王欣悅,石田培,趙志達,胡文萍,尚明玉,張莉
基于綿羊胚胎骨骼肌蛋白質組學的PI3K-AKT信號通路分析
王欣悅,石田培,趙志達,胡文萍,尚明玉,張莉
(中國農業科學院北京畜牧獸醫研究所,北京 100193)
【】綿羊是重要的經濟動物,其骨骼肌生長發育與產肉性能密切相關。胚胎期是綿羊骨骼肌生長發育的關鍵階段,挖掘分析綿羊胚胎骨骼肌蛋白質組數據,為揭示綿羊肌肉發育重要時間節點、篩選綿羊胚胎骨骼肌生長發育調控蛋白質提供依據。本團隊已對妊娠第85天、第105天和第135天的中國美利奴綿羊胚胎背最長肌進行串聯質譜(tandem mass tag, TMT)蛋白質定量,鑒定到1316種差異豐度蛋白質。現利用GO、KEGG和R等方法對這些差異豐度蛋白質開展聚類、功能注釋和通路分析等生物信息學分析。基于前期研究結果對差異豐度蛋白質進行R語言聚類,分析結果顯示,cluster 5類蛋白在胚胎骨骼肌第105天具有較高豐度。對cluster 5 蛋白進行GO和KEGG富集分析發現,該類蛋白質參與胞內蛋白質代謝過程,顯著富集于PI3K-AKT信號通路中,而在該信號通路中RAC-β絲氨酸/蘇氨酸蛋白激酶X1(AKT2)具有較高表達豐度。蛋白質生物信息學結果表明,AKT2蛋白由481個氨基酸構成,AKT2蛋白理論分子量為55.58kD,由66個帶正電荷的氨基酸殘基和72個帶負電荷的氨基酸殘基組成,理論等電點為6.08,親水性平均系數-0.454,屬于親水性蛋白。預測AKT2蛋白的481個氨基酸全部位于膜外,屬于膜受體蛋白。AKT2蛋白有12個N-端糖基化位點,71個磷酸化位點,與蛋白酶K相似度為99%,屬于蛋白酶催化亞基家族。綿羊胚胎骨骼肌蛋白質組數據發現,第105天是綿羊胚胎骨骼肌纖維由增殖分化到增大增粗的轉折點,具有調控綿羊胚胎骨骼肌纖維生長發育作用的PI3K-AKT信號通路在該節點顯著富集,AKT2是調控該信號通路的重要候選蛋白。綜上,本研究結果對揭示胚胎骨骼肌生長發育及其調控分子機制具有重要理論指導意義。
綿羊(); 胚胎背最長肌; 蛋白質組學;生物信息學分析
【研究意義】胚胎期是綿羊骨骼肌生長發育的重要時期。胚胎骨骼肌纖維在該時期發生增殖、分化、融合、增粗及成熟等生物過程,直接影響出生后骨骼肌的生長[1]。因此,分析綿羊胚胎骨骼肌蛋白質組學數據對闡明其生長發育機制、篩選重要調控蛋白具有重要意義。【前人研究進展】骨骼肌生長發育研究一直備受關注,早期研究較多的,又稱,是一種肌肉生長抑制素,對家畜肌肉生長發育具有重要作用,其活性的喪失或降低會促進動物肌肉的發育。隨后,發現、、和肌源性調節因子(myogenic regulatory factors,)調控肌源性祖細胞、成肌細胞和肌纖維的生長[2-4]。肌源性調節因子4(myogenic regulatory factor 4,)、肌源因子5(myogenic factor 5,)、肌源性分化因子(myogenic differentiation 1,)和肌細胞生成素()是決定肌纖維最終分化的調控因子,Six家族蛋白質是參與肌肉早期發育的轉錄因子,并在胚胎骨骼肌發育過程中發揮重要作用[5-6]。研究發現PI3K-AKT等信號通路與骨骼肌生長發育密切相關,可以誘導肌肉的生成、調控基因的表達和成肌分化[7-8]。綿羊骨骼肌結構特征研究表明,綿羊胚胎期第50天至第100天是肌纖維生長發育的關鍵階段,此階段以后肌纖維的種類、數量和狀態不再發生變化[9-10]。【本研究切入點】蛋白組學研究技術為揭示家畜骨骼肌生長發育提供了有效的技術手段。目前,蛋白質組學技術廣泛應用于豬、雞、牛和羊等動物的骨骼肌生長發育研究。通過該技術,研究人員已挖掘出一批調控骨骼肌生長發育的關鍵蛋白[11-14]。但現階段,對綿羊胚胎骨骼肌蛋白質組學的研究非常少。本團隊前期利用TMT技術[15]對胚胎期第85天(D85N)、第105天(D105N)和第135天(D135N)的綿羊胚胎背最長肌進行蛋白質定量研究,并鑒定到1316種差異豐度蛋白。本研究在此基礎上利用生物信息學技術對差異豐度蛋白質進行分析與篩選[16]。【擬解決的關鍵問題】通過進一步分析差異豐度蛋白,揭示綿羊胚胎骨骼肌重要發育時間節點、挖掘發育相關調控蛋白,分析預測候選調控蛋白功能與結構,為提高綿羊產肉性能、闡明綿羊胚胎骨骼肌生長發育蛋白質調控機制提供新思路。
