999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于NIRS和Local PLS算法的堆肥關(guān)鍵參數(shù)實時動態(tài)分析

2020-08-12 14:12:34黃圓萍沈廣輝廖科科吳亞藍韓魯佳楊增玲
農(nóng)業(yè)工程學報 2020年13期
關(guān)鍵詞:模型

黃圓萍,沈廣輝,廖科科,吳亞藍,韓魯佳,楊增玲

基于NIRS和Local PLS算法的堆肥關(guān)鍵參數(shù)實時動態(tài)分析

黃圓萍,沈廣輝,廖科科,吳亞藍,韓魯佳,楊增玲※

(中國農(nóng)業(yè)大學工學院,北京 100083)

為對不同堆肥工藝堆肥全過程關(guān)鍵參數(shù)進行實時動態(tài)分析,該研究以牛糞便和玉米秸稈為原料,進行規(guī)模化槽式和膜覆蓋好氧堆肥,采集堆肥全過程樣本,分析了2種堆肥技術(shù)堆肥全過程中含水率、有機質(zhì)含量和碳氮比等關(guān)鍵參數(shù)的變化,并結(jié)合Local PLS算法建立了2種堆肥技術(shù)堆肥全過程中上述參數(shù)的通用速測模型,得出以下結(jié)果:1)2種主要工藝關(guān)鍵參數(shù)數(shù)值及變化規(guī)律均不同,且在整個堆肥過程中有顯著性變化(<0.05);2)所建立的Local PLS模型的RPD(Ratio of Prediction to Deviation)為4.47,RSD(Relative Standard Deviation)為3.37%,可達到很好的預測效果;有機質(zhì)含量和碳氮比的2分別為0.74和0.77,RPD大于1.5,RSD小于10%,模型可用于定量預測;近紅外預測值與實測值隨堆肥時間的變化趨勢具有較好的一致性,可實現(xiàn)規(guī)模化堆肥過程中關(guān)鍵參數(shù)的實時分析。

近紅外;堆肥;算法;過程分析;槽式堆肥;膜覆蓋堆肥;關(guān)鍵參數(shù);Local PLS

0 引 言

中國每年產(chǎn)生農(nóng)業(yè)廢棄物50多億t[1],其中,畜禽糞污38億t,農(nóng)作物秸稈近9億t,給中國的環(huán)境污染治理帶來嚴峻的挑戰(zhàn)。畜禽糞便和農(nóng)作物秸稈富含有機質(zhì)和氮、磷、鉀等養(yǎng)分,是農(nóng)業(yè)生態(tài)系統(tǒng)中十分寶貴的生物質(zhì)資源[2]。好氧堆肥技術(shù)是解決畜禽糞便和農(nóng)作物秸稈等農(nóng)業(yè)固體廢棄物污染問題并實現(xiàn)其資源化和無害化利用的有效途徑之一[3]。在眾多好氧堆肥技術(shù)中,槽式好氧堆肥由于具有處理量大和堆肥周期短等優(yōu)點,是中國目前主流的規(guī)模化堆肥技術(shù)[4-7];而膜覆蓋好氧堆肥則是一種改良的強制通風靜態(tài)堆肥技術(shù),其采用半滲透膜覆蓋發(fā)酵堆體表面,使堆體發(fā)酵處在微正壓環(huán)境下[8-9],可實現(xiàn)好氧堆肥過程發(fā)酵均勻、高效節(jié)能以及溫室氣體減排等效果[10-16],是目前逐步受到關(guān)注的新型好氧堆肥技術(shù)之一。

堆肥是在微生物的作用下發(fā)生復雜物理化學變化的過程,受溫度[17]、含水率[18-19]、有機質(zhì)含量[20]和碳氮比[21-22]等參數(shù)的影響。在整個堆肥過程中如能對上述參數(shù)實現(xiàn)快速實時檢測,可為堆肥工藝優(yōu)化、堆肥過程控制和堆肥品質(zhì)提高提供保障。近紅外光譜分析技術(shù)(NIRS,Near Infrared Spectroscopy)是目前發(fā)展迅速和具有前景的快速實時分析技術(shù)之一,國內(nèi)外已有很多學者基于近紅外光譜結(jié)合偏最小二乘算法(PLS,Partial Least Squares)構(gòu)建了污泥堆肥[23-26]和畜禽糞便堆肥[27-32]過程中酸堿度、電導率、有機質(zhì)、有機碳、碳氮比等參數(shù)的速測模型,都取得了良好的效果。但目前的研究都是針對某一種堆肥技術(shù)建立的模型,因不同的堆肥技術(shù)會大大增加堆肥過程中樣品的復雜性,如果用PLS構(gòu)建適于不同堆肥技術(shù)的通用模型,在避免模型過擬合的情況下,可能存在通過增加主因子數(shù)來提高模型預測決定系數(shù),甚至可能因為選擇太多的主因子數(shù)出現(xiàn)模型過擬合、模型預測精度降低等問題[33]。而局部加權(quán)回歸[34]、LOCAL[35]、局部偏置回歸[36]等局部算法的開發(fā)應用,可有效解決上述問題。Shen等[37]提出了基于PLS得分的Local PLS算法,采用壓縮后的數(shù)據(jù)建立PLS模型,既節(jié)約了計算時間又提高了模型的準確性。

本研究選用奶牛糞便和玉米秸稈為原料,進行規(guī)模化槽式和膜覆蓋好氧堆肥,在整個堆肥過程中采集樣品,結(jié)合LocalPLS算法建立2種堆肥技術(shù)堆肥過程中含水率、有機質(zhì)含量和碳氮比等關(guān)鍵參數(shù)的通用速測模型,探究基于近紅外光譜技術(shù)實時監(jiān)控不同堆肥技術(shù)堆肥過程中關(guān)鍵參數(shù)的可行性。

