999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

L-半胱氨酸處理對(duì)采后青脆李果實(shí)苯丙烷代謝的影響

2020-08-12 15:01:44陳力維鄧麗莉曾凱芳
關(guān)鍵詞:黃酮途徑

陳力維,令 陽(yáng),鄧麗莉,,曾凱芳,

L-半胱氨酸處理對(duì)采后青脆李果實(shí)苯丙烷代謝的影響

陳力維1,令 陽(yáng)1,鄧麗莉1,2,曾凱芳1,2※

(1. 西南大學(xué)食品科學(xué)學(xué)院,重慶 400715;2.西南大學(xué)食品貯藏與物流研究中心,重慶 400715)

L-半胱氨酸(L-cysteine)作為生物體中的常見(jiàn)氨基酸,已有研究發(fā)現(xiàn)其能有效延緩青脆李果實(shí)的衰老和品質(zhì)的下降。然而,L-半胱氨酸處理對(duì)李果實(shí)中苯丙烷代謝途徑合成酚類(lèi)物質(zhì)的影響尚不清楚。因此,該研究以青脆李果實(shí)為試材,采用1 g/L L-半胱氨酸浸泡處理后于(20±1)℃貯藏,研究貯藏期間苯丙烷代謝途徑中關(guān)鍵酶活性以及總酚、總黃酮等相關(guān)代謝產(chǎn)物的變化規(guī)律,同時(shí)測(cè)定果實(shí)中糖酸含量和抗氧化活性的變化。結(jié)果表明,李果實(shí)在貯藏過(guò)程中可溶性固形物(Total soluble solids,TSS)含量和可滴定酸(Titratable acid,TA)呈逐漸降低的趨勢(shì),L-半胱氨酸處理顯著延緩了李果實(shí)TSS和TA的下降(<0.05)。在貯藏期間,苯丙烷代謝途徑中關(guān)鍵酶活性均呈逐漸上升的趨勢(shì),與對(duì)照組相比,處理組中苯丙氨酸解氨酶、4-香豆酸輔酶A連接酶活性更高。果實(shí)中總酚、總黃酮含量在貯藏期間先降低后上升,在貯藏前三天,處理組中總酚、總黃酮含量顯著高于對(duì)照組(<0.05)。對(duì)酚類(lèi)物質(zhì)單體含量的測(cè)定發(fā)現(xiàn),處理后的果實(shí)中綠原酸、咖啡酸、丁香酸、蘆丁等酚類(lèi)物質(zhì)單體含量顯著高于對(duì)照組(<0.05)。抗氧化活性與總酚、總黃酮的變化趨勢(shì)一致,經(jīng)L-半胱氨酸處理后的果實(shí)保持了較高的抗氧化活性。相關(guān)性分析結(jié)果表明,果實(shí)中苯丙氨酸解氨酶、肉桂酸-4-羥基化酶和4-香豆酸輔酶A連接酶與果實(shí)酚類(lèi)物質(zhì)含量及抗氧化活性顯著相關(guān)(<0.05)。總體來(lái)說(shuō),1 g/L L-半胱氨酸浸泡處理能夠延緩青脆李果實(shí)貯藏品質(zhì)下降,同時(shí)能夠激活苯丙烷代謝途徑關(guān)鍵酶,促進(jìn)果實(shí)中酚類(lèi)物質(zhì)的積累。

農(nóng)產(chǎn)品;貯藏;L-半胱氨酸;李果實(shí);苯丙烷代謝;酚類(lèi)物質(zhì);抗氧化活性

0 引 言

青脆李果實(shí)營(yíng)養(yǎng)豐富,因含有糖、酸、蛋白質(zhì)、脂肪、維生素、花青素、酚類(lèi)化合物、類(lèi)黃酮、礦物質(zhì)等多種營(yíng)養(yǎng)元素[1-2],具有較高的抗氧化活性,且能夠促進(jìn)胃腸道消化,深受消費(fèi)者喜愛(ài)。但李果實(shí)采收期高溫多雨,且果實(shí)皮薄肉厚,容易腐爛變質(zhì),采收后旺盛的呼吸作用會(huì)促進(jìn)果實(shí)衰老[3]。依據(jù)現(xiàn)有文獻(xiàn)報(bào)道,UV-B照射[4]、熱空氣[5]、水楊酸[6]、-氨基丁酸[7]等多種采后處理方式可通過(guò)誘導(dǎo)果實(shí)次生代謝途徑改變,促進(jìn)抗逆物質(zhì)的合成,從而延緩果實(shí)采后衰老,維持果實(shí)品質(zhì)。近年來(lái),天然氨基酸作為安全的外源處理物在農(nóng)業(yè)生產(chǎn)上具有廣闊的應(yīng)用前景。外源氨基酸處理能夠調(diào)節(jié)果蔬的生長(zhǎng)發(fā)育,改善果蔬品質(zhì)[8],提高果實(shí)的抗逆能力[9]。