試驗于2018年7月在中國農業科學院北京畜牧獸醫研究所完成。
選擇體況良好、體重相近的中國美利奴綿羊成年母羊進行同期發情與人工輸精。通過手術法采集妊娠D85N、D105N和D135N母羊的胚胎相同部位的背最長肌(每階段3個生物學重復)為樣品進行TMT蛋白質組學定量。通過對二級質譜數據進行Maxquant (v1.5.2.8)檢索(數據庫為NCBI Ovis aries Oar_v4.0 https://www.ncbi.nlm.nih.gov/genome/?term=Ovis+aries),設置D105N vs D85N、D135N vs D105N和D135N vs D85N 3個比較組進行分析,共鑒定到1316種差異豐度蛋白質。本試驗將利用GO、KEGG和R等生物信息學數據分析軟件和平臺對這些差異豐度蛋白質進行分析和篩選。
為進一步分析差異豐度蛋白質功能,篩選調控綿羊胚胎骨骼肌生長發育候選蛋白,利用R中Mfuzz算法對前期定量到的1316種差異豐度蛋白進行表達模式聚類分析[17-18]。
利用InterProScan v.5.14-53.0(http://www.ebi.ac. uk/interpro/)、KAAS v.2.0(http://www. genome.jp/ kaas-bin/kaas_main)、KEGG mapper V2.5(http://www. kegg.jp/kegg/mapper.html)和Perl module(v.1.31 https://metacpan.org/pod/Text::NSP::Measures::2D::Fisher)等軟件對cluster 5蛋白進行功能注釋及富集分析。
使用ExPASy網站的ProtParam(http://web.expasy. org/protparam/)預測和分析蛋白質的分子量、等電點等物理參數[19]; TMHMM軟件(http://www.cbs.dtu.dk/ services/TMHMM-2.0/)對蛋白進行跨膜區域預測[20];使用Expasy(http://www.expasy.org/proteomics)軟件分析蛋白質潛在的磷酸化和糖基化等位點[21-23];利用Protein Homology/analogY Recognition Engine V 2.0(Phyre2,http://www.sbg.bio.ic.ac.uk/phyre2/html/page. cgi?id=index)預測蛋白質的三級結構。
R語言表達模式聚類分析表明,cluster 5蛋白在D105N時具有較高表達趨勢(圖1)。通過GO和KEGG分析發現,cluster 5蛋白質參與胞內蛋白質代謝過程,并顯著富集于PI3K-AKT信號通路。同時,ATK2蛋白在PI3K-AKT信號通路中顯著上調(圖2-4)。

圖1 差異豐度蛋白質表達模式聚類分析

Y軸:生物學過程Y: Enrichment index; X軸:富集指數X: Biology process

Y軸: 通路名稱Y: Pathway name; X軸: Fisher精確測試P值X: Fisher’s exact test p-value

紅色:顯著富集的上調基因 Red:Significant enrichment up-regulation gene
2.2.1 AKT2蛋白的理化性質 AKT2蛋白由481個氨基酸構成。使用ProtParam在線軟件分析AKT2蛋白的理化性質,推測其分子式為C2490H3865N673O724S24,分子量為55.58kD,理論等電點(pI)為6.08,半衰期均是30 h,不穩定系數32.36,屬于穩定蛋白。脂肪系數為76.61,親水性平均系數(GRAVY)是-0.454,屬于親水性蛋白。負電荷(Asp + Glu)氨基酸殘基72個,正電荷(Arg + Lys)氨基酸殘基66個。