1 材料與方法

1.1 樣品的采集與制備

試驗樣品在北京市北郎中有機肥料廠采集,發(fā)酵槽為2條相鄰的槽,長44 m,寬3.85 m,高1.8 m,所采用的原料是周邊奶牛養(yǎng)殖場生產(chǎn)的奶牛糞便,及打捆玉米秸稈,兩者比例調(diào)至質(zhì)量比大約10:1,并添加40%的腐熟堆肥用于調(diào)節(jié)水分,初始含水率為55%,初始碳氮比為15。如圖1a所示,一條為槽式好氧發(fā)酵,一條為膜覆蓋好氧發(fā)酵。2條槽的原料配比、通風和翻堆情況一致。整個堆肥周期持續(xù)36 d,樣品采集覆蓋了從堆肥原料到堆肥腐熟的全過程,在發(fā)酵的第0、4、8、12、16、20、24、28、32和36天采集樣品。考慮到堆體在不同空間位置發(fā)酵情況的差異,取樣時,在發(fā)酵槽長度方向均勻選擇5個點,在深度方向分上(深度0~30 cm)、下(深度90~120 cm)2層取樣,共取樣10個,如圖1b所示。2條槽10次共采集樣品200個,每個樣品質(zhì)量約1 kg,置于冷藏柜中?20℃下存放備用。測定分析時,樣品自然解凍至室溫后混合均勻,進行光譜采集及化學值測定,樣品經(jīng)干燥后粉碎過40目(0.425 mm)篩用于后續(xù)分析。

注:圖中編號1~5分別為發(fā)酵槽長度方向上的5個取樣點,1-1和1-2,2-1和2-2,3-1和3-2,4-1和4-2,5-1和5-2分別為每個取樣點在深度方向的上下兩層。

1.2 關(guān)鍵參數(shù)測定方法

使用PT100溫度傳感器測定堆體上(深度35 cm)、中(深度70 cm)、下(深度105 cm)3個不同位置的溫度。

含水率采用烘干法,稱取鮮樣100 g,在干燥箱(上海精宏實驗設(shè)備有限公司,中國)105℃恒溫干燥24 h,根據(jù)干燥前后質(zhì)量損失計算含水率。

有機質(zhì)采用灼燒減量法,稱取1.0 g左右的干燥粉碎樣品,在馬弗爐(上海精宏實驗設(shè)備有限公司,中國)575℃灼燒6 h,根據(jù)灼燒前后質(zhì)量損失計算有機質(zhì)。

碳氮比用元素分析儀(Elementer公司,德國)測定,稱取40.0 mg干燥粉碎樣品,采用元素分析儀CHNS模式標準方法測定。

種子發(fā)芽指數(shù)參考李季等[38]采用的發(fā)芽試驗法,將黃瓜種子(中蔬種業(yè)科技有限公司,中國)在恒溫培養(yǎng)箱中30 ℃避光培養(yǎng)48 h,根據(jù)發(fā)芽率和根長計算。

1.3 樣品近紅外光譜采集

使用傅里葉變換近紅外光譜儀(Perkin Elmer公司,美國)采集樣品光譜,光譜采集范圍為10 000~4 000 cm-1、掃描間隔為8 cm-1、掃描次數(shù)為32次。采樣時,將樣品裝滿儀器配套的樣品杯并刮平,采用積分球附件在旋轉(zhuǎn)模式下采集光譜,每個樣品重復裝填3次掃描3條光譜,共獲得600條光譜。

1.4 數(shù)據(jù)統(tǒng)計分析

采用IBM SPSS Statistics 25.0(IBM公司,美國)對樣品的化學值進行正態(tài)分布檢驗,進而對槽式和膜覆蓋2種不同技術(shù)堆肥過程關(guān)鍵參數(shù)進行顯著性分析,分析堆肥關(guān)鍵參數(shù)隨時間的變化并比較2種不同堆肥技術(shù)堆肥過程關(guān)鍵參數(shù)的差異性。

1.5 主成分分析和LocalPLS模型的建立與評價

運用主成分分析(Principal Component Analysis,PCA),將規(guī)模化槽式和膜覆蓋堆肥過程所獲得的數(shù)據(jù)矩陣轉(zhuǎn)換新的正交變量,以檢測樣品的所屬模式、分類以及所含物質(zhì)之間的相似性或差異[39]。

參考Shen[37]的方法構(gòu)建Local PLS模型。首先,將樣品分為校正集和預測集,為使校正集和驗證集的樣品均覆蓋2種堆肥技術(shù)的堆肥全過程,采集的樣品中,以堆體長度方向2號位置(圖1b中2-1和2-2)采集的40個樣品作為預測集,其余的160個樣品作為校正集;其次,選用預處理方法,根據(jù)預測均方根誤差(RMSEP)最小確定潛變量數(shù),構(gòu)建堆肥過程含水率、有機質(zhì)含量和碳氮比的PLS模型,獲取校正集和預測集光譜的得分矩陣;然后,計算預測集樣品光譜得分與校正集光譜得分的歐氏距離,按距離排序,從校正集中選擇與預測樣品光譜得分距離最近的選擇建模的光譜條數(shù)(50、75、100、125、150、175、200)條光譜得分;最后,采用選擇的條光譜得分及其對應的化學值構(gòu)建LocalPLS模型,預測未知樣品,根據(jù)RMSEP最小確定最佳的值。