L-半胱氨酸是具有抗褐變和抗氧化的巰基化合物[10],在植物初生代謝和次生代謝中都具有重要作用[11]。目前,L-半胱氨酸廣泛應(yīng)用于食品工業(yè)以控制鮮切果蔬的褐變過(guò)程[12]。在酚類(lèi)物質(zhì)氧化過(guò)程中,半胱氨酸通過(guò)競(jìng)爭(zhēng)酶促褐變結(jié)合位點(diǎn)減緩褐變過(guò)程,將其應(yīng)用于荔枝果實(shí)采后保鮮可以有效減緩果皮褐變[12-13]。另外,有研究發(fā)現(xiàn)L-半胱氨酸能誘導(dǎo)果實(shí)提高對(duì)環(huán)境脅迫的耐受力,將其用于龍眼、黃瓜等果蔬中可以提高果實(shí)的抗氧化活性,延緩果實(shí)的衰老[14-15]。苯丙烷代謝途徑是果蔬酚類(lèi)物質(zhì)合成以及產(chǎn)生誘導(dǎo)抗性的關(guān)鍵途徑,其產(chǎn)物具有抗氧化活性且具有抗菌活性,如對(duì)-香豆酸[16]、咖啡酸[17]、綠原酸[18]等。同時(shí),苯丙烷代謝途徑相關(guān)產(chǎn)物能夠提高果實(shí)的食用價(jià)值和經(jīng)濟(jì)價(jià)值,對(duì)果蔬采后保鮮具有重要意義[19]。已有文獻(xiàn)報(bào)道,L-半胱氨酸處理能在一定程度上延緩青脆李果實(shí)采后衰老和品質(zhì)下降[20],其中1 g/L L-半胱氨酸處理的效果最好。但L-半胱氨酸處理對(duì)青脆李果實(shí)苯丙烷代謝途徑的影響尚不清楚。因此,本文探討了1 g/L L-半胱氨酸處理對(duì)采后青脆李果實(shí)苯丙烷代謝途徑的影響,以期為采后青脆李果實(shí)貯藏保鮮提供理論依據(jù)。

1 材料與方法

1.1 材料與試劑

供試材料“青脆李”(. ‘Qingcui’),品種為巫山脆李,產(chǎn)自重慶市梁平區(qū)果園,于2018年9月1日采收,果實(shí)成熟度為八成熟,采摘后當(dāng)天運(yùn)回實(shí)驗(yàn)室。挑選無(wú)病害、無(wú)機(jī)械傷且大小均勻,成熟度一致的果實(shí)。攤平散去田間熱后,室溫條件下(20 ℃,相對(duì)濕度為80%~90%)平鋪于試驗(yàn)臺(tái)待用。

純度為99%的L-半胱氨酸,美國(guó)Adamas-Bata公司;-巰基乙醇、三羥甲基氨基甲烷(Tris)、熒光素鈉鹽、水溶性維生素E(Trolox)、2,2′-偶氮二異丁基脒鹽酸鹽(2,2′-azobis[2-methylpropionamidine] dihydrochloride,ABAP)(均為分析純),Sigma-Aldrich西格瑪奧德里奇(上海)貿(mào)易有限公司;甲醇、原兒茶酸、綠原酸、丁香酸、咖啡酸、對(duì)香豆酸、蘆丁(均為色譜純),成都普瑞法科技有限公司。

1.2 儀器與設(shè)備

AvantiTM J-30I高速冷凍離心機(jī),美國(guó)Beckman公司;UV1000紫外分光光度計(jì),北京萊伯泰科科技有限公司;LC-20A高效液相色譜儀(配有光電二極管陣列紫外可見(jiàn)光檢測(cè)器和LabSolutions 工作站),日本島津公司;SYNERGYH1MG全自動(dòng)酶標(biāo)儀,美國(guó)Bio Tek儀器有限公司。

1.3 研究方法

1.3.1 青脆李果實(shí)處理及取樣

參考令陽(yáng)等[20]的方法。果實(shí)用2%(體積分?jǐn)?shù))次氯酸鈉浸泡消毒1 min后,用清水沖洗,于室溫條件下自然晾干。試驗(yàn)分為2個(gè)處理組(每組包含3次重復(fù)),清水(對(duì)照組)、1 g/L L-半胱氨酸(處理組)浸泡10 min。待完全晾干后,所有果實(shí)用聚乙烯薄膜袋(170 mm× 140 mm)單果包裝,貯藏在(20±1)℃、相對(duì)濕度為80%~90%的環(huán)境中。

定期取樣,樣品用液氮快速冷凍后保存在-40℃冰箱,用于后續(xù)指標(biāo)測(cè)定,每次測(cè)定重復(fù)3次。

1.3.2 可溶性固形物含量和可滴定酸的測(cè)定

可溶性固形物:參考曹建康的方法[21],使用數(shù)顯手持式折光儀測(cè)定樣品中可溶性固形物的含量。結(jié)果用質(zhì)量分?jǐn)?shù)(%)表示。

可滴定酸:參考曹建康的方法[21],酸堿滴定法,加入酚酞作為指示劑,用已標(biāo)定的氫氧化鈉溶液進(jìn)行滴定。用蒸餾水代替樣品,作為空白對(duì)照。可滴定酸用質(zhì)量分?jǐn)?shù)(%)表示。

1.3.3 酚類(lèi)物質(zhì)代謝相關(guān)酶活性測(cè)定

苯丙氨酸解氨酶(Phenylalanine Ammonia Lyase,PAL):根據(jù)Yao和Tian的方法[22],反應(yīng)液于37 ℃水浴保溫1 h后立即加入0.1 mL 6 mol/L HCl終止反應(yīng)。在波長(zhǎng)290 nm下分別測(cè)定反應(yīng)管和對(duì)照管的吸光度值(OD1和OD0),重復(fù)3次。以每小時(shí)吸光度值變化0.01為一個(gè)酶活力單位(U)。

肉桂酸-4-羥基化酶(Cinnamate-4-Hydroxylase,C4H):參考Lamb和Rubery的方法[23],反應(yīng)液于37 ℃水浴保溫1 h后立即加入0.2 mL 6 mol/L HCl終止反應(yīng)。在波長(zhǎng)340 nm下分別測(cè)定反應(yīng)管和對(duì)照管的吸光度值(OD1和OD0),重復(fù)3次。以每小時(shí)吸光度值變化0.01為一個(gè)酶活力單位(U)。

4-香豆酸輔酶A連接酶(4-Coumaric Coenzyme A Ligase,4CL):參考Li等的方法[24],反應(yīng)液于25℃水浴保溫10 min后,在波長(zhǎng)340 nm下分別測(cè)定反應(yīng)管和對(duì)照管的吸光度值(OD1和OD0),重復(fù)3次。以每分鐘吸光度值變化0.001為一個(gè)酶活力單位(U)。

