999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

釀酒葡萄曲軸式振動脫粒收獲裝置研制

2020-06-20 02:42:24袁盼盼朱興亮韓長杰張學軍
農業工程學報 2020年9期
關鍵詞:振動

袁盼盼,朱興亮,尤 佳,韓長杰,張學軍,郭 輝

釀酒葡萄曲軸式振動脫粒收獲裝置研制

袁盼盼,朱興亮,尤 佳,韓長杰,張學軍※,郭 輝

(新疆農業大學機電工程學院,烏魯木齊 830052)

針對釀酒葡萄機械化采收時對植株損傷大、果粒破損率高、脫粒效率低等問題,該文設計了一種曲軸式振動脫粒收獲裝置,該裝置主要由曲軸、彈性夾持振動機構、傳動系統、機架等組成。對曲柄搖桿機構的運動和彈性振動桿變形進行了分析,獲取了影響作業效果的主要因素。根據Box-Benhnken 中心組合設計方法,以夾持間距、轉速和偏心距為影響因子,釀酒葡萄脫粒率和破損率為響應函數進行三因素三水平二次回歸正交試驗設計,建立了響應面數學模型,并進行了參數優化和驗證。結果表明,釀酒葡萄脫粒率影響因素的顯著性順序為轉速、偏心距和夾持間距,破損率的影響顯著性順序為轉速、夾持間距和偏心距;最優參數組合為夾持間距193 mm、曲軸轉速720 r/min、曲軸偏心距38.8 mm,在此參數下測得的釀酒葡萄脫粒率為93.06%,破損率為4.57%,與模型優化理論值相比脫粒率降低了1.09個百分比,破損率增加了1.45個百分點。該研究可為釀酒葡萄的機械化收獲及其他林果的振動采收裝置設計提供參考。

農業機械;收獲;振動;釀酒葡萄;曲軸

0 引 言

葡萄是世界四大水果之一[1],中國釀酒葡萄種植面積已超越法國,成為世界第二大釀酒葡萄種植區[2]。新疆是優質葡萄主產區[3],目前,釀酒葡萄收獲作業還停留在傳統人工采摘。釀酒葡萄枝條無序生長,人工采收困難,且效率低。國外釀酒葡萄主要產區如意大利、美國、法國等均已基本實現機械化采收[4-5],但由于氣候和自然條件上的差異,國內外釀酒葡萄在樹形、空間形態、果實集中度等方面差異巨大,亟需開發適用于中國釀酒葡萄種植和管理模式特點的采收機構。

振動采收是目前漿果采收的主要手段之一[6-11],國內外藍莓、黑加侖、葡萄等漿果,主要利用激勵源振動果樹,迫使果穗或果粒與相連的枝條或果梗產生相對運動(拉、彎、扭),使連接處變形直至斷裂,實現果實采收,釀酒葡萄主要采收果粒[12-16],使葡萄粒從果梗上分離脫落。Caprara利用偏心搖桿機構驅動2排撓性肋條旋轉擊打葡萄藤實現果實采收[17],Roger 等利用曲柄搖桿機構以及伺服液壓交替振動機構產生旋轉運動驅動2排交錯肋條對葡萄進行振動采收[18],Baisan利用偏心圓盤搖桿機構驅動尼龍彈性桿振搖葡萄藤實現釀酒葡萄采收[19],國內外在葡萄樹形、果實分布方面差異較大,振動能量傳遞效率不同,國外葡萄收獲機在中國作業時易造成葡萄植株、葡萄粒損傷大。李成松等基于RSSR空間四桿機構和平面雙搖桿機構設計了雙支撐釀酒葡萄果實振動分離裝置,作業可靠性及穩定性有待改進優化[20-21]。王業成利用可調偏心連桿式振動機構進行試驗,分析了振動頻率、振幅和激振位置對黑加侖采收率的影響[22],史亮等利用雙偏心塊旋轉產生的反向力偶驅動撥桿圓盤實現藍莓的采收[23],王海濱等利用采摘滾筒旋轉帶動藍莓樹振動進行采收[24-25]。目前國內釀酒葡萄收獲裝備并不成熟,作業時對植株損傷大、脫粒效率低、果粒破損率高、可靠性及穩定性低等問題。

基于上述問題,本文提出了一種曲軸式振動脫粒收獲裝置,彈性振動桿夾持葡萄植株進行振動脫粒收獲,振動脫粒部分主要結構和工作參數均可調,分析了影響葡萄脫粒率和破損率的主要因素,將獲得的最優參數應用于釀酒葡萄收獲機中,以期為釀酒葡萄及其他漿果和林果的振動采收裝備參數設計提供參考。