參考Saeys等[40]和Mouazen等[41]的方法,采用模型決定系數(shù)(2)和相對分析誤差(RPD)進行模型的評價,即:當2>0.9,RPD>3時,認為該模型非常優(yōu)秀;當0.82≤2≤0.9,2.5≤RPD≤3.0時,認為該模型效果良好;當0.66≤2≤0.81,2.0≤RPD<2.5時,模型可進行近似定量預測;當0.5≤2≤0.65,1.5≤RPD<2.0時,認為該模型只能進行高低濃度鑒別;當2<0.5,RPD<1.5時,認為模型不可用。并結(jié)合RSD進行綜合評價,當RSD<5%時模型效果良好,RSD<10%時模型可用于定量分析。

RPDSD/RMSEP (1)

RSD=RMSEP/MEAN×100% (2)

式中SD為驗證集化學測量值的標準差,MEAN為驗證集化學測量值的平均值。

數(shù)據(jù)處理采用PLS Toolbox 以Matlab 2015a(Mathworks公司,美國)為平臺。

2 結(jié)果與分析

2.1 不同技術(shù)堆肥試驗效果分析

根據(jù)溫度傳感器記錄的溫度數(shù)據(jù)可知,堆體發(fā)酵情況良好,最高溫度在70 ℃以上,且55 ℃以上高溫持續(xù)時間超過10 d,符合國家糞便衛(wèi)生化處理要求(GB 7959-2012)。根據(jù)發(fā)芽指數(shù)的結(jié)果顯示,槽式和膜覆蓋堆體的種子發(fā)芽指數(shù)在堆肥結(jié)束時均在80%以上[38],表明堆肥完全腐熟。

2.2 不同堆肥技術(shù)堆肥過程關(guān)鍵參數(shù)統(tǒng)計分析

由含水率、有機質(zhì)和碳氮比含量的正態(tài)分布檢驗結(jié)果可知,含水率KS檢驗和SW檢驗的值分別為0.077和0.089,大于0.05,因此含水率含量服從正態(tài)分布,有機質(zhì)和碳氮比含水率KS檢驗和SW檢驗的值小于0.05,其含量不服從正態(tài)分布。但所采集的樣品為槽式和膜覆蓋2種規(guī)模化堆肥技術(shù)堆肥全過程樣品,化學值分布是堆肥物料自然發(fā)酵的分布狀態(tài),由化學值含量分布直方圖(圖2)可知,三者的含量基本服從正態(tài)分布,校正集和驗證集樣品均覆蓋了堆肥的全過程,滿足過程分析的需求。

對2種工藝堆肥過程中含水率、有機質(zhì)含量和碳氮比進行顯著性分析,結(jié)果如表1所示,不同堆肥技術(shù)相應關(guān)鍵參數(shù)間具有顯著性差異(<0.05);同一技術(shù)不同發(fā)酵時間的關(guān)鍵參數(shù)間也具有顯著性差異(<0.05)。

圖2 堆肥過程關(guān)鍵參數(shù)含量的分布

表1 槽式和膜覆蓋堆肥過程關(guān)鍵參數(shù)

注:±表示同一天采集的10樣品的化學測量值的平均值和標準偏差;堆肥技術(shù)欄中,不同技術(shù)上標的不同大寫字母表示不同技術(shù)相應關(guān)鍵參數(shù)間具有顯著性差異(<0.05);堆肥時間欄中,不同小寫字母表示不同發(fā)酵時間的關(guān)鍵參數(shù)間具有顯著性差異(<0.05)。

Note: ± indicates the average value and standard deviation of the chemical measurement values of 10 samples collected on the same day; In the column of composting technology, different capital letters on different technologies indicate that there are significant differences between the corresponding key parameters of different technologies (<0.05); In the compost time column, different small letters indicate that there are significant differences between the key parameters of different fermentation time (<0.05).

堆體含水率隨著堆肥的進行在逐漸下降。0~20 d含水率持續(xù)下降,是由于堆體處于升溫和高溫階段,水分散失較大,水分蒸發(fā)損失大于有機物分解產(chǎn)生的水分;第20 天含水率驟降,是由于曝氣系統(tǒng)失靈,持續(xù)通風所致;21~36 d堆體含水率有所回升,是由于溫度降低,微生物分解有機質(zhì)產(chǎn)生的水分高于由溫度、通風引起的水分蒸發(fā)損失。比較兩種堆肥技術(shù),整個堆肥過程中膜覆蓋堆體的含水率均高于槽式堆體的,主要由于功能膜能夠阻截一部分水分,在膜內(nèi)形成一層水膜,使得水分再次回到堆體中。

堆肥原料的初始有機質(zhì)含量為48%,隨著堆肥的進行,微生物生命活動消耗有機質(zhì),堆體中的有機質(zhì)含量在逐漸減少,在8~20 d快速降解,在堆肥結(jié)束時降解到38%左右。比較2種堆肥技術(shù),整個堆肥過程中膜覆蓋堆體的有機質(zhì)含量略高于槽式堆體。

堆肥原料的初始碳氮比為15,與槽式堆肥技術(shù)相比,膜覆蓋堆體的碳氮比在堆肥初期呈上升趨勢,主要是因為堆肥初期堆體中微生物的活動需要消耗大量的氮元素,而堆體中的微生物活性較差,對碳的消耗較慢;當堆肥進入高溫期后,堆體中的微生物就開始快速消耗碳源,因此堆體中的碳氮比就開始明顯下降。進入腐熟階段,膜覆蓋堆肥和槽式堆肥一樣,碳氮比不斷下降并穩(wěn)定在12左右,便于有機肥的儲存。

