趙瑛 李琦 王冬暉 于愛萍 谷宇



摘? 要: 盡管已有多種圖像處理策略被應用到視覺假體的仿真研究中并提高了被試的識別表現(xiàn),但在植入電極數(shù)量有限的情況下,如何保證盲人獲得足夠的拓撲信息是視覺假體仍需解決的問題。在此背景下,本文將兩種神經(jīng)網(wǎng)絡(luò)算法應用到仿真假體視覺中對圖像進行前景目標提取和像素化處理,首先利用圖像分割數(shù)據(jù)集訓練一個U?net網(wǎng)絡(luò)得到前景提取后的結(jié)果,將其像素化之后與提取前的原圖配對,再利用配對后的數(shù)據(jù)集訓練一個Pix2Pix網(wǎng)絡(luò)從而實現(xiàn)了將彩色圖像“翻譯”為像素化圖像的目標。實驗結(jié)果表明,與傳統(tǒng)圖像處理算法相比U?net網(wǎng)絡(luò)具有更準確的目標提取效果,且經(jīng)Pix2pix網(wǎng)絡(luò)“翻譯”后的圖像也與標簽圖像更相似,有助于提高假體佩戴者的識別準確率。
關(guān)鍵詞: 仿真假體視覺; 神經(jīng)網(wǎng)絡(luò)算法; 前景目標提取; 像素化處理; 數(shù)據(jù)集訓練; 圖像配對
中圖分類號: TN911.34?34; TP391.4? ? ? ? ? ? ?文獻標識碼: A? ? ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2020)04?0164?03
Application of neural networks algorithm in artificial prosthesis vision
ZHAO Ying1, LI Qi1, WANG Donghui1, YU Aiping1, GU Yu1,2
(1. Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; 2. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)
Abstract: A variety of image processing strategies have been applied to the simulation study of visual prosthesis and improved the recognition performance of the subjects, but how to ensure that blind people get enough topological information with limited electrodes is still a problem to be solved in visual prosthesis. On this background, two kinds of neural network algorithm are applied to the artificial prosthesis vision to perform foreground object extraction and pixel processing for images. A U?net network is trained with the image segmentation dataset to acquire the extracted results of foreground, which are matched with the original image after its pixel processing. A Pix2pix network was trained with the matched datasets to achieve the goal of “translating” color images into pixelated images. The experimental results showed that in comparison with the traditional image processing algorithm, the U?net network has more accurate object extraction effect, and the image translated by the Pix2Pix network is more similar to the ground truth. It is helpful to improve the recognition accuracy of prosthesis wearers.
Keywords: artificial prosthesis vision; neural networks algorithm; foreground object extraction; pixel processing; dataset training; image matching
人類對外界信息的獲取約有80%來自于視覺,視力殘疾或失明對人的正常生命活動造成的影響是災難性的。對于由視網(wǎng)膜色素變性(Retinal Pigmentosa)和老年性黃斑變性(Age?related Macular Degeneration)造成視力殘疾或失明的患者[1],他們病變的視網(wǎng)膜組織中仍然有近80%的內(nèi)層神經(jīng)細胞和近30%的神經(jīng)節(jié)細胞的形態(tài)和功能處于正常狀態(tài),并保持一定的功能性連接,視覺假體可應用于這類患者的視覺恢復和重建過程中[2]。通過在他們的視網(wǎng)膜、視覺皮層或視神經(jīng)等位置植入微電極并對其施加合適的電刺激,可使患者感知到光幻視點。……