2.2.2 AKT2蛋白跨膜結構分析及其潛在N-糖基化、磷酸化位點預測 TMHMM在線預測表明,AKT2蛋白的481個氨基酸沒有位于細胞膜上和膜內,全部位于膜外,屬膜受體蛋白(圖5)。PSORT II Prediction分析結果表明AKT2蛋白主要在65.2% 胞質、4.3% 線粒體、17.4%細胞核、4.3%分泌包囊、4.3%細胞支架。使用NetNGlyc 1.0 Server和NetPhos 3.1 Server分別預測AKT2蛋白N-端糖基化和磷酸化情況,結果顯示:AKT2蛋白有12個N-糖基化位點,71個磷酸化位點,其中26個絲氨酸(Ser)磷酸化位點、26個蘇氨酸(Thr)磷酸化位點、19個酪氨酸(Tyr)磷酸化位點(圖6)。

圖5 AKT2蛋白跨膜結構分析

(a)AKT2 12個N-糖基化位點(a)12 N-glycosylation sites in AKT2;(b)AKT2 71個磷酸化位點(b)71 phosphorylation sites in AKT2
Fig .6 Prediction on glycosylation and phosphorylation sites of AKT2 protein
2.2.3 AKT2蛋白三級結構預測 PHYER2預測結果顯示,AKT2蛋白具有α-螺旋及無規則卷曲等結構,三級結構整體呈晶體結構,與蛋白酶K相似度為99%,屬于蛋白酶催化亞基(圖7)。

圖7 AKT2蛋白3D結構預測
本文利用GO、KEGG和R語言等方法對差異豐度蛋白質進行聚類、功能注釋和通路富集等生物信息學分析,分析結果對揭示綿羊胚胎骨骼肌生長發育關鍵窗口期、篩選調控蛋白具有重要意義。胚胎時期骨骼肌大部分由生肌節中的肌肉前體細胞發育而來,這些肌肉前體細胞會在初級生肌節中分化成單核肌肉細胞,初級生肌節最終生成脊椎動物早期的肌肉組織[24-25]。前期研究表明,綿羊胚胎骨骼肌纖維在胚胎期第85天至第105天增殖分化,在第105天至第135天增大增粗,而這些差異豐度蛋白質主要富集于能夠調控肌纖維發生生長的代謝及氧化磷酸化等信號通路[8, 26-30]。本研究中,綿羊胚胎骨骼肌蛋白質組學數據R語言分析發現,cluster 5蛋白在胚胎發育第105天具有較高表達豐度(圖1)。相關文獻報道綿羊胚胎骨骼肌纖維在胚胎期第50天至第100天基本發育完成,并在第100天左右開始分化[31]。因此,初步判斷D105N是調控綿羊胚胎骨骼肌發育轉折點。
KEGG分析發現,cluster 5蛋白質在PI3K-AKT信號通路中顯著富集。由此推斷,PI3K-AKT信號通路可能對胚胎時期骨骼肌發育轉折及調控具有重要的作用。PI3K-AKT信號通路參與骨骼肌生長發育,能夠調控細胞周期、細胞凋亡和蛋白質合成等生物過程[32]。研究表明,PI3K-AKT信號通路能夠調控肌漿蛋白形成,促進肌肉分化和肥大[33]。本研究發現PI3K-AKT信號通路在綿羊胚胎骨骼肌發育轉折過程中具有重要作用,AKT作為第二信使在該通路中扮演重要的角色。PI3K-AKT信號通路下游的轉導因子AKT/PKB在調節個體發育、生長和細胞存活過程中發揮著重要作用[34]。ATK是一種保守的絲/蘇氨酸蛋白激酶,可以調控動物胚胎發育及幼體生長,而ATK2是ATK的不同亞基也具有相同作用[35]。在正常生理條件下,PI3K-AKT信號通路由受體酪氨酸激酶(RTK)激活,并通過活化PI3K誘導PIP3激活AKT,上調下游靶基因從而調節細胞周期及分化。本研究中,RAC-β絲/蘇氨酸蛋白激酶X1(ATK2)顯著富集于PI3K-AKT信號通路,成肌調控因子Myostatin作為AKT的活化因子之一,也可以通過激活PI3K-AKT信號通路來調控肌肉生長[36-38]。因此,PI3K-AKT信號通路可以通過調控和(肌酸激酶)骨骼肌發育分化標志分子表達來調控骨骼肌纖維發育及分化[39-40]。