1 裝置結構與工作原理

釀酒葡萄振動脫粒收獲裝置主要由曲軸、彈性夾持振動機構、傳動系統、機架等組成,如圖1所示。其中,彈性夾持振動機構由左、右彈性夾持單體構成,結合新疆釀酒葡萄為籬架種植,葉幕形寬度為0.8 m左右,在葡萄行的兩側利用彈性夾持振動機構左、右單體間的配合夾持釀酒葡萄植株,根據葉幕形實際寬度通過夾持間距調節桿進行調整,主要參數如表1所示。

1.同步帶傳動系統 2.電機 3.彈性夾持振動機構 4.機架 5.曲軸

表1 釀酒葡萄振動脫粒裝置主要參數

作業時,彈性夾持振動機構左單體的曲軸在電機驅動下轉動,將電機輸出的旋轉運動轉換為彈性振動桿的非圓周變向運動;通過同步帶傳動系統,彈性夾持振動機構右單體與左單體保持同相位、同方向和同步運動;彈性夾持振動機構夾持釀酒葡萄植株做有規律的變速變向運動,使釀酒葡萄粒從葡萄梗上脫落,實現脫粒。

2 關鍵部件設計

2.1 彈性夾持振動機構

彈性夾持振動機構由曲軸、夾持桿組、轉動軸、轉動連桿和夾持間距調節桿等組成,圖2a和2b分別為彈性夾持振動機構的左單體和右單體,連桿與夾持桿組間固接,轉動連桿與夾持桿組間采用銷軸連接。夾持桿組上分布3組彈性桿,間距為300 mm,每組彈性桿通過騎馬卡固定在豎直的連接桿上,騎馬卡的直徑、孔距等與彈性桿的尺寸相配合。

曲軸、夾持桿組、轉動軸和機架構成了曲柄搖桿機構。為實現左右并聯、對稱的夾持桿組上下錯位布置的2組曲柄搖桿機構同相位、同向和同步運動,右側夾持桿組不能直接安裝在曲柄搖桿機構的連桿上,需在曲柄搖桿機構的連桿上設置一組連接桿將夾持桿組與左側夾持桿組反向且平行安裝。在彈性夾持振動機構右單體曲柄搖桿機構的連桿上安裝2個平行的夾持間距調節桿用于連接夾持桿組,使其與左單體同向運動。

1.曲軸 2.夾持桿組 3.轉動軸 4.轉動連桿 5.連接板 6.夾持間距調節桿

1.Crankshaft 2.Clamping rod group 3.Axis of rotation 4.Rotating connecting rod 5.Connecting plate 6.Clamping spacing adjusting rod

圖2 彈性夾持振動機構

Fig.2 Elastic clamping vibration mechanism

夾持間距調節桿通過調節安裝孔的位置調整左右2組夾持振動桿組的間距,具體結構如圖3所示。左連接桿和中間調節桿焊合固接,中間調節桿和右連接桿上按一定間距對應分布孔,中間調節桿(尺寸為25×25,mm)在右連接桿(尺寸為30×30,mm)中通過伸縮調整間距。

圖3 夾持間距調節桿

2.2 夾持振動機構運動分析

夾持振動機構利用偏心曲軸的旋轉運動帶動夾持振動桿做非圓周運動,為曲柄搖桿機構,如圖 4所示。

該機構的封閉矢量方程以復數形式表示為[26]

按歐拉公式展開得

實部和虛部分別相等,即

注:AB為曲柄;CD為彈性振動桿;BCD為連桿;DE為搖桿;AE為機架;AB1C1D1E為曲柄搖桿機構的極限位置;、、和分別為曲柄、連桿、搖桿及機架的長度,mm;為曲柄轉動的角速度,rad·s-1;為曲柄的轉角,rad;為連桿的方位角,rad;為搖桿擺角,rad。

由此求得搖桿擺角為

同理可求得

將公式(1)對時間求導數,按歐拉公式展開,求得連桿的角速度為

2.3 曲軸

曲軸主要由驅動軸、曲軸板、曲軸調節板、傳動軸頭和曲柄連接體組成,如圖5a所示,驅動軸、傳動軸和曲軸板均采用焊合固接,曲軸板和調節板的厚度均為8 mm,二者采用3組螺栓進行連接,螺栓安裝間距分別為30和20 mm,曲柄連接體將上下曲軸調節板連接。曲軸板和調節板配合如圖5b和5c所示,通過調整曲軸板和曲軸調節板上孔的對應安裝位置,曲柄長度可調,曲柄長度調整間距為12 mm。

