢與高通量測序結果完全一致,在DF和SF顆粒細胞中的表達趨勢與高通量測序結果雖相反,但差異不顯著(>0.05)。
在哺乳動物中,促乳素受體(PRLR)對維持黃體以及孕酮的分泌起著重要的作用[15]。PRL可能通過對子宮內膜的直接作用在妊娠中發揮作用[16]。PRL能夠促進排卵、著床及胎盤發育的過程[17], 敲除小鼠卵泡中的,使得卵母細胞釋放延遲,成熟受損進而導致排卵減少[18]。顆粒細胞中正五聚蛋白3 (PTX3) 基因的表達也與卵母細胞及胚胎的發育能力有關,是預測胚胎發育能力的可靠指標[19-20]。在小鼠排卵前卵泡腔內,mRNA表達主要位于卵丘細胞中,而在顆粒細胞中表達很少[21],進一步證實了筆者的數據準確性。鈣調素(Regucalcin,RGN)在牛大卵泡(直徑>10 mm)中的表達量是小卵泡(直徑<5 mm)中的9.8倍,被認為是參與了優勢卵泡的形成及提高顆粒細胞的存活率[22]。這與本研究的結果產生分歧,可能是物種之間表達的差異所致。
Dickkopf WNT信號通路抑制劑3(dickkopf WNT signaling pathway inhibitor 3,DKK3)是一種旁分泌蛋白,它可以通過Wnt信號通路參與胚胎發育[23]。表觀遺傳沉默,會破壞正常Wnt/β-catenin 信號傳導和細胞凋亡調控[24]。醛脫氫酶1家族成員A2 (Aldehyde Dehydrogenase 1 Family Member A2,ALDH1A2)啟動子中存在雌激素反應元件位點[25],在切除大鼠卵巢的子宮內,E2可以促進表達,但卻抑制表達[26]。是調節性腺中腎RA合成的主要酶,通過釋放全反維甲酸(RA)的酶來啟動細胞的減數分裂。構建和雙敲除小鼠與全反維甲酸反應元件(RARE)報告小鼠雜交表明,在缺乏這兩種酶產生RA情況下,雌性小鼠可發生減數分裂,雄性小鼠不可發生減數分裂[27-30]。目前對全反維甲酸受體應答器1(retinoic acid receptor responder 1,RARRES1)的報道較少,作為RA釋放的下游基因,可能在細胞的減數分裂過程中起重要作用。
本研究在貴州白山羊DF與SF顆粒細胞中共獲得695個差異表達mRNA,其中233個在SF顆粒細胞中表達顯著上調,462個則表達下調。通過功能分析,篩選出6個可能與山羊卵泡發育密切相關的基因,qRT-PCR結果發現,、、和在DF和SF顆粒細胞中表達量存在極顯著差異,推測在山羊卵泡發育過程中可能促進卵泡的優勢化或導致閉鎖,對深入探究調控卵泡發育機制具有重要意義。
[1] QUAN Q, ZHENG Q, LING Y H, FANG F G, CHU M X, ZHANG X R, LIU Y, LI W Y. Comparative analysis of differentially expressed genes between the ovaries from pregnant and nonpregnant goats using RNA-Seq., 2019, 26(3): 1-12.
[2] RO S, SONG R, PARK C, ZHENG H, SANDERS K M, YAN W. Cloning and expression profiling of small RNAs expressed in the mouse ovary., 2007, 13(12):2366-2380.
[3] LI P F, MENG J Z, ZHU Z W, FOLGER J K, LYU L H. Detection of genes associated with follicle development through transcriptome analysis of bovine ovarian follicles GCs., 2018,13:127-140.
[4] BAO B, GARVERICK H A, SMITH G W, SMITH M F, SALFEN B E, YOUNGQUIST R S. Changes in messenger ribonucleic acid encoding luteinizing hormone receptor, cytochrome P450-side chain cleavage, and aromatase are associated with recruitment and selection of bovine ovarian follicles., 1997, 56(5): 1158-1168.
[5] REVERCHON M, CORNUAU M, RAMé C, GUERIF F, ROYèRE D, DUPONT J. Resistin decreases insulin-like growth factor I-induced steroid production and insulin-like growth factor I receptor signaling in human granulosa cells., 2013, 100(1): 247-255.
[6] KHARITONENKOV A, DIMARCHI R. Fibroblast growth factor 21 night watch: advances and uncertainties in the field., 2016, 281(3):233-246.
[7] DE CASTRO T, RUBIANES E, MENCHACA A, RIVERO A. Ovarian dynamics, serum estradiol and progesterone concentrations during the interovulatory interval in goats., 1999, 52(3):399-411.