AKT2蛋白在胞質比例較高,屬于膜受體蛋白。由此可以推斷,該蛋白可能在核膜上大量分布,并在蛋白質翻譯時具有重要作用。而AKT2蛋白與蛋白酶催化亞基的三級結構具有較高的同源性,表明該蛋白可能是蛋白質翻譯時重要的催化激活因子。同時,該蛋白的三級結構整體較為復雜,存在α-螺旋及無規則卷曲等結構,可能對配體或受體蛋白的識別和結合具有重要作用。該蛋白大量磷酸化修飾位點的發現表明,可逆磷酸化調控可能在實現AKT2蛋白質功能中起到重要作用。綜上,AKT2蛋白不僅在PI3K-AKT信號通路中具有重要的信號傳導及調控功能,還在綿羊胚胎骨骼肌發育分化時具有關鍵的調控作用,但AKT2蛋白調控肌纖維發育分化的分子機制還有待進一步驗證和研究。
通過GO二級注釋、KEGG富集及R語言表達模式聚類等分析發現,蛋白質功能和富集通路均與個體發育和骨骼肌生長發育相關,第105天是綿羊胚胎骨骼肌纖維由增殖分化到增大增粗的轉折點,PI3K-AKT信號通路對骨骼肌纖維生長發育轉換具有調控作用。候選蛋白質生物信息學分析表明,ATK2具有重要催化調控功能,是調控PI3K-AKT信號通路信號傳導的重要候選蛋白。
[1] BENTZINGER, C F, YU X W, RUDNICKI M A. Building Muscle: Molecular Regulation of Myogenesis., 2012, 4(2): 441-441.
[2] TAJBAKHSH S, BUCKINGHAM M. 6 The Birth of Muscle Progenitor Cells in the Mouse: Spatiotemporal Considerations., 1999, 48: 225-268.
[3] BUCKINGHAM, M. Skeletal muscle progenitor cells and the role of Pax genes., 2007, 330(6-7): 530-533.
[4] DONG Y, XIE M, JIANG Y, XIAO N, DU X, ZHANG W, TOSSER-KLOPP G, WANG J, YANG S, LIANG J, CHEN W, CHEN J, ZENG P, HOU Y, BIAN C, PAN S, LI Y, LIU X, WANG W, SERVIN B, SAYRE B, ZHU B, SWEENEY D, MOORE R, NIE W, SHEN Y, ZHAO R, ZHANG G, LI J, FARAUT T, WOMACK J, ZHANG Y, KIJAS J, COCKETT N, XU X, ZHAO S, WANG J, WANG W. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat ()., 2013, 31(2): 135-141.
[5] MURPHY, M, KARDON G. Origin of vertebrate limb muscle: The role of progenitor and myoblast populations., 2011, 96: 1-32.
[6] KAWAKAMI, K, SATO S, OZAKI H, IKEDA K. Six family genes—structure and function as transcription factors and their roles in development., 2000, 22(7): 616-626.
[7] 史新娥, 吳國芳, 宋子儀, 路宏朝, 賈龍, 朱嘉宇, 楊公社. 阻斷PI3K/AKT通路通過激活FoxO1抑制豬骨骼肌衛星細胞分化. 中國農業科學, 2014, 47(01): 154-160.