1.3.4 總酚含量測(cè)定

總酚含量測(cè)定參考Chu等的方法[25],采用福林-酚法,以沒(méi)食子酸為標(biāo)準(zhǔn)品,于760 nm波長(zhǎng)處測(cè)其吸光度值,結(jié)果以每克樣品中所含的沒(méi)食子酸當(dāng)量表示。

1.3.5 總黃酮含量測(cè)定

總黃酮含量測(cè)定參照吳瑛等的方法[26],采用硝酸鋁-亞硝酸鈉比色法測(cè)定總黃酮含量,以蘆丁為標(biāo)準(zhǔn)品,于510 nm波長(zhǎng)處測(cè)定吸光度值,結(jié)果以每克樣品中所含的蘆丁當(dāng)量表示。

1.3.6 酚類(lèi)物質(zhì)的定性定量分析

酚類(lèi)物質(zhì)的定性定量分析采用高效液相色譜法[27]。高效液相色譜(High-Performance Liquid Chromatography, HPLC)條件:流動(dòng)相A(1% 甲酸),流動(dòng)相B(乙腈),洗脫梯度:0~5 min 3%~9% B;5~15 min,9%~16% B;15~45 min 16%~50% B;45~55 min 50% B;55~60 min 50%~3% B;60~62 min 3% B;流速1 mL/min,柱溫25 ℃,進(jìn)樣量20L。檢測(cè)器:光電二極管陣列紫外可見(jiàn)光檢測(cè)器。色譜柱:SHIMADZU Shim-pack GIST C18(4.6 mm×250 mm,5m)。根據(jù)保留時(shí)間和吸收光譜與標(biāo)準(zhǔn)品對(duì)照定性,外標(biāo)法定量。基于鮮質(zhì)量,酚類(lèi)物質(zhì)單體含量表示為g/g。

1.3.7 氧化自由基吸收能力(Oxygen Radical Absorbance Capacity,ORAC)測(cè)定

參考Wolfe等的方法[28],根據(jù)測(cè)定值分別按照以下公式計(jì)算熒光衰減曲線下的面積(Area Under Fluorescence Decay Curve,AUC)和ORAC值:

式中f為第個(gè)測(cè)定點(diǎn)時(shí)的相對(duì)熒光強(qiáng)度;0為初始測(cè)定時(shí)的相對(duì)熒光強(qiáng)度;f為第個(gè)測(cè)定點(diǎn)時(shí)的相對(duì)熒光強(qiáng)度;Δ為相鄰兩個(gè)測(cè)定點(diǎn)之間的時(shí)間間隔,min;Trolox為標(biāo)準(zhǔn)品水溶性維生素E的濃度,mol/L;樣品為樣品中酚類(lèi)物質(zhì)濃度,mol/L。ORAC值以每克物質(zhì)相當(dāng)于微摩爾Trolox的量表示(mol/g)。

1.4 數(shù)據(jù)分析

以上指標(biāo)均取3個(gè)平行樣品,重復(fù)測(cè)定3次。采用Excel 2016軟件統(tǒng)計(jì)分析數(shù)據(jù),運(yùn)用OriginPro 9.0.0(Northampton, MA 01060 USA)軟件繪制圖表,應(yīng)用SPSS 23.0 (SPSS Inc., Chicago, IL, USA)軟件對(duì)數(shù)據(jù)進(jìn)行差異顯著性分析和相關(guān)性分析。

2 結(jié)果與分析

2.1 L-半胱氨酸處理對(duì)青脆李果實(shí)可溶性固形物含量和可滴定酸的影響

如圖1所示,隨著貯藏時(shí)間的延長(zhǎng),果實(shí)中可溶性固形物含量呈先上升后下降的趨勢(shì),可滴定酸呈下降趨勢(shì)。貯藏第6天,對(duì)照組和L-半胱氨酸處理組的果實(shí)中TSS含量均達(dá)到峰值,分別為12.87%和13.23%。在貯藏期內(nèi),L-半胱氨酸處理后,果實(shí)中的TSS含量和TA均顯著高于對(duì)照組(<0.05)。

注:數(shù)據(jù)為3次試驗(yàn)的平均值。“*”代表同一貯藏時(shí)間的差異顯著(P<0.05),下同。

2.2 L-半胱氨酸處理對(duì)青脆李果實(shí)苯丙烷代謝相關(guān)酶活性的影響

在植物體內(nèi),PAL、4CL、C4H是植物苯丙烷類(lèi)代謝途徑中的關(guān)鍵酶類(lèi),其活力大小與酚類(lèi)、黃酮類(lèi)等物質(zhì)的合成密切相關(guān)。如圖2所示,青脆李果實(shí)中PAL、4CL酶活性隨貯藏時(shí)間的延長(zhǎng)呈上升趨勢(shì),C4H酶活性呈先下降后上升的趨勢(shì)。在果實(shí)貯藏第1天和第6天,L-半胱氨酸處理后PAL酶活性均顯著高于對(duì)照組(<0.05),其中,第6天時(shí)處理后PAL酶活性達(dá)到峰值,比對(duì)照組高30.66%。在果實(shí)貯藏第3天,L-半胱氨酸處理后4CL酶活性顯著高于對(duì)照組(<0.05),比對(duì)照組高11.03%。在貯藏期間,L-半胱氨酸處理后對(duì)C4H酶活性無(wú)顯著影響(>0.05)。

圖2 L-半胱氨酸處理對(duì)李果實(shí)苯丙烷類(lèi)代謝相關(guān)酶活性的影響

2.3 L-半胱氨酸處理對(duì)青脆李果實(shí)總酚和總黃酮含量的影響

如圖3所示,在貯藏過(guò)程中,青脆李果實(shí)中總酚類(lèi)含量呈先下降后上升的趨勢(shì),L-半胱氨酸處理能延緩果實(shí)總酚含量的下降,在貯藏第1天和第3天顯著高于對(duì)照組(<0.05),分別比對(duì)照組高4.86%和19.01%。黃酮類(lèi)物質(zhì)作為酚類(lèi)物質(zhì)的其中一類(lèi),總黃酮含量在貯藏過(guò)程中的變化趨勢(shì)與總酚含量變化一致,L-半胱氨酸處理后,果實(shí)總黃酮含量在貯藏第1天和第3天分別比對(duì)照組高52.91%、46.33%。說(shuō)明1 g/L L-半胱氨酸處理后在貯藏前期能夠誘導(dǎo)果實(shí)中酚類(lèi)物質(zhì)的積累。