[8] LI J, LI Z, LIU S, ZIA R, LIANG A, YANG L. Transcriptome studies of granulosa cells at different stages of ovarian follicular development in buffalo., 2017,187:181-192.
[9] TERENINA E, FABRE S, BONNET A, MONNIAUX D, ROBERT- GRANIé C, SANCRISTOBAL M, TOSSER-KLOPP G. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia.2017, 49(2):67-80.
[10] HUSSEIN M R. Apoptosis in the ovary: Molecular mechanisms., 2005,11(2):162-178.
[11] FOLGER J K, JIMENEZ-KRASSEL F, IRELAND J J, LV L L, SMITH G W. Regulation of granulosa cell cocaine and amphetamine regulated transcript (CART) binding and effect of CART signaling inhibitor on granulosa cell estradiol production during dominant follicle selection in cattle., 2013, 137: 1-8.
[12] BROMFIELD J J, IACOVIDES S M. Evaluating lipopolysaccharide- induced oxidative stress in bovine granulosa cells., 2017, 34(12): 1619-1626.
[13] HAN P, XIN H Y, PENG J X, ZHANG L, SONG Y X, LI G, CAO B Y, AN X P. Identification and expression of X-linked inhibitor of apoptosis protein during follicular development in goat ovary., 2017, 98:30-35.
[14] LI P F, MENG J Z, LIU W Z, SMITH G W, YAO J B, LYU L H. Transcriptome analysis of bovine ovarian follicles at predeviation and onset of deviation stages of a follicular wave., 2016, 2016:1-9.
[15] ZI X D, CHEN D W, WANG H M. Molecular characterization, mRNA expression of prolactin receptor () gene during pregnancy, nonpregnancy in the yak ()., 2012, 175(3):384-388.
[16] RUAN W, CATANESE V, WIECZOREK R, FELDMAN M, KLEINBERG D L. Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid., 1995, 136(3):1296-1302.
[17] PERKS C M, NEWCOMB P V, GROHMANN M, WRIGHT R J, MASON H D, HOLLY J M. Prolactin acts as a potent survival factor against C2-ceramide-induced apoptosis in human granulosa cells., 2003, 18(12):2672-2677.
[18] TISSIER P R, HODSON D J, MARTIN A O, RomanòN,Mollard P. Plasticity of the prolactin (PRL) axis: Mechanisms underlying regulation of output in female mice., 2015, 846:139-162.
[19] LI S H, LIN M H, HWU Y M, LU C H, YEH L Y, CHEN Y J, LEE R K. Correlation of cumulus gene expression of,,, andwith oocyte maturation, fertilization, and embryo development., 2015, 13(1): 93.
[20] ZHANG X Q, JAFARI N, BARNES R B, CONFINO E, MILAD M, KAZER R R. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality., 2005, 83(4):1169-1179.
[21] GARLANDA C, BOTTAZZI B, BASTONE A, MANTOVANI A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility., 2005, 23(1):337-366.
[22] HATZIRODOS N, IRVING-RODGERS H F, HUMMITZSCH K, HARLAND M L, MORRIS S E, RODGERS R J. Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes., 2014, 15(1):24.
[23] VOORHAM Q J, JANSSEN J, TIJSSEN M, SNELLENBERG S, MONGERA S, GRIEKEN N C, GRABSCH H, KLIMENT M, REMBACKEN B J, MULDER C J, ENGELAND M V, MEIJER G A,STEENBERGEN R D, CARVALHO B. Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas., 2013, 13(1): 603.
[24] BHATTACHARYYA S, FEFERMAN L, TOBACMAN J K. Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3)., 2017, 59(8): 100242-100260.
[25] WANG X S, SPERKOVA Z, NAPOLI J L. Analysis of mouse retinal dehydrogenase type 2 promoter and expression., 2001, 74(2): 245-250.
[26] LI X H, KAKKAD B, ONG D E. Estrogen directly induces expression of retinoic acid biosynthetic enzymes, compartmentalized between the epithelium and underlying stromal cells in rat uterus., 2004, 145(10):4756-4762.
[27] KUMAR S, CUNNINGHAM T J, DUESTER G. Resolving molecular events in the regulation of meiosis in male and female germ cells., 2013, 6(288): pe25.
[28] KRENTZ A D, MURPHY M W, SARVER A L, GRISWOLD M D, BARDWELL V J, ZARKOWER D. DMRT1 promotes oogenesis by transcriptional activation of Stra8 in the mammalian fetal ovary., 2011, 356(1):63-70.
[29] NAILLAT F, PRUNSKAITE-HYYRYLAINEN R, PIETILA I, SORMUNEN R, JOKELA T, SHAN J D, VAINIO S J. Wnt4/5a signalling coordinates cell adhesion and entry into meiosis during presumptive ovarian follicle development., 2010, 19(8):1539-1550.