SHI X E, WU G F, SONG Z Y, LU H C, JIA L, ZHU J Y, YANG G S. Inhibition of PI3K/AKT pathway suppressing porcine skeletal muscle sattelite differentiation through activation of FoxO1 transcription factor., 2014, 47(1): 154-160. (in Chinese)
[8] LIU J, FU R, LIU R, ZHAO G, ZHENG M, CUI H, LI Q, SONG J, WANG J, WEN J. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens., 2016, 11(8): e0159722.
[9] ASHMORE, C R, ROBINSON D W, RATTRAY P, DOERR L. Biphasic development of muscle fibers in the fetal lamb., 1972, 37(2): 241-55.
[10] 李雪嬌, 劉晨曦, 孫亞偉, 楊開倫, 劉明軍. 德國美利奴羊胎兒期骨骼肌組織學結構發育特征研究. 西北農林科技大學學報(自然科學版), 2018, 332(5): 7-13.
LI X J, LIU C X, SUN Y W, YANG K L, LIU M J. Study on structure development characteristics of German Merion sheep fetal skeletal muscle tissue., 2018, 332(5): 7-13. (in Chinese)
[11] OUYANG H, WANG Z, CHEN X, YU J, LI Z, NIE Q. Proteomic analysis of chicken skeletal muscle during embryonic development., 2017, 8: 281.
[12] POLETI M D, REGITANO L C, SOUZA G H, CESAR A S, SIMAS R C, SILVA-VIGNATO B, OLIVEIRA G B, ANDRADE S C, CAMERON L C, COUTINHO L L. Longissimus dorsi muscle label- free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition., 2018, 179: 30-41.
[13] ZHANG, X, CHEN Y, PAN J, LIU X, CHEN H, ZHOU X, YUAN Z, WANG X, MO D. iTRAQ-based quantitative proteomic analysis reveals the distinct early embryo myofiber type characteristics involved in landrace and miniature pig., 2016, 17(1): 137.
[14] HAMELIN, M, SAYD T, CHAMBON C, BOUIX J, LAVILLE E. Proteomic analysis of ovine muscle hypertrophy., 2007, 84(12): 3266-3276.
[15] THOMPSON A, SCH?FER J, KUHN K, KIENLE S, SCHWARZ J, SCHMIDT G, NEUMANN T, HAMON C. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS., 2003, 75(8): 1895-1904.
[16] 石田培, 王欣悅, 侯浩賓, 趙志達, 尚明玉, 張莉. 基于全轉錄組測序的綿羊胚胎不同發育階段骨骼肌circRNA的分析與鑒定. 中國農業科學, 2020, 53(03): 642-657.
SHI T P, WANG X Y, HOU H B, ZHAO Z D, SHANG M Y, ZHANG L. Analysis and identification of circrnas of skeletal muscle at different stages of sheep embryos based on whole transcriptome sequencing., 2020, 53(3): 642-657. (in Chinese)
[17] 王素蘭, 高華萍, 張菁, 葉翔. 基于穩定同位素標記和平行反應監測的蛋白質組學定量技術用于肝癌生物標志物的篩選和驗證. 色譜, 2017, 35(9): 934-940.
WANG S L, GAO H P, ZHANG J, YE X. Stable isotope labeling and parallel reaction monitoring-based proteomic quantification for biomarker screening and validation of hepatocellular carcinoma., 2017, 35(9): 934-940. (in Chinese)
[18] KUMAR L, FUTSCHIK M E. Mfuzz: a software package for soft clustering of microarray data., 2007, 2(1): 5.
[19] GASTEIGER E, HOOGLAND C, GATTIKER A, WILKINS M R, APPEL R D, BAIROCH A. Protein identification and analysis tools on the ExPASy server., 2005: 571-607.
[20] SONNHAMMER E L, VON HEIJNE G, KROGH A. A hidden Markov model for predicting transmembrane helices in protein sequences., 1998, 6: 175-182.
[21] BLOM N, GAMMELTOFT S, BRUNAK S. Sequence and structure-
based prediction of eukaryotic protein phosphorylation sites., 1999, 294(5): 1351-1362.