圖3 L-半胱氨酸處理對(duì)李果實(shí)總酚和總黃酮含量的影響

2.4 L-半胱氨酸處理對(duì)青脆李果實(shí)多酚組分含量的影響

如圖4所示,共檢測(cè)到果實(shí)中6種含量較明顯的酚類(lèi)物質(zhì)單體,包括原兒茶酸(圖4a)、對(duì)香豆酸(圖4b)、綠原酸(圖4c)、咖啡酸(圖4d)、丁香酸(圖4e)和蘆丁(圖4f)。在貯藏過(guò)程中,原兒茶酸、綠原酸、咖啡酸、對(duì)香豆酸含量呈先下降后上升的趨勢(shì),丁香酸、蘆丁含量呈上升趨勢(shì)。L-半胱氨酸處理后,咖啡酸含量在貯藏6 d后顯著高于對(duì)照組(<0.05),綠原酸含量在貯藏前3 d顯著高于對(duì)照組(<0.05),蘆丁含量在貯藏前6 d均顯著高于對(duì)照組(<0.05)。

2.5 L-半胱氨酸處理對(duì)青脆李果實(shí)氧化自由基吸收能力(ORAC)的影響

氧化自由基吸收能力是衡量果實(shí)抗氧化活性的重要指標(biāo)。如圖5所示,在貯藏過(guò)程中,青脆李果實(shí)的氧化自由基能力變化趨勢(shì)與總酚含量變化趨勢(shì)基本一致,其中,在貯藏第1天和第3天,L-半胱氨酸處理后均顯著高于對(duì)照組(<0.05),分別比對(duì)照組高9.85%、21.23%。

2.6 青脆李果實(shí)中酚類(lèi)物質(zhì)與酶、抗氧化活性的相關(guān)性分析

在青脆李果實(shí)貯藏過(guò)程中,果實(shí)中酚類(lèi)物質(zhì)與苯丙烷代謝途徑關(guān)鍵酶活性、果實(shí)抗氧化活性的相關(guān)性分析結(jié)果如表1所示,其中PAL、4CL、C4H 3種酶活性均與果實(shí)中總黃酮、酚類(lèi)物質(zhì)單體、抗氧化活性顯著正相關(guān)(<0.05),說(shuō)明苯丙烷途徑中酶活性的升高促進(jìn)了青脆李果實(shí)酚類(lèi)物質(zhì)的合成和積累,從而提高了果實(shí)的抗氧化活性。因此,L-半胱氨酸處理后提高了苯丙烷代謝途徑中3種酶活性,促進(jìn)了酚類(lèi)物質(zhì)的合成,提高了果實(shí)的抗氧化活性。此外,果實(shí)的氧化自由基吸收能力與酚類(lèi)物質(zhì)均呈極顯著相關(guān)(<0.01)。

圖4 L-半胱氨酸處理對(duì)李果實(shí)多酚組分含量的影響

圖5 L-半胱氨酸處理對(duì)李果實(shí)氧化自由基吸收能力的影響

表1 青脆李果實(shí)中酚類(lèi)物質(zhì)與酶、抗氧化活性的相關(guān)性分析

注:“**”表示極顯著(<0.01),“*”表示顯著(<0.05)。

Note: ** indicate extremely significant effect at<0.01, * indicate significant effect at<0.05.

3 討 論

青脆李成熟于高溫高濕的夏季,且是一種典型的呼吸躍變型果實(shí),在采后常溫貯藏過(guò)程極易后熟軟化[29],大大降低其經(jīng)濟(jì)價(jià)值。為緩解此類(lèi)問(wèn)題,已有物理、化學(xué)、生物等手段應(yīng)用于李果實(shí)的采后保鮮[3]。L-半胱氨酸作為一種具有活性硫醇基且強(qiáng)還原性的氨基酸,廣泛應(yīng)用于醫(yī)藥業(yè)、食品工業(yè)及農(nóng)業(yè)等,已有研究表明將其作為果蔬采后處理措施可有效提高果實(shí)抗氧化活性,延緩果實(shí)的衰老[14]。本研究主要探討了L-半胱氨酸處理對(duì)青脆李果實(shí)品質(zhì)的影響及其對(duì)苯丙烷代謝途徑的誘導(dǎo)作用。

可溶性固形物、可滴定酸是評(píng)價(jià)果實(shí)品質(zhì)的重要參數(shù),本試驗(yàn)結(jié)果表明,1 g/L L-半胱氨酸處理維持了果實(shí)中可溶性固形物含量和可滴定酸,說(shuō)明L-半胱氨酸對(duì)果實(shí)無(wú)不利影響且能夠延緩果實(shí)品質(zhì)下降。