總體而言,含水率在33.44%~68.22%,有機質(zhì)35.07%~62.49%,碳氮比11~17。由于牛糞纖維含量較高,不易腐解,有機質(zhì)和養(yǎng)分含量較低,C/N比約為13,不能滿足發(fā)酵所需要的C/N比為25~30的條件[42],所以需要添加一定C/N較高的輔料(秸稈、菌渣、鋸末等)將其調(diào)配到適合發(fā)酵的C/N。本試驗中添加玉米秸稈用于調(diào)節(jié)碳氮比和增加孔隙率。由于堆肥過程中玉米秸稈較牛糞更難腐熟,因此沒有大量添加玉米秸稈提高碳氮比。與文獻中碳氮比在12~20、15~30相比[42-45],本研究的初始碳氮比和整個堆肥過程碳氮比的范圍較低,因此碳氮比的模型效果在較大指標范圍內(nèi)的預測效果會受到限制。與文獻中含水率控制在25%~75%,有機質(zhì)含量30%~70%相比,含水率和有機質(zhì)含量范圍較小,但由于取樣僅涉及了堆肥過程,堆肥后熟至成品的階段含水率和有機質(zhì)會繼續(xù)降解含量會降低,因此含水率和有機質(zhì)含量基本符合正常的堆肥工藝,可以滿足過程分析的需求。

2.3 樣品光譜主成分分析

圖3為槽式和膜覆蓋好氧堆肥過程樣品光譜在第二主成分的載荷和得分,由載荷分布情況(圖3a和圖3c)可知,光譜差異主要由C-H鍵(7 168 cm-1),O-H鍵(5 285 cm-1)和C=O鍵(5 263 cm-1)振動引起[24]。得分圖中的每個線框代表同一天內(nèi)不同取樣點采集的10個樣品,不同線框樣品處在堆肥過程的不同發(fā)酵階段。圖2b為槽式好氧堆肥過程樣品光譜的PC2得分,由圖可知,槽式好氧堆肥初期,堆體樣品混合較為均勻,不同取樣點的樣品差異較小,隨著堆肥的進行,堆體在不同取樣點的發(fā)酵差異性增加。圖2d為膜覆蓋好氧堆肥過程樣品光譜的PC2得分,由圖可知,膜覆蓋好氧堆肥過程中,堆體在不同取樣點的發(fā)酵差異性先增加后減小,在堆肥后期樣品的變異性變小,說明覆膜使得堆體空氣分布更均勻,堆體的不同位置發(fā)酵較均勻。

2.4 堆肥過程關(guān)鍵參數(shù)近紅外速測Local PLS模型

表2為采用600條光譜(校正集480條,預測集120條)構(gòu)建的2種不同堆肥技術(shù)堆肥過程關(guān)鍵參數(shù)的PLS模型和Local PLS模型結(jié)果。由表可知,堆肥過程關(guān)鍵參數(shù)的相對標準偏差RSD值均小于10%,說明所構(gòu)建的模型可用于槽式和膜覆蓋好氧堆肥過程中含水率、有機質(zhì)含量和碳氮比的快速檢測。其中,含水率的2為0.95,RPD為4.47,RSD為3.37%,可達到很好的預測效果;有機質(zhì)含量和碳氮比的2分別為0.74和0.77,RPD大于1.5,RSD小于10%,模型可用于定量預測。這與含水率、有機質(zhì)和碳氮比含量的正態(tài)性檢驗結(jié)果一致。與PLS模型相比,Local PLS模型只需要與預測樣品光譜距離相近的100條(含水率、有機質(zhì)含量參數(shù))或75條光譜(碳氮比參數(shù))就能達到PLS模型用480條光譜得到的效果,且在對未知樣品進行預測時,Local PLS模型表現(xiàn)出更優(yōu)越的穩(wěn)定性和準確性,預測均方根誤差RMSEP和相對分析誤差RSD均更小。

注:縱坐標括號內(nèi)為PC2得分。 Note: The score of PC2 is in ordinate bracket.

表2 槽式和膜覆蓋堆肥關(guān)鍵參數(shù)PLS和Local PLS模型結(jié)果

注:SNVD:SNV+Detrend,標準正態(tài)變量+去趨勢校正;S-G:平滑;Autoscale:自動標尺化。

Note: SNVD: SNV+Detrend, standard normal variable + detrend correction; S-G: Savitzky-Golaysmoothing; Autoscale: automatic scaling.

為直觀地分析Local PLS的計算原理,以預測集樣品中含水率化學測量值的最小值和最大值為例分析用Local PLS模型建模時選用樣品的情況,結(jié)果如圖3所示。圖中紅色圓點為含水率化學測量值最小或最大的預測樣品,藍色三角形點為Local PLS模型定標時未選擇的樣品,而Local PLS定標所選用的100個樣品則采用不同顏色形狀表示了樣品所處的堆肥階段,并且括號內(nèi)數(shù)據(jù)給出了每個階段的樣品數(shù)量。

圖4a為預測含水率極小值樣品(堆肥第24天)Local PLS定標選用樣品的結(jié)果,由散點圖可知,所選擇的100個樣品的含水率在30%~50%之間,與預測樣品的含水率(32.08%)相近,選擇的樣品主要集中在20~32 d,其中,堆肥24 d的樣品19個,堆肥20和28 d的樣品14個,堆肥32 d的樣品12個,與預測樣品所處的堆肥階段相近。圖4b為預測含水率極大值樣品(堆肥第4天)Local PLS定標所用樣品的結(jié)果,由散點圖可知,所選擇的100個樣品的含水率在50%~70%之間,與預測樣品的含水率(63.06%)相近,選擇的樣品主要集中在0~16 d,其中,堆肥12 d的樣品20個,堆肥4 d的樣品16個,堆肥16 d的樣品14個,與預測樣品所處的堆肥階段相近。由上述分析可知,基于Local PLS算法在定標時選擇與預測樣品光譜得分更近的樣品進行建模,所選樣品與預測樣品的化學值含量和所處的堆肥階段更接近,預測結(jié)果更加準確,模型穩(wěn)定性好,同時,采用得分進行建模還可以減少運算量,大大提高計算速度。