[22] BLOM N, SICHERITZ-PONTéN T, GUPTA R, GAMMELTOFT S, BRUNAK S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence., 2004, 4(6): 1633-1649.
[23] STEENTOFT C, VAKHRUSHEV S Y, JOSHI H J, KONG Y, VESTER-CHRISTENSEN M B, KATRINE T, SCHJOLDAGER B, LAVRSEN K, DABELSTEEN S, PEDERSEN N B. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology., 2013, 32(10): 1478-1488.
[24] DENETCLAW W, CHRIST B, ORDAHL C P. Location and growth of epaxial myotome precursor cells., 1997, 124(8): 1601-1610.
[25] VENTERS S J, ORDAHL C P. Persistent myogenic capacity of the dermomyotome dorsomedial lip and restriction of myogenic competence., 2002, 129(16): 3873-3885.
[26] KAZANSKAYA O, GLINKA A, DEL BARCO BARRANTES I, STANNEK P, NIEHRS C, WU W. R-Spondin2 is a secreted activator of Wnt/β-catenin signaling and is required for Xenopus myogenesis., 2004, 7(4): 525-534.
[27] TAJBAKHSH S, BORELLO U, VIVARELLI E, KELLY R, PAPKOFF J, DUPREZ D, BUCKINGHAM M, COSSU G. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5., 1998, 125(21): 4155-4162.
[28] WANG Y X, ZHANG C L, RUTH T Y, CHO H K, NELSON M C, BAYUGA-OCAMPO C R, HAM J, KANG H, EVANS R M. Regulation of muscle fiber type and running endurance by PPARδ., 2004, 2(10): e294.
[29] ZIZOLA C, KENNEL P J, AKASHI H, JI R, CASTILLERO E, GEORGE I, HOMMA S, SCHULZE P C. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction., 2015, 308(9): 1078-1085.
[30] WANG X Y, SHI T P, ZHAO Z D, HOU H B, ZHANG LProteomic analyses of sheep () embryonic skeletal muscle., 1750 (2020) 10:1750.
[31] 李雪嬌, 劉晨曦, 楊開倫, 劉明軍. 德美羊與中美羊胎兒期骨骼肌組織學結構發育特征差異性研究. 草食家畜, 2017 (04):1-6.
LI X J, LIU C X, YANG K L, LIU M J. Study on differentiation of fetal skeletal muscle development characteristics between German and Chinese merino sheep., 2017 (04):1-6. (in Chinese)
[32] BAI L, LIANG R, YANG Y, HOU X, WANG Z, ZHU S, WANG C, TANG Z, LI K. Microrna-21 regulates pi3k/akt/mtor signaling by targeting tgfβi during skeletal muscle development in pigs., 2015, 10(5): e0119396.
[33] ROMMEL C, BODINE S C, CLARKE B A, ROSSMAN R, NUNEZ L, STITT T N, YANCOPOULOS G D, GLASS D J. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways., 2001, 3(11): 1009.
[34] NICHOLSON K M, ANDERSON N G. The protein kinase B/Akt signalling pathway in human malignancy., 2002, 14(5): 381-395.
[35] AMIROUCHE A, DURIEUX A-C, BANZET S, KOULMANN N, BONNEFOY R, MOURET C, BIGARD X, PEINNEQUIN A, FREYSSENET D. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle., 2008, 150(1): 286-294.
[36] JI M, ZHANG Q, YE J, WANG X, YANG W, ZHU D. Myostatin induces p300 degradation to silence cyclin D1 expression through the PI3K/PTEN/Akt pathway., 2008, 20(8): 1452-1458.
[37] TRENDELENBURG A U, MEYER A, ROHNER D, BOYLE J, HATAKEYAMA S, GLASS D J. Myostatin reduces Akt/TORC1/ p70S6K signaling, inhibiting myoblast differentiation and myotube size., 2009, 296(6): C1258-C1270.
[38] 孫偉, 王鵬, 丁家桐, 馬月輝, 關偉軍, 儲明星, 李碧春, 吳文忠陳玲. 湖羊Myostain和Myogenin基因表達的發育性變化及與屠宰性狀的關聯分析. 中國農業科學, 2010, 43(24): 5129-5136.