果蔬在采后貯藏過(guò)程中受到環(huán)境脅迫時(shí),會(huì)誘導(dǎo)苯丙烷代謝途徑中關(guān)鍵酶活性的提高[30]。苯丙氨酸解氨酶(PAL)作為苯丙烷途徑中的第一個(gè)關(guān)鍵酶,它是莽草酸途徑與黃酮類(lèi)化合物等產(chǎn)物之間的橋梁。本文中,經(jīng)L-半胱氨酸處理后的李果實(shí)中PAL活性先增加后降低且始終高于對(duì)照組,這可能與PAL活性調(diào)節(jié)機(jī)制有關(guān),該酶活性具有產(chǎn)物抑制特性,受到肉桂酸及其衍生物的反饋調(diào)節(jié)[31]。4-香豆酸輔酶A連接酶(4CL)處于苯丙烷代謝途徑中合成不同類(lèi)型產(chǎn)物的轉(zhuǎn)折點(diǎn),它能催化肉桂酸、香豆酸等輔酶A酯的合成。L-半胱氨酸處理后李果實(shí)中4CL活性增加。以上結(jié)果可能是因?yàn)長(zhǎng)-半胱氨酸可作為誘導(dǎo)因子,激發(fā)果實(shí)中PAL、4CL活性的升高,以促進(jìn)李果實(shí)中酚類(lèi)物質(zhì)的合成[32]。這與經(jīng)溫度[5]、光照[33]、精油[34]等處理對(duì)果實(shí)的影響結(jié)果相似。

此外,酚類(lèi)化合物是植物體中主要的次級(jí)代謝產(chǎn)物,這些物質(zhì)不僅在果蔬采后對(duì)病原菌的防御反應(yīng)中起著關(guān)鍵作用[35-37],同時(shí)具有較強(qiáng)抗氧化活性,能夠提高果實(shí)營(yíng)養(yǎng)價(jià)值[38]。本研究中,貯藏前期L-半胱氨酸處理后顯著促進(jìn)了李果實(shí)中總酚、總黃酮的積累,該結(jié)果說(shuō)明L-半胱氨酸能夠引起李果實(shí)的應(yīng)激反應(yīng),誘導(dǎo)果實(shí)中抗性物質(zhì)的合成。這與Gao等[39]用褪黑素處理桃果實(shí)后提高PAL活性、促進(jìn)果實(shí)中酚類(lèi)物質(zhì)積累的結(jié)論相似。此外,本研究結(jié)果中,L-半胱氨酸處理李果實(shí)后,顯著促進(jìn)了綠原酸、咖啡酸、蘆丁的積累,這與采后處理會(huì)影響果實(shí)內(nèi)部多酚組分變化的研究報(bào)道相似,例如,水楊酸處理柑桔果實(shí)后引起苯丙烷途徑基因差異表達(dá),造成綠原酸、咖啡酸、對(duì)香豆酸等物質(zhì)高于對(duì)照組[6]。百里香油熏蒸通過(guò)增加黃桃果實(shí)中兒茶素、綠原酸和咖啡酸的含量,降低了采后褐腐病的發(fā)生[40]。有研究報(bào)道發(fā)現(xiàn),對(duì)香豆酸、綠原酸、咖啡酸、蘆丁等物質(zhì)具有抗真菌活性[18,41]和抗氧化活性[36]。本研究中青脆李果實(shí)的抗氧化活性(ORAC)在貯藏過(guò)程中的變化趨勢(shì)與總酚、總黃酮含量變化(圖3)相同,根據(jù)相關(guān)性分析結(jié)果,苯丙烷代謝途徑中關(guān)鍵酶活性的高低與果實(shí)中酚類(lèi)物質(zhì)含量和抗氧化活性顯著相關(guān),綜上結(jié)果說(shuō)明L-半胱氨酸能夠誘導(dǎo)果實(shí)苯丙烷代謝途徑中關(guān)鍵酶活性改變,促進(jìn)酚類(lèi)物質(zhì)的積累,提高果實(shí)抗氧化活性,從而提高李果實(shí)的營(yíng)養(yǎng)品質(zhì)。

4 結(jié) 論

與清水對(duì)照處理相比,1 g/L L-半胱氨酸處理能顯著減緩青脆李果實(shí)中可溶性固形物含量和可滴定酸的下降(<0.05);1 g/L L-半胱氨酸處理誘導(dǎo)了李果實(shí)中苯丙烷代謝途徑關(guān)鍵酶苯丙氨酸解氨酶和4-香豆酸輔酶A連接酶活性的提高,促進(jìn)了綠原酸、咖啡酸以及蘆丁等物質(zhì)的積累,提高了李果實(shí)在貯藏過(guò)程中的抗氧化活性。相關(guān)性分析結(jié)果也表明酶活性與酚類(lèi)物質(zhì)和抗氧化活性顯著相關(guān)(<0.05)。由此說(shuō)明,1 g/L L-半胱氨酸處理能夠激活青脆李果實(shí)中苯丙烷代謝途徑同時(shí)延緩果實(shí)貯藏品質(zhì)的下降。

[1] Nowicka P, Wojdylo A, Samoticha J, et al. Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits[J]. Journal of Functional Foods, 2016, 25: 397-407.

[2] Glew R H, Ayaz F A, Millson M, et al. Changes in sugars, acids and fatty acids in naturally parthenocarpic date plum persimmon (L.) fruit during maturation and ripening[J]. European Food Research and Technology, 2005, 221(1/2): 113-118.

[3] 郭丹,郝義,韓英群.李子采后特性及貯藏保鮮技術(shù)研究進(jìn)展[J]. 食品工業(yè),2015,36(9):237-240.

Guo Dan, Hao Yi, Han Yingqun. Research advancement in postharvest characteristic and storage technology of plum[J]. Food Industry, 2015, 36(9): 237-240. (in Chinese with English abstract)

[4] Liu C, Zheng H, Sheng K, et al. Effects of postharvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit[J]. Scientia Horticulturae, 2018, 241: 107-114.

[5] Wei Y, Zhou D, Peng J, et al. Hot air treatment induces disease resistance through activating the phenylpropanoid metabolism in cherry tomato fruit[J]. Journal of Agricultural and Food Chemistry, 2017, 65(36): 8003-8010.

[6] Zhou Y, Ma J, Xie J, et al. Transcriptomic and biochemical analysis of highlighted induction of phenylpropanoid pathway metabolism of citrus fruit in response to salicylic acid,and oligochitosan[J]. Postharvest Biology and Technology, 2018, 142: 81-92.