圖5 曲軸及其調整板

曲柄連接體是將曲軸的曲柄和連桿進行連接,主要是由心軸、軸承座、圓錐滾子軸承、卡簧和套筒組成,心軸的上下端與曲柄調節板通過螺紋連接。

2.4 彈性振動桿

彈性振動桿分為平直段和圓弧段,2段間用軸套連接,如圖6所示。平直段采用PA6材質尼龍棒,具有韌性好、耐磨力強和彎曲強度高等特點,根據前期研究[9],確定振動桿的直徑為25 mm,平直段長度為900 mm。圓弧段將分散及外伸的葡萄藤蔓和枝條進行收攏聚集進入平直段工作區,在收攏聚集時,為避免工作部件對葡萄串及植株造成損傷,要求圓弧段材質具有較好的柔性,因此,圓弧段采用PU聚氨酯棒,具有較高的機械強度、柔性和回彈性,能夠滿足工作要求。

注:為夾持間距,mm;為彈性振動桿平直段長度,mm;為圓弧段有效長度,mm;為收攏區入口最大寬度,mm;R為圓弧段半徑,mm。

在進行非圓周變向振動過程中,彈性振動桿存在一定程度的彎曲變形,最大變形量由公式(8)計算[28]。

由此可得彈性振動桿的振動變形量為

3 收獲性能試驗

3.1 試驗材料與設備

為驗證理論分析的正確性,獲取最優結構和工作參數,2019年8月29日,在新疆農業大學農業工程裝備創新設計實驗室進行試驗,采樣地點為新疆兵團十二師三坪農場三坪二連,北緯43°57′ 6″ ,東經87°19′ 35″ ,品種為“赤霞珠”,樹齡6 a,在采樣時,選取不同位置枝蔓、不同直徑的掛果枝條進行剪枝,采樣枝條直徑為6~16 mm,枝條掛果串數1~4串,枝條長度約1 m左右。試驗如圖7所示。

1.彈性夾持振動機構 2.釀酒葡萄枝條 3.曲軸 4.電機 5.夾持間距調節桿 6.變頻器

試驗設備有:i-SPEEDFS高速攝像機(包含攝像機主機、觸發開關,控制顯示器等,2 000 幀/s時的分辨率為1 280×1 024(像素),配套圖像分析軟件i-SPEED Suite,日本Olympus公司);Altivar38HD12N4變頻器(功率3 kW,施耐德公司);TCS電子臺秤(精度20 g,量程1~100 kg,上海地久商貿有限公司);計算機。

3.2 試驗指標與方法

根據《GB/T 25393—2010 葡萄栽培和葡萄酒釀制設備葡萄收獲機試驗方法》和《GB/T5667—2008 農業機械生產試驗方法》規定的試驗方法[30-31],考察所設計的曲軸式振動脫粒收獲裝置的作業性能,選取脫粒率和破損率為試驗指標。

3.3 試驗方案

根據對曲軸振動機構的運動學及振動彈性桿的分析,確定影響釀酒葡萄脫粒效果的主要因素為曲柄轉速、曲軸偏心距(曲柄長度)和夾持間距,因此,選取曲柄轉速、偏心距和夾持間距為試驗因素。根據前期參與的研究[9],整機田間試驗獲得的較優作業速度為2 km/h,以模擬2 km/h進行脫粒試驗,換算為0.56 m/s,夾持振動桿平直段長度為900 mm,收攏區有效長度為400 mm,因此,有效夾持振動部分對葡萄植株的振動時間約2 s,電機啟動加速度過大,會造成瞬間載荷增大,影響試驗效果,設定振動時間為9 s,其中電機轉速由0加速至試驗轉速時長為7 s[32],穩定試驗轉速2 s。采用Box-Benhnken中心組合設計方法[33-34],以三因素和三水平二次回歸正交為試驗方案,每組試驗進行3次,取3次測試結果的均值作為該組的試驗結果,對指標的因素進行顯著性分析,獲取機構各參數最優組合。根據預試驗結果設置試驗因素水平,如表2所示。

表2 試驗因素水平

4 結果與分析

4.1 振動脫粒試驗結果分析

根據表3中的試驗數據,利用Design Expert 8.0.6軟件對試驗結果進行二次回歸分析[35],建立葡萄脫粒率和破損率對夾持間距、轉速和偏心距的二次響應面回歸模型,并對其進行方差分析,結果如(12)~(13)和表4所示。

表3 試驗結果

表4 脫粒率與破損率方差分析

注:“***”表示極顯著(≤0.01);“**”表示顯著(0.01<≤0.05);“*”表示較顯著(0.05<≤0.1)。下同。

Note: “***” means highly significant (≤0.01), “**” means very significant(0.01<≤0.05), “*” means significant (0.05<≤0.1). The same below.