SUN W, WANG P, DING J T, MA Y H, GUAN W J , CHU M X, LI B C, WU W Z, CHEN L. Developmental changes of gene expression of myostain and myogenin genes and their association analysis with carcass traits in Hu Sheep.2010, 43(24): 5129-5136. (in Chinese)
[39] 李晶, 張云生, 李寧, 胡曉湘, 石國慶, 劉守仁, 柳楠. PI3K/AKT信號通路調控 Myogenin和MCK基因的表達. 遺傳, 2013, 35(5): 637-642.
LI J, ZHANG Y S, LI N, HU X X, SHI G Q, LIU S R, LIU N. Expression of Myogenin and MCK genes regulated by PI3K/AKT pathway,2013, 35(5): 637-642. (in Chinese)
[40] FIGUEROA A, CUADRADO A, FAN J, ATASOY U, MUSCAT G E, MUNOZ-CANOVES P, GOROSPE M, MUNOZ A. Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes., 2003, 23(14): 4991-5004.
The Analysis of PI3K-AKT Signal Pathway Based on the Proteomic Results of Sheep Embryonic Skeletal Muscle
WANG XinYue, Shi TianPei, ZHAO ZhiDa, HU WenPing, Shang MingYu, Zhang Li
(Institute of Animal Sciences, Chinese Academy of Agriculture Sciences, Beijing 100193)
【】Sheep is an important economic livestock and its skeletal muscle growth and development have a deep bond with meat production traits. The sheep embryonic period is an essential stage for skeletal muscle growth, analyzing and mining the proteome data of sheep embryonic skeletal muscle in this period has a great significance to reveal the muscle development process and screen their key regulation proteins.【】The longissimus dorsi of Chinese merino sheep at embryonic age of 85 days, 105days and 135days were selected for protein qualification by using tandem mass tag (TMT) and 1316 differential abundance proteins were obtained finally. GO, KEGG and R bioinformatic methods were used to cluster, annotate and analyze the differential abundance proteins. And the candidate proteins were testified by using bioinformatic methods.【】Based on the previous results, the cluster analysis on differential abundance proteins illustrated that the cluster 5 proteins were significantly expressed on embryonic age of 105 dayswith high abundance.GO and KEGG analysis on cluster 5 proteins showed these proteins were significantly involved in protein metabolism biology process and notably enriched in PI3K-AKT signal pathway in which RAC-beta serine/threonine-protein kinase isoform X1(ATK2) has a high abundance. Meanwhile, the results of bioinformatics showed that the AKT2 was composed of 481 amino acids and the theoretical molecular weight was 55.58kD. It consists of 66 positively charged amino acid residues and 72 negatively charged amino acid residues, the theoretical isoelectric point was 6.08, the hydrophilic average coefficient was -0.454, 12 N-terminal glycosylation sites and 71 phosphorylation sites were found in AKT2. The homology of AKT2 and protein kinase-like (PK-like) was 99% and it belongs to the family of protein kinases catalytic subunit.【】The proteome data analysis of sheep embryonic skeletal muscle showed that embryonic age of 105 daysis a key point of sheep embryonic skeletal fiber cell from proliferation and differentiation to hypertrophy. The PI3K-AKT signaling pathway which has function of regulating growth and development of embryonic skeletal muscle fibers was significantly enriched, and ATK2 is a keycandidateregulation protein in this pathway. To summarize, the study has a theoretical guiding significance to reveal the growth and development and its molecular regulation mechanism of embryonic skeletal muscle.
sheep (); embryonic longissimus dorsi; proteomic; bioinformatics analysis

10.3864/j.issn.0578-1752.2020.14.018
2019-08-29;
2020-03-30
國家自然基金聯合基金重點支持項目(U1503285)、中國農業科學院基本科研業務費重大項目儲備計劃 (Y2017XM02)
王欣悅,E-mail:wxyanimalgenetic@163.com。通信作者張莉,E-mail:zhangli07@caas.cn
(責任編輯 林鑒非)