[7] Aghdam M S, Kakavand F, Rabiei V, et al. Gamma-Aminobutyric acid and nitric oxide treatments preserve sensory and nutritional quality of cornelian cherry fruits during postharvest cold storage by delaying softening and enhancing phenols accumulation[J]. Scientia Horticulturae, 2019, 246: 812-817.

[8] 高晶晶,馮新新,段春慧,等. ALA提高蘋(píng)果葉片光合性能與果實(shí)品質(zhì)的效應(yīng)[J]. 果樹(shù)學(xué)報(bào),2013,30(6):944-951.

Gao Jingjing, Feng Xinxin, Duan Chunhui, et al. Effects of 5-aminolevulinic acid (ALA) on leaf photosynthesis and fruit quality of apples[J]. Journal of Fruit Science, 2013, 30(6): 944-951. (in Chinese with English abstract)

[9] 許猛. 復(fù)合氨基酸制劑對(duì)小白菜和棉花抗逆性的影響[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2018.

Xu Meng. Effects of a Compound Amino Acid Preparation on Stress Resistance of Pak Choi and Cotton[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract)

[10] Ainsworth E A, Gillespie K M. Estimation of total phenolic contents and other oxidation substrates in plant tissue using Folin-Ciocalteu reagent[J]. Nature Protocols, 2007, 2: 875-877.

[11] 王小芳,楊玲娟,董曉寧,等. 植物半胱氨酸合成及調(diào)控研究進(jìn)展[J]. 植物生理學(xué)報(bào),2011,47(1):37-48.

Wang Xiaofang, Yang Lingjuan, Dong Xiaoning, et al. Advancement in research on synthesis and regulation of cysteine in plants[J]. Plant Physiology Journal, 2011, 47(1): 37-48. (in Chinese with English abstract)

[12] Ali S, Khan A S, Malik A U. Postharvest L-cysteine application delayed pericarp browning, suppressed lipid peroxidation and maintained antioxidative activities of litchi fruit[J]. Postharvest Biology and Technology, 2016, 121: 135-142.

[13] Ali S, Khan A S, Malik A U, et al. Postharvest application of antibrowning chemicals modulates oxidative stress and delays pericarp browning of controlled atmosphere stored litchi fruit[J]. Journal of Food Biochemistry, 2019, 43(3): e12746.

[14] Li T, Wu Q, Zhou Y, et al. L-Cysteine hydrochloride delays senescence of harvested longan fruit in relation to modification of redox status[J]. Postharvest Biology and Technology, 2018, 143: 35-42.

[15] 高榮俠. 外源半胱氨酸和一氧化氮對(duì)黃瓜鎘脅迫的緩解效應(yīng)[D]. 泰安:山東農(nóng)業(yè)大學(xué),2013.

Gao Rongxia. The Physiological Effects of Exogenous Cysteine and Nitric Oxide on Alleviating cd Toxicity in Cucumber[D]. Taian: Shandong Agricultural Universty, 2013. (in Chinese with English abstract)

[16] Yuan S, Ding X, Zhang Y, et al. Characterization of defense responses in the ‘green ring’and ‘red ring’on jujube fruit upon postharvest infection byand the activation by the elicitor treatment[J]. Postharvest Biology and Technology, 2019, 149: 166-176.

[17] Garcia-Jimenez A, Teruel-Puche J A, Garcia-Ruiz P A, et al. Action of tyrosinase on caffeic acid and its n-nonyl ester. Catalysis and suicide inactivation[J]. International Journal of Biological Macromolecules, 2018, 107: 2650-2659.

[18] Jiao W, Li X, Wang X, et al. Chlorogenic acid induces resistance againstin peach fruit by activating the salicylic acid signaling pathway[J]. Food Chemistry, 2018, 260: 274-282.

[19] 陳存坤,張慧杰,紀(jì)海鵬,等. 臭氧精準(zhǔn)處理提高采后草莓抗氧化酶活性和酚類(lèi)物質(zhì)含量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(10):274-280.

Chen Cunkun, Zhang Huijie, Ji Haipeng, et al. Ozone treatment improving antioxidant enzyme activity and phenolic content of postharvest strawberry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 274-280. (in Chinese with English abstract)

[20] 令陽(yáng),鄧麗莉,姚世響,等. L-半胱氨酸處理對(duì)青脆李果實(shí)常溫貯藏品質(zhì)的影響[J]. 食品科學(xué),2019,40(21):222-228.

Ling Yang, Deng Lili, Yao Shixiang, et al. Effect of L-cysteine treatment on the quality of ‘qingcui’ plum fruit during storage at room temperature[J]. Food Science, 2019, 40(21): 222-228. (in Chinese with English abstract)

[21] 曹健康. 果蔬采后生理生化實(shí)驗(yàn)指導(dǎo)[M]. 北京:中國(guó)輕工業(yè)出版社,2007.

[22] Yao H, Tian S. Effects of pre-and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage[J]. Postharvest Biology and Technology, 2005, 35(3): 253-262.

[23] Lamb C J, Rubery P H. A spectrophotometric assay for transcinnamic acid 4-hydroxylase activity [J]. Analytical Biochemistry, 1975, 68(2): 554-561.

[24] Li G, Zhu S, Wu W, et al. Exogenous nitric oxide induces disease resistance againstthrough activating the phenylpropanoid pathway in peach fruit[J]. Journal of the Science of Food and Agriculture, 2017, 97(9): 3030-3038.

[25] Chu Y F, Sun J I E, Wu X, et al. Antioxidant and anti proliferative activities of common vegetables[J]. Journal of Agricultural and Food Chemistry, 2002, 50(23): 6910-6916.

[26] 吳瑛,王秀芳,袁守亮. 響應(yīng)面分析昆侖雪菊水溶性黃酮類(lèi)化合物的提取工藝[J]. 食品科學(xué),2013,34(6):129-133.