2.5 基于Local PLS模型對堆肥過程關(guān)鍵參數(shù)進行監(jiān)控分析

圖5為預測集樣品的Local PLS近紅外預測值和實測值的模型散點圖(第一列)及隨堆肥時間關(guān)鍵參數(shù)近紅外預測值和實測值變化趨勢圖(第二列)。

模型散點圖中,紅色直線為擬合線,黑色直線為1:1線,粉紅色星點代表槽式好氧堆肥樣品,綠色正方形點代表膜覆蓋好氧堆肥樣品;變化趨勢圖中,實線為實測值變化趨勢,虛線為近紅外預測值的變化趨勢。

注:括號內(nèi)數(shù)字為樣品個數(shù)。

圖5 槽式和膜覆蓋好氧堆肥關(guān)鍵參數(shù)Local PLS模型散點圖及變化趨勢圖

模型散點圖可以直觀反映模型結(jié)果,擬合線和1:1線的重合度越高,模型效果越好。如圖5a所示,擬合線和1:1線接近重合,散點緊密分布在擬合線和1:1線附近,因而含水率模型預測效果很好。

變化趨勢圖,不僅可以反映不同堆肥技術(shù)堆肥過程關(guān)鍵參數(shù)的變化趨勢,通過與實驗室測定值的趨勢相比也能反映近紅外模型的精確性。如圖5b所示,不同堆肥技術(shù)堆肥過程中含水率的近紅外預測值與實測值隨堆肥時間的變化趨勢均具有很好的一致性。且近紅外預測值與實測值之間的偏差很小,說明含水率的預測結(jié)果準確性很高。

由圖5c和圖5e可知,雖然有機質(zhì)含量和碳氮比擬合線和1:1線有一定偏差,校正集和驗證集的散點也較為離散,模型的精度還有待提高,但如圖5d和圖5f所示,它們的近紅外預測值與實測值隨堆肥時間的變化趨勢是一致的,因此建立Local PLS模型可以對堆肥過程中的這些參數(shù)的變化進行實時檢測。

綜上,本文所建立的Local PLS模型可實現(xiàn)槽式和膜覆蓋好氧堆肥整個堆肥過程中關(guān)鍵參數(shù)的實時監(jiān)控。

3 結(jié) 論

本研究以規(guī)模化槽式和膜覆蓋好氧堆肥全過程樣品為研究對象,分析了2種堆肥技術(shù)堆肥全過程中含水率、有機質(zhì)含量和碳氮比等關(guān)鍵參數(shù)的變化,并結(jié)合Local PLS算法建立了2種堆肥技術(shù)堆肥全過程中上述參數(shù)的通用速測模型,得出以下結(jié)論:

1)2種主要工藝關(guān)鍵參數(shù)數(shù)值及變化規(guī)律均不同,且在整個堆肥過程中有顯著性變化(<0.05),槽式堆肥的含水率含量在33.44%~64.27%,有機質(zhì)35.49%~57.98%,碳氮比11.24~15.94,膜覆蓋堆肥的含水率含量在38.58%~68.22%,有機質(zhì)35.07%~62.49%,碳氮比11.13~16.93,膜覆蓋堆肥過程中三者的含量略高與槽式堆肥;

2)所建立的Local PLS模型,含水率的2為0.95,相對分析偏差RPD為4.47,相對標準偏差RSD為3.37%,可達到很好的預測效果;有機質(zhì)含量和碳氮比的2分別為0.74和0.77,RPD大于1.5,RSD小于10%,模型可用于定量預測。且其近紅外預測值與實測值隨堆肥時間的變化趨勢具有較好的一致性,可實現(xiàn)不同工藝規(guī)模化堆肥過程中關(guān)鍵參數(shù)的實時動態(tài)分析。

[1] 鄭露露,閆曉明,陶敬,等. 農(nóng)業(yè)固體廢棄物循環(huán)利用現(xiàn)狀及循環(huán)利用方式[J]. 浙江農(nóng)業(yè)科學,2016,1(7):1112-1114.

[2] 陳玉華,田富洋,閆銀發(fā),等. 農(nóng)作物秸稈綜合利用的現(xiàn)狀、存在問題及發(fā)展建議[J]. 中國農(nóng)機化學報,2018,39(2):67-73.

Chen Yuhua, Tian Fuyang, Yan Yinfa, et al. Current status, existing problems and development suggestions for comprehensive utilization of crop straw[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(2):67-73. (in Chinese with English Abstract)

[3] 王曉鵬,王占川. 農(nóng)業(yè)固體廢棄物的形成及資源化利用的研究[J]. 畜牧與飼料科學,2015(1):65-67.

Wang Xiaopeng, Wang Zhanchuan. The formation and resource utilization of agricultural solid wastes[J]. Animal Husbandry and Feed Science, 2015(1): 65-67. (in Chinese with English Abstract)

[4] 徐鵬翔,孫敏捷,李季. 規(guī)模化肉牛場糞污收集與堆肥處理工藝設(shè)計[J]. 農(nóng)業(yè)工程學報,2016,32(2):213-217.