[30] BOWLES J, FENG C W, SPILLER C, DAVIDSON T L, JACKSON A, KOOPMAN P. FGF9 suppresses meiosis and promotes male germ cell fate in mice., 2010, 19(3):440-449.
Screening and Analysis of Follicular Development Related Genes in Goat
ZHAO YuanYuan1, LI PengFei2, XU QinZhi1, AN QingMing1, MENG JinZhu1
(1Tongren University, Tongren 554300, Guizhou;2College of Life Science, Shanxi Agricultural University, Taigu 030801, Shanxi)
【】 Dominant follicles (DF) and subordinate follicles (SF) were the most important two stages in the follicle development in the first follicle wave of goat. With further development of follicles, DF may eventually develop into mature follicles until ovulation, and SF will move towards atresia, while apoptosis of granulosa cells is the key factor leading to follicular atresia. However, the molecular mechanisms of promoting follicle dominance or causing its atresia are still unclear. 【】 This study was aimed to screen the key genes affecting follicular development and provide a theoretical basis for further exploring the regulation mechanism of follicular development by high-throughput sequencing of DF and SF granulosa cells in the first follicular wave of goat.【】Ten healthy Guizhou white goats were selected (1 year old), and the prostaglandin F2αwere injected respectively for estrus synchronization. B-type ultrasonography was used to detect the follicle growth situation, and then all of the goats were slaughtered when estrus had appeared for three days. DF (4.5-6 mm in diameter) and SF (3-4.5 mm in diameter) were obtained, granulosa cells were separated in the first follicle wave, respectively. Total RNA were extracted, and libraries were constructed and sequenced by Illumina Hiseq 2500 platform. FastQC was used to evaluate the quality of raw reads sequenced and filter them to obtain clean reads with high quality. Trinity was used to assemble clean reads from scratch to obtain unigenes. mRNA was obtained by comparing unigenes with goat RefSeq database using CLC Genomics Workbench. DESeq2 software was used to analyze the differential expression of the obtained mRNA. The goseq and kobas software were used for GO analysis and KEGG signal pathway analysis. Finally, qRT-PCR was used to verify the selected key genes that might affect the follicle development. 【】After the raw reads which obtained by sequencing were filtered, 43 217 934 clean reads were obtained from DF granulosa cells, accounting for 95.19% of raw reads. 40 766 348 clean reads were obtained from SF granulosa cells, accounting for 95.35% of raw reads. When the unigenes were compared with the RefSeq database of goat, a total of 33 896 annotated transcripts were obtained. Setting FPKM>1 and q value<0.05, a total of 13 644 genes were obtained in two types of follicle granulosa cells. By setting parameters: FPKM≥1, SF-FPKM/DF-FPKM>1,<0.05, 695 differentially expressed mRNAs were obtained, of which 233 were significantly up-regulated and 462 were down-regulated in SF granulosa cells. GO functional enrichment analysis was performed on 695 differentially expressed mRNAs and concentrated in 42 groups of three major categories: biological processes accounted for 47.6%, cellular components 47.6%, and molecular functions 4.8%. KEGG signaling pathway analysis revealed 20 pathways, among which ribosome pathway related genes were most significantly enriched. Six genes that might be closely related to follicle development in goats were screened out, among which,andwere up-regulated in subordinate follicles granulosa cells.,andwere down-regulated. qRT-PCR showed that the expression trend of,,,andwas consistent with high-throughput sequencing results, and the expression level ofin SF granulosa cells was significantly higher than that of dominant follicles (<0.01). The expression levels of,and<0.01).【】,,andhad extremely significant differences in the expression levels of dominant follicles and subordinate follicles. It was speculated that those genes might promote the predominance of follicles or lead to atresia during the follicle development of goat, which was of great significance to further explore the regulation mechanism of follicular development.
goat; high-throughput sequencing; follicle development; granulosa cells

10.3864/j.issn.0578-1752.2020.17.016
2019-06-24;
2020-07-10
貴州省教育廳青年科技人才成長項目(黔教合KY字[2018]348)、貴州省普通高等學校科技拔尖人才支持計劃(黔教合KY字[2017]089)、銅仁學院博士啟動基金項目(trxyDH1601)、銅仁學院生態畜牧創新團隊項目(CXTD[2020-19])、貴州省農業科技示范園區項目(黔科合農園字[2014]5007號)、沿河土家族自治縣科技合作計劃項目“良種山羊與沿河白山羊雜交組合試驗與示范推廣”
趙園園,E-mail:84840293@163.com。通信作者孟金柱,E-mail:mjz122021@126.com
(責任編輯 林鑒非)