Wu Ying, Wang Xiufang, Yuan Shouliang. Process optimization by response surface methodology for the extraction of water soluble flavonoids from coreopsis tinctoria flowers[J]. Food Science, 2013, 34(6):129-133. (in Chinese with English abstract)

[27] Usenik V, Stampar F, Kastelec D. Phytochemicals in fruits of twoL. plum cultivars during ripening[J]. Journal of the Science of Food and Agriculture, 2013, 93(3): 681-692.

[28] Wolfe K L, Kang X, He X, et al. Cellular antioxidant activity of common fruits[J]. Journal of Agricultural and Food Chemistry, 2008, 56(18): 8418-8426.

[29] 羅冬蘭,林明俊,尤勇剛,等. 李子貯藏保鮮技術(shù)研究進(jìn)展[J]. 南方農(nóng)業(yè),2018,12(34):56-58.

Luo Donglan, Lin Mingjun, You Yonggang, et al. Research progress for plum storage and fresh-keeping technology[J]. South China Agriculture, 2018, 12(34):56-58. (in Chinese with English abstract)

[30] Tosetti R, Tardelli F, Tadiello A, et al. Molecular and biochemical responses to wounding in mesocarp of ripe peach (L. Batsch) fruit[J]. Postharvest Biology & Technology, 2014, 90: 40-51.

[31] Zhang X, Liu C J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids[J]. Molecular Plant, 2015, 8(1): 17-27.

[32] 葛銘佳,張麗媛,艾佳音,等. 熱激和山梨酸鉀處理對(duì)獼猴桃果實(shí)灰霉病的抑制效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(7):316-323.

Ge Mingjia, Zhang Liyuan, Ai Jiayin, et al. Inhibitory effects of heat water and potassium sorbate on gray mold in postharvest kiwifruit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 316-323. (in Chinese with English abstract)

[33] Kokalj D, Zlati? E, Cigi? B, et al. Postharvest light-emitting diode irradiation of sweet cherries (L.) promotes accumulation of anthocyanins[J]. Postharvest Biology and Technology, 2019, 148: 192-199.

[34] Wei Y, Shao X, Wei Y, et al. Effect of preharvest application of tea tree oil on strawberry fruit quality parameters and possible disease resistance mechanisms[J]. Scientia Horticulturae, 2018, 241: 18-28.

[35] Kim H G, Kim G S, Lee J H, et al. Determination of the change of flavonoid components as the defence materials ofMarc. fruit peel againstby liquid chromatography coupled with tandem mass spectrometry[J]. Food Chemistry, 2011, 128(1): 49-54.

[36] Ballester A R, Lafuente M T, de Vos R C H, et al. Citrus phenylpropanoids and defence against pathogens. Part I: metabolic profiling in elicited fruits[J]. Food Chemistry, 2013, 136(1): 178-185.

[37] Telles A C, Kupski L, Furlong E B. Phenolic compound in beans as protection against mycotoxins[J]. Food Chemistry, 2017, 214: 293-299.

[38] Skrovankova S, Sumczynski D, Mlcek J, et al. Bioactive compounds and antioxidant activity in different types of berries[J]. International Journal of Molecular Sciences, 2015, 16(10): 24673-24706.

[39] Gao H, Lu Z M, Yang Y, et al. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism[J]. Food Chemistry, 2018, 245: 659-666.

[40] Khumalo K N, Tinyane P, Soundy P, et al. Effect of thyme oil vapour exposure on the brown rot infection, phenylalanine ammonia-lyase (PAL) activity, phenolic content and antioxidant activity in red and yellow skin peach cultivars[J]. Scientia Horticulturae, 2017, 214: 195-199.

[41] Ma L, He J, Liu H, et al. The phenylpropanoid pathway affects apple fruit resistance to[J]. Journal of Phytopathology, 2018, 166(3): 206-215.

Effects of L-cysteine treatment on phenylpropanoid metabolism of postharvest “Qingcui” plum fruit

Chen Liwei1, Ling Yang1, Deng Lili1,2, Zeng Kaifang1,2※

(1.,400715,;2.,,400715,)

The phenylpropanoid pathway, one of the important secondary metabolic pathways in fruits and vegetables, can produce a wide range of phenolic substances, which have many biological activities, such as antioxidant, antibacterial and immunity enhancing. The type and content of produced phenols determine the flavor and quality of fruits, particularly on the nutrition and health. Since L-cysteine is a typical amino acid in living organism, previous studies have found that exogenous L-cysteine treatment can effectively delay the senescence and quality loss of plum fruit during storage after harvest. However, there are few reports on the effect of L-cysteine treatment on the synthesis of phenolic compounds in fruit. Taking ‘Qingcui’ plum fruit as the test material, this study aims to investigate the effect of L-cysteine treatment on the phenylpropanoid metabolism pathway, in order to provide theoretical support for the shelf life of fruit and preservation during postharvest storage. Specifically, the plum fruit was soaked with L-cysteine solution at 1 g/L for 10 min, and then stored at (20±1)℃ with 85%-90% relative humidity. The effect of L-cysteine treatment on key enzymes activities in phenylpropanoid pathway was investigated, including phenylalanine ammonia lyase (PAL), 4-coumaric coenzyme A ligase (4CL), and cinnamate-4-hydroxylase (C4H), as well as the change rule of total phenols, flavonoids and other metabolites. The antioxidant activity of plum fruit was also evaluated. The results showed that L-cysteine treatment significantly(<0.05) delayed the decrease of total soluble solid and titratable acidity content of plum fruit during postharvest storage, indicating that can maintain an excellent quality of fruit. Moreover, the activities of key enzymes increased gradually in the phenylpropane metabolic pathway during storage. The activities of PAL and 4CL of plum fruit in the treatment group were higher than that in the control group. Compared with control group, L-cysteine treatment can increase the content of total phenols and total flavonoids significantly in the first three days of storage, where the content decreased first, and then increased. In the determination of phenolic monomers, protocatechuic acid,-coumaric acid, chlorogenic acid, and caffeic acid decreased first and then increased during storage, while syringic acid and rutin increased gradually. The contents of phenolic monomers in the treated fruits, such as chlorogenic acid, caffeic acid, syringic acid, and rutin, were significantly higher than that in the control group(<0.05). The trend of antioxidant activity was consistent with that of total phenols and flavonoids, while the fruits maintained high antioxidant activity during storage after L-cysteine treatment. The correlation analysis revealed that the activities of PAL, 4CL and C4H enzyme in fruit were significantly correlated to the content of phenolic substances and antioxidant capacity (<0.05), whereas, the antioxidant activity in the fruit was extremely significantly correlated with total phenols, total flavonoids and other metabolic substances (<0.01). These findings demonstrated that 1 g/L L-cysteine treatment can efficiently activate the phenylpropanoid pathway of fruit, thereby to promote the accumulation of phenolic substances. Therefore, the L-cysteine treatment can effectively enhance the storage quality of ‘Qingcui’ plum fruit.