Xu Pengxiang, Sun Minjie, Li Ji. Feces collection and composting technological design on scaled beef cattle farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 213-217. (in Chinese with English Abstract)

[5] 夏煒林,黃宏坤,漆智平,等. 不同堆肥方式對奶牛糞便處理效果的試驗研究[J]. 農(nóng)業(yè)工程學報,2006,22(增刊2):215-219.

Xia Weilin, Huang Hongkun, Qi Zhiping,et al. Experimental studies on dairy manure treatment by static bed composting and microbe reagent inoculating[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(Supp.2): 215-219. (in Chinese with English Abstract)

[6] Zeng J, Shen X, Han L, et al. Dynamics of oxygen supply and consumption during mainstream large-scale composting in China[J]. Bioresource Technology, 2016, 220: 104-109.

[7] Zeng J, Shen X, Sun X, et al. Spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China[J]. Waste Management, 2018, 75: 297-304.

[8] Ma S, Fang C, Sun X, et al. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure[J]. Bioresource Technology, 2018: 221-227.

[9] Ma S, Fang C, Sun X, Han L, He X, Huang G. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure[J]. Bioresource Technology, 2018, 259: 221-227.

[10] Levis J W, Barlaz M A. What is the most environmentally beneficial way to treat commercial food waste[J]. Environmental Science & Technology, 2011, 45(17): 7438-7444.

[11] 化黨領(lǐng),劉方,李國學,等. 翻堆與覆蓋工藝對豬糞秸稈堆肥性質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2011,27(12):210-216.

Hua Dangling, Liu Fang, Li Guoxue , et al. Effect of turning and covering techniques on pig manure-straw composting property[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 210-216. (in Chinese with English Abstract)

[12] 江滔,Schuchardt F,李國學. 冬季堆肥中翻堆和覆蓋對溫室氣體和氨氣排放的影響[J]. 農(nóng)業(yè)工程學報,2011,27(10):221-226.

Jiang Tao, Schuchardt F, LiGuoxue . Effect of turning and covering on greenhouse gas and ammonia emissions during the winter composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(10): 221-226. (in Chinese with English Abstract)

[13] 孫曉曦,崔儒秀,馬雙雙,等. 智能型規(guī)模化膜覆蓋好氧堆肥系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)機械學報,2018,49(10):363-369.

Sun Xiaoxi, Cui Ruixiu, Ma Shuangshuang, et al. Design and Test on Large-scale Semi-membrane-covered Compost System[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 356-362. (in Chinese with English Abstract)

[14] Sun X, Ma S, Han L, et al. The effect of a semi-permeable membrane-covered composting system on greenhouse gas and ammonia emissions in the Tibetan Plateau[J]. Journal of Cleaner Production, 2018, 204: 778-787.

[15] 馬雙雙,孫曉曦,韓魯佳,等. 功能膜覆蓋好氧堆肥過程氨氣減排性能研究[J]. 農(nóng)業(yè)機械學報,2017(11):349-354.

Ma Shuangshuang, Sun Xiaoxi, Han Lujia, et al. Reduction of ammonia emission during membrane-covered aerobic composting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 2017(11): 349-354. (in Chinese with English Abstract)

[16] Ma S, Sun X, Fang C, et al. Exploring the mechanisms of decreased methane during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane[J]. Waste Management, 2018, 78: 393-400.

[17] Raj D, Antil R. Evaluation of maturity and stability parameters of composts prepared from farm wastes[J]. Archives of Agronomy and Soil Science, 2012, 58(8): 817-832.

[18] Liang C, Das K, Mcclendon R. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend[J]. Bioresource Technology, 2003, 86(2): 131-137.

[19] Debosz K, Petersen S, Kure L, et al. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties[J]. Applied Soil Ecology, 2002, 19(3): 0-248.

[20] Cédric, Francou, Maelenn, et al. Stabilization of organic matter during composting: influence of process and feedstocks[J]. Compost Science & Utilization, 2005, 13(1): 72-83.

[21] Eiland F, Klamer M, Lind A M, et al. Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw[J]. Microbial Ecology, 2001, 41(3): 272-280.

[22] Kumar M, Ou Y, Lin J. Co-composting of green waste and food waste at low C/N ratio[J]. Waste Management, 2010, 30(4): 602-609.

[23] Albrecht R, Joffre R, Gros R, et al. Efficiency of near-infrared reflectance spectroscopy to assess and predict the stage of transformation of organic matter in the composting process[J]. Bioresource Technology, 2008, 99(2): 448-455.

[24] Albrecht R, Joffre R, Le P J, et.al. Calibration of chemical and biological changes in co-composting of biowastes using near-infrared spectroscopy[J]. Environmental Science & Technology, 2009, 43(3): 804-811.

[25] Vergnoux A, GuilianoM, Le D, et.al. Monitoring of the evolution of an industrial compost and prediction of some compost properties by NIR spectroscopy[J]. Science of the Total Environment, 2009, 407(7): 2390-2403.

[26] Soriano-disla J M, Gomez I, Guerrero C, et al. The potential of NIR spectroscopy to predict stability parameters in sewage sludge and derived compost[J]. Geoderma, 2010, 158(1/2): 93-100.

[27] 孔源,韓魯佳,賈貴儒,等. 近紅外技術(shù)快速測定肉雞糞便主要肥料成分含量的研究[J]. 農(nóng)業(yè)工程學報,2004,20(6):259-262.

Kong Yuan, Han Lujia, JiaGuiru, et al. Rapid near infrared prediction of broiler manure nutrient contents[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(6): 259-262. (in Chinese with English Abstract)

[28] Galvez-Sola L, Moral R, M D Perez-Murcia, et al. The potential of near infrared reflectance spectroscopy (NIRS) for the estimation of agroindustrial compost quality[J]. Science of the Total Environment, 2010, 408(6): 1414-1421.

