999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

半監(jiān)督學(xué)習(xí)算法拉普拉斯支持向量機(jī)應(yīng)用于蛋白質(zhì)結(jié)構(gòu)類預(yù)測

2020-09-02 07:14:46吳疆董婷蔣平
微型電腦應(yīng)用 2020年8期
關(guān)鍵詞:監(jiān)督

吳疆 董婷 蔣平

摘要:

應(yīng)用半監(jiān)督學(xué)習(xí)方法拉普拉斯支持向量機(jī)(Laplace Support Vector Machine, LapSVM)對(duì)蛋白質(zhì)結(jié)構(gòu)類進(jìn)行預(yù)測。首先7個(gè)氨基酸理化性質(zhì)參數(shù)作為替代模型將蛋白質(zhì)序列轉(zhuǎn)換為數(shù)字序列,自協(xié)方差變換(AutocrossCovariance, AC)用來描述具有一定間隔氨基酸殘基之間的相互關(guān)系并將數(shù)字序列變換為統(tǒng)一長度的向量,構(gòu)建樣本的特征空間。然后在數(shù)據(jù)集中分別隨機(jī)挑選20、50、80、110、140、170個(gè)樣本作為無標(biāo)簽樣本構(gòu)建訓(xùn)練集,一對(duì)多分解策略和留一法用來評(píng)價(jià)LapSVM模型的預(yù)報(bào)能力。分類器對(duì)蛋白質(zhì)樣本類預(yù)測正確率為94.12%,與標(biāo)準(zhǔn)支持向量機(jī)算法(Support Vector Machine, SVM)方法90.69%的預(yù)測精度相比有明顯的競爭力。實(shí)驗(yàn)結(jié)果有效驗(yàn)證了無標(biāo)簽樣本的分布信息作為弱規(guī)則能有效提升分類器的預(yù)報(bào)性能。同時(shí)提供了一種新穎的思路,應(yīng)用半監(jiān)督方法解決全監(jiān)督學(xué)習(xí)問題,更小的優(yōu)化規(guī)模,更好的預(yù)報(bào)能力。

關(guān)鍵詞:

半監(jiān)督學(xué)習(xí); 蛋白質(zhì)結(jié)構(gòu)類; 拉普拉斯支持向量機(jī); 自協(xié)方差變換

中圖分類號(hào): TP 391

文獻(xiàn)標(biāo)志碼: A

Protein Structural Classes Prediction by Using Laplace Support

Vector Machine and Based on Semisupervised Method

WU Jiang1, DONG Ting1, JIANG Ping1,2

(1. Department of Information Engineering ,Yulin University, Yulin, Shanxi ?719000, China;

2. School of Computer Science and Technology, Xidian University, Xian, Shanxi 710071, China)

Abstract:

The purpose of the study is to predict protein structural classes by using Laplace support vector machine (LapSVM) which is a novel semisupervised learning method. Firstly, seven amino acid physicochemical properties cited from literature was applied to transform the protein sequences into numeric vectors, and auto covariance (AC) was used in transforming the physicochemical properties of the amino acids of given proteins into features space with the same size, which is suitable for training models. AC focuses on the neighboring effects and the interactions between residues with a certain distance apart in protein sequences. Secondly, 20, 50, 80, 110, 140 and 170 samples were randomly selected as unlabelled samples to construct training datasets, “oneagainstall” strategy and leaveoneout method were employed to estimate the performance. The prediction accuracy 94.12% was obtained, and it is very promising compared with the accuracy 90.69% predicted by Support Vector Machine (SVM). The experimental results proofed that the unlabelled samples input as weak rules can lightly improve the prediction performances, simultaneously, a novel idea is using semisupervised method to solve a supervised learning problem intends to less optimal scale and higher prediction accuracy.

Key words:

semisupervised learning; protein structural class; Laplace support vector machine; auto correlation

猜你喜歡
監(jiān)督
請(qǐng)你監(jiān)督
推動(dòng)聯(lián)動(dòng)監(jiān)督取得扎實(shí)成效
突出“四個(gè)注重” 預(yù)算監(jiān)督顯實(shí)效
期待聯(lián)動(dòng)監(jiān)督再發(fā)力
公民與法治(2020年3期)2020-05-30 12:29:40
做到監(jiān)督常在 形成監(jiān)督常態(tài)
論審計(jì)監(jiān)督全覆蓋的實(shí)施
監(jiān)督見成效 舊貌換新顏
夯實(shí)監(jiān)督之基
持續(xù)監(jiān)督 打好治污攻堅(jiān)戰(zhàn)
績效監(jiān)督:從“管住”到“管好”
浙江人大(2014年5期)2014-03-20 16:20:28
主站蜘蛛池模板: 国产精品13页| 成人福利在线观看| 成年人国产网站| 五月婷婷伊人网| 91www在线观看| 在线播放91| 免费va国产在线观看| 福利视频一区| 久久亚洲天堂| 免费jizz在线播放| 无码中文字幕精品推荐| 高清不卡毛片| 毛片手机在线看| 99热这里只有精品2| 香蕉视频在线精品| 又粗又大又爽又紧免费视频| 日韩少妇激情一区二区| 亚洲天堂高清| 婷婷六月激情综合一区| 高清无码不卡视频| 蜜桃视频一区二区三区| 久久黄色视频影| 99视频在线免费观看| 久久人妻xunleige无码| 欧美成人精品欧美一级乱黄| 亚洲国产中文在线二区三区免| 国产白浆视频| 人妻无码一区二区视频| 激情视频综合网| 国产在线精品美女观看| 精品一区二区三区波多野结衣| 日韩精品无码不卡无码| 99精品高清在线播放 | 免费毛片视频| 久青草免费视频| 亚洲欧美极品| 在线国产91| 国产成人夜色91| 91精品在线视频观看| 香蕉视频在线精品| 狼友av永久网站免费观看| 亚洲成aⅴ人片在线影院八| 国产亚洲精久久久久久无码AV| 国产美女精品一区二区| 国产一级毛片网站| 亚洲色图欧美在线| jizz亚洲高清在线观看| 伊人91视频| 国产玖玖视频| 国产精品尤物铁牛tv| 亚洲欧美自拍中文| 天天综合色网| 国产人妖视频一区在线观看| 在线不卡免费视频| 伊人大杳蕉中文无码| 婷婷六月天激情| 国产一区二区三区在线观看免费| 国产色婷婷| 手机成人午夜在线视频| 青青草国产免费国产| 久久精品无码国产一区二区三区| 国产精品免费入口视频| 中国国产高清免费AV片| 亚洲第一黄色网| 日本亚洲国产一区二区三区| 综合亚洲网| 免费Aⅴ片在线观看蜜芽Tⅴ| 亚洲中文字幕手机在线第一页| 色综合天天娱乐综合网| 日韩中文字幕免费在线观看| 国产高清在线精品一区二区三区| 免费无码又爽又黄又刺激网站| 久久精品视频亚洲| 亚洲综合色吧| 成人av专区精品无码国产 | 欧美成在线视频| 久久国语对白| 尤物特级无码毛片免费| 无码区日韩专区免费系列 | 久久综合色88| 久久国产黑丝袜视频| 久久青草精品一区二区三区|