agricultural products; storage; L-cysteine; plum fruit; phenylpropanoid metabolism; phenolics; antioxidant capacity

陳力維,令陽(yáng),鄧麗莉,等. L-半胱氨酸處理對(duì)采后青脆李果實(shí)苯丙烷代謝的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(13):257-263.doi:10.11975/j.issn.1002-6819.2020.13.030 http://www.tcsae.org

Chen Liwei, Ling Yang, Deng Lili, et al. Effects of L-cysteine treatment on phenylpropanoid metabolism of postharvest “Qingcui” plum fruit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 257-263. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.13.030 http://www.tcsae.org

2020-03-24

2020-06-03

重慶市碩士研究生科研創(chuàng)新項(xiàng)目(CYS19114);重慶市技術(shù)創(chuàng)新與應(yīng)用發(fā)展專(zhuān)項(xiàng)重點(diǎn)項(xiàng)目(cstc2019jscx-dxwtBX0027)

陳力維,主要從事農(nóng)產(chǎn)品加工及貯藏工程方面研究。Email:chenliwei013211@163.com

曾凱芳,博士,教授,博士生導(dǎo)師,主要從事果蔬貯藏與保鮮的教學(xué)與研究工作。Email:zengkaifang@163.com

10.11975/j.issn.1002-6819.2020.13.030

TS255.3

A

1002-6819(2020)-13-0257-07

猜你喜歡
黃酮途徑
桑黃黃酮的研究進(jìn)展
構(gòu)造等腰三角形的途徑
一測(cè)多評(píng)法同時(shí)測(cè)定腦心清片中6種黃酮
中成藥(2018年11期)2018-11-24 02:57:00
多種途徑理解集合語(yǔ)言
減少運(yùn)算量的途徑
HPLC法同時(shí)測(cè)定固本補(bǔ)腎口服液中3種黃酮
中成藥(2017年8期)2017-11-22 03:19:40
MIPs-HPLC法同時(shí)測(cè)定覆盆子中4種黃酮
中成藥(2017年10期)2017-11-16 00:50:13
DAD-HPLC法同時(shí)測(cè)定龍須藤總黃酮中5種多甲氧基黃酮
中成藥(2017年4期)2017-05-17 06:09:50
醫(yī)保基金“可持續(xù)”的三條途徑
瓜馥木中一種黃酮的NMR表征
主站蜘蛛池模板: 97av视频在线观看| 国产美女一级毛片| 久久久久免费看成人影片 | 国产夜色视频| 亚洲国产日韩在线观看| 亚洲欧美日韩色图| 国产成人福利在线| 国产亚洲欧美在线专区| 亚洲熟妇AV日韩熟妇在线| 综合网久久| 毛片在线看网站| 永久成人无码激情视频免费| 国产新AV天堂| 丁香婷婷久久| 中文字幕在线欧美| 91福利在线观看视频| 亚国产欧美在线人成| 重口调教一区二区视频| 免费人成在线观看成人片| 亚洲三级成人| 高清欧美性猛交XXXX黑人猛交| 国产精品美女网站| 1024国产在线| 亚洲成a人在线播放www| 999福利激情视频| 成人免费午夜视频| 99热这里都是国产精品| 极品国产在线| 久久精品午夜视频| 综合色区亚洲熟妇在线| 91成人在线观看视频| 白浆免费视频国产精品视频| 天天躁夜夜躁狠狠躁图片| 国内精品自在自线视频香蕉| 欧美第九页| 黄色网在线免费观看| 国产成人精品亚洲日本对白优播| 少妇极品熟妇人妻专区视频| 亚洲AV无码乱码在线观看裸奔| 亚洲欧美另类日本| 伊人五月丁香综合AⅤ| 国产精品内射视频| 思思99思思久久最新精品| 国产导航在线| 国产精品专区第1页| 无码日韩精品91超碰| 久久精品视频一| 一区二区三区四区在线| 国产97视频在线| 欧美成人精品高清在线下载| 亚洲无码电影| AV无码无在线观看免费| 午夜无码一区二区三区| 欧美精品xx| 理论片一区| 欧美无遮挡国产欧美另类| 欧美在线一级片| 免费在线a视频| 国产午夜福利亚洲第一| 国产成+人+综合+亚洲欧美| 国产AV无码专区亚洲精品网站| 日韩精品无码不卡无码| 亚洲综合片| 一本大道无码日韩精品影视| 99这里精品| 成年女人a毛片免费视频| 色哟哟国产精品| 蝴蝶伊人久久中文娱乐网| 久久久久久久久18禁秘| 欧美一级黄片一区2区| 欧美一级特黄aaaaaa在线看片| 黄色一级视频欧美| 亚洲第一综合天堂另类专| 亚洲国产AV无码综合原创| 99爱在线| 99久久精品免费看国产电影| 青青久视频| 国产无码在线调教| 中文字幕在线日本| 在线观看免费人成视频色快速| 91免费国产在线观看尤物| 免费不卡视频|