[29] Galvez-Sola L, Moral R, MayoralA, et.al. Estimation of phosphorus content and dynamics during composting: Use of near infrared spectroscopy[J]. Chemosphere, 2010, 78(1): 13-21.

[30] Toledo M, Gutiérrez M C, Siles J A, et al. Chemometric analysis and NIR spectroscopy to evaluate odorous impact during the composting of different raw materials[J]. Journal of Cleaner Production, 2017, 167: 154-162.

[31] Wang X Y, Huang G Q, Han L J. Rapid evaluation of primary nutrients during plant-field chicken manure composting using near-infrared reflectance spectroscopy[J]. Spectroscopy & Spectral Analysis, 2010, 30(3): 677-680.

[32] 楊增玲,黃圓萍,沈廣輝,等. 基于在線近紅外光譜的堆肥全過程關(guān)鍵參數(shù)快速檢測[J]. 農(nóng)業(yè)機械學報,2019,50(5):356-361,384.

Yang Zengling, Huang Yuanping, Shen Guanghui, et al.Rapidly Detection of key parameters in whole composting process based on online near infrared spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 356-361, 384. (in Chinese with English Abstract)

[33] Lascola, O'Rourke, Patrick E, et al. A piecewise local partial least squares (PLS) method for the quantitative analysis of plutonium nitrate solutions[J]. Applied Spectroscopy, 2017, 71: 3702817734000.

[34] Naes T, Isaksson T. Locally weighted regression in diffuse near-infrared transmittance spectroscopy[J]. Applied Spectroscopy, 1992, 46(1): 34-43.

[35] Shenk J, Westerhaus M, Berzaghi P. Investigation of a LOCAL calibration procedure for near infrared instruments[J]. Journal of Near Infrared Spectroscopy, 1997, 5(1): 223-232.

[36] Fearn T, Davies A. Locally-biased regression[J]. Journal of Near Infrared Spectroscopy, 2003, 11(1): 467-478.

[37] Shen G, Lesnoff M, Baeten V, et al. Local partial least squares based on global PLS scores[J]. Journal of Chemometrics, 2019, 33(5): e3117.

[38] 李季,彭生平. 堆肥工程實用手冊[M]. 北京:化學工業(yè)出版社,2011.

[39] Mutaz A, Tamas S, Loubna E, et al. Green waste composting under GORE(R) cover membrane at industrial scale: Physico-chemical properties and spectroscopic assessment[J]. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8: 385-397

[40] Saeys W, Mouazen A M, Ramon H. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy[J]. Biosystems Engineering, 2005, 91(4): 393-402.

[41] Mouazen A, Saeys W, Xing J, et al. Near infrared spectroscopy for agricultural materials: An instrument comparision[J]. Near Infrared Spectrosc, 2005, 13: 87-97.

[42] 張玉鳳,田慎重,邊文范,等. 有機物料對牛糞好氧堆肥過程的影響[J]. 山東農(nóng)業(yè)科學,2019(5):76-82.

Zhang Yufeng, Tian Shenzhong, BianWenfan, et al. Effect of organic materials on aerobic composting of cow manure[J]. Shandong Agricultural Sciences, 2019, 051(5): 76-82. (in Chinese with English Abstract)

[43] 張鶴,李孟嬋,楊慧珍,等. 不同碳氮比對牛糞好氧堆肥腐熟過程的影響[J]. 甘肅農(nóng)業(yè)大學學報,2019,54(1):60-67.

Zhang He, Li Mengchan, Yang Huizhen, et al. Effect of different carbon and nitrogen ratio on decayed process of aerobic composting of cow dung[J]. Journal of Gansu Agricultural University, 2019, 54(1): 60-67. (in Chinese with English Abstract)

[44] Dayanand S, Yadav K D, Sunil K. Role of sawdust and cow dung on compost maturity during rotary drum composting of flower waste[J]. Bioresource Technology, 2018, 264: 285-289.

[45] Wang K, Yin X, Mao H, et al. Changes in structure and function of fungal community in cow manure composting[J]. Bioresource Technology, 2018, 255: 123-130.

Real-time and dynamic analysis of key composting parameters using NIR Sand Local PLS algorithm

Huang Yuanping, Shen Guanghui, Liao Keke, Wu Yalan, Han Lujia, Yang Zengling※

(100083)

Biomass resources, including crop straw and livestock manure, can usually serve as advantageous raw materials to produce organic fertilizer. The utilization of these resources can be achieved in aerobic composting technology. Currently, trough composting is the main large-scale composting technology in China, due to its large processing capacity, low investment cost, and short composting cycle. As a new type of composting technology, membrane-covered composting refers to a semi-permeable membrane to cover the surface of the fermentation trough. Much attention has gained due to its high efficiency, adaptability, energy saving, easy operation, and reduction of greenhouse gas. However, the composting is normally associated with the complex physical and chemical changes under the action of microorganisms, particularly when affected by some process parameters, such as temperature, moisture content (MC), organic matter content (OM), and carbon-nitrogen (C/N) ratio. Specifically, the sample complexity varied in different technologies during composting process. It is necessary to rapidly detect the processing parameters in real time during the whole composting process, in order to fully optimize composting process for the composting quality. Near infrared spectroscopy (NIRS) can serve as a promising analytical technology in this case. However, most studies focused on a specific model for a certain composting technology. Since a general model suitable for different composting technologies was built using partial least squares (PLS) method, it is inevitable to bring some problems, such as the number increase of latent variables, model overfitting, and low prediction accuracy. Local PLS algorithm can be expected to save calculation time and improve the accuracy of the models. This study aims to dynamic analyze composting parameters in real-time for various composting technologies using FT-NIR spectroscopy combined with Local PLS method. Dairy manure and corn stalks were used as raw materials for the large-scale trough and membrane-covered aerobic composting. 100 samples were collected for each composting technology. The key physicochemical parameters were analyzed, such as MC, OM, and C/N ratio, during the composting process. A FT-NIR spectrometer was used to obtain the infrared spectra of samples. Local PLS algorithm was used to establish the universal rapid measurement models of processing parameters during the whole composting process in two composting techniques. The results showed that: 1) The changes of key parameters in the whole composting process varied greatly in an individual trough or membrane-covered composting, indicating significant variation in the processing (<0.05); 2) The established Local PLS model demonstrated, excellent prediction for the MC with the2value of 0.95, RPD value of 4.47, and RSD value of 3.37%, as well approximate quantitative prediction for the OM and C/N ratio with the2value of 0.74 and 0.77, RPD value above 1.5, and RSD less than 10%. NIR-prediction has also a good agreement with the measured in the change trends during the composting processing. The proposed algorithm can provide a promising potential to the real-time dynamic analysis of key parameters in the large-scale trough and membrane-covered composting process.

near infrared spectroscopy; composting; algorithm; process analysis; trough composting; membrane-covered composting; keyparameters; Local PLS

黃圓萍,沈廣輝,廖科科,等. 基于NIRS和Local PLS算法的堆肥關(guān)鍵參數(shù)實時動態(tài)分析[J]. 農(nóng)業(yè)工程學報,2020,36(13):195-202.doi:10.11975/j.issn.1002-6819.2020.13.023 http://www.tcsae.org

Huang Yuanping, Shen Guanghui, Liao Keke, et al. Real-time and dynamic analysis of key composting parameters using NIRS and Local PLS algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 195-202. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.13.023 http://www.tcsae.org

2020-03-25

2020-06-03

國家奶牛產(chǎn)業(yè)技術(shù)體系項目(CARS36);教育部創(chuàng)新團隊發(fā)展計劃項目(IRT-17R105)

黃圓萍,博士生,主要從事生物質(zhì)資源利用研究。Email:hyping@cau.edu.cn

楊增玲,教授,博士,博士生導師,主要從事生物質(zhì)資源利用研究。Email:yangzengling@cau.edu.cn

10.11975/j.issn.1002-6819.2020.13.023

S216.1

A

1002-6819(2020)-13-0195-08

猜你喜歡
模型
一半模型
一種去中心化的域名服務(wù)本地化模型
適用于BDS-3 PPP的隨機模型
提煉模型 突破難點
函數(shù)模型及應用
p150Glued在帕金森病模型中的表達及分布
函數(shù)模型及應用
重要模型『一線三等角』
重尾非線性自回歸模型自加權(quán)M-估計的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 中文字幕 91| 99精品这里只有精品高清视频| 亚洲浓毛av| 国产精品久久久久久久伊一| 中文字幕 欧美日韩| 国产流白浆视频| 国产美女丝袜高潮| 亚洲狼网站狼狼鲁亚洲下载| 国产毛片高清一级国语| 福利姬国产精品一区在线| 中文字幕无码电影| 在线精品亚洲国产| 久久综合五月| 精品三级在线| 91视频日本| 国产91av在线| 国产一级片网址| 亚洲最新在线| 久久久久久久97| 欧美日韩在线成人| 成年女人a毛片免费视频| jizz国产视频| 国内精品久久人妻无码大片高| 在线观看无码a∨| 欧美一区二区人人喊爽| 免费人成黄页在线观看国产| 99久久无色码中文字幕| 欧美一级黄片一区2区| 国产精品一老牛影视频| 亚洲日韩高清无码| 在线观看国产精美视频| 国产三级精品三级在线观看| 毛片网站在线看| 欧美国产日韩在线播放| 亚洲人成在线精品| 国产极品美女在线观看| 精品久久综合1区2区3区激情| 一本大道香蕉中文日本不卡高清二区 | 美女被狂躁www在线观看| 国产91无码福利在线| 福利一区三区| 久久无码免费束人妻| 亚洲免费成人网| 日韩精品免费一线在线观看| 国产精品浪潮Av| 久久人人97超碰人人澡爱香蕉| 久久精品国产免费观看频道| 国产二级毛片| 国产在线八区| 久久天天躁狠狠躁夜夜躁| 国产在线啪| 大乳丰满人妻中文字幕日本| 午夜欧美理论2019理论| 欧美国产视频| 国产视频一区二区在线观看| 国产全黄a一级毛片| 国产区福利小视频在线观看尤物| 亚洲美女久久| 国产精品一区在线观看你懂的| 宅男噜噜噜66国产在线观看| 久久久久亚洲Av片无码观看| 国产免费a级片| a级高清毛片| 夜精品a一区二区三区| 精品视频福利| 欧美日韩在线国产| 午夜视频免费一区二区在线看| 毛片久久网站小视频| 国产精女同一区二区三区久| 中国丰满人妻无码束缚啪啪| 午夜激情婷婷| 日韩美毛片| аv天堂最新中文在线| 国产一区二区三区在线观看视频| 日韩毛片视频| 国产av剧情无码精品色午夜| 五月激情婷婷综合| 中字无码av在线电影| 九九这里只有精品视频| 日本一本在线视频| 国产成人高清精品免费软件| 国产美女主播一级成人毛片|