圖8a為脫粒率對轉速和偏心距的響應曲面圖,可看出當曲軸的偏心距固定時,脫粒率隨著轉速的增加而增大,當曲軸轉速固定時,脫粒率隨著偏心距的增大先增大后減小。圖8b為破損率對偏心距和夾持間距的響應曲面圖,可看出當曲軸的偏心距固定時,破損率隨著夾持間距的增大而增大;當夾持間距固定時,破損率隨著偏心距的增大先減小后增大。

圖8 各因素對釀酒葡萄脫粒率和破損率的交互作用

4.2 參數優化與試驗驗證

利用Design-Expert軟件中的Optimization(最優化)模塊,對脫粒率和破損率回歸模型進行優化求解,以脫粒率最大和破損率最小為優化目標,約束函數如式(14)。

求得的優化組合為:夾持間距192.93 mm、曲軸轉速720 r/min、曲軸偏心距38.79 mm,此時脫粒率與破損率的預測值分別為94.15%和3.12%。

為驗證優化結果的準確性,將裝置優化參數組合的夾持間距圓整為193 mm,曲軸轉速為720 r/min,曲軸偏心距圓整為38.8 mm,進行3次重復驗證試驗,試驗材料和方法與上述相同,取3次試驗的結果均值為驗證值。試驗結果表明,圓整優化參數下作業的葡萄脫粒率為93.06%,破損率為4.57%,與模型預測結果基本一致。

5 結 論

1)設計了一種曲軸式振動脫粒收獲裝置,主要由曲軸、彈性夾持振動機構、同步帶傳動系統、機架等組成,利用并聯的彈性夾持振動機構左、右單體實現同相位、同向和同步運動。

2)對釀酒葡萄脫粒率顯著性影響順序依次為曲軸轉速、曲軸偏心距離和夾持間距;各因素對破損率影響顯著順序依次為曲軸轉速、夾持間距和曲軸偏心距離。

3)通過優化分析與試驗驗證,最佳參數組合為:夾持間距為193 mm、曲軸轉速為720 r/min、曲軸偏心距為38.8 mm,試驗結果為釀酒葡萄脫粒率為93.06%,破損率為4.57%,與模型優化預測結果基本一致,結構設計合理。

[1] 劉崇懷. 中國葡萄屬(L. )植物分類與地理分布研究[D]. 鄭州:河南農業大學,2012. Liu Chonghuai. Studies on Taxonomy and Geographical Distribution of Chinese Wild Grape Species[D]. Zhengzhou: Henan Agricultural University, 2012. (in Chinese with English abstract)

[2] 李超. 基于柔性梳脫的釀酒葡萄脫粒機理與裝置的研究[D]. 北京:中國農業大學,2017. Li Chao. Study of Wine Grape Threshing Mechanism and Device by Flexible Combing Triping Mechanism[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

[3] 王麗紅,袁盼盼,李成松,等. 釀酒葡萄振動脫落機構運動分析及研究平臺設計[J]. 農機化研究,2015,37(8):53-56. Wang Lihong, Yuan Panpan, Li Chengsong, et al. Analysis of vibratory mechanism movement for wine grape and design of virtual prototype research platform[J]. Journal of Agricultural Mechanization Research, 2015, 37(8): 53-56. (in Chinese with English abstract)

[4] 胡志超,王海鷗,胡良龍,等. 美國葡萄生產機械化[J]. 中國農機化,2005(6):107-109. Hu Zhichao, Wang Haiou, Hu Lianglong, et al. Mechanization of grape production in America[J]. Chinese Agricultural Mechanization, 2005(6): 107-109. (in Chinese with English abstract)

[5] 吳清分. 紐荷蘭公司VMLPLUS系列新型葡萄收獲機[J]. 當代農機,2017(2):60-61.

[6] 杜小強,倪柯楠,潘珂,等. 可調振幅單向拽振式林果采收機構參數優化[J]. 農業工程學報,2014,30(16):25-32. Du Xiaoqiang, Ni Ke’nan, Pan Ke, et al. Parameter optimization of stroke-adjustable and monodirectional pulling fruit harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 25-32. (in Chinese with English abstract)

[7] 蔡菲,王春耀,王學農,等. 基于高速攝像技術的振動落果慣性力研究[J]. 西北農林科技大學學報:自然科學版,2013,41(4):208-212. Cai Fei, Wang Chunyao, Wang Xuenong, et al. Inertia force of fruits abscised by vibration based on high-speed video camera technology[J]. Journal of Northwest A & F University: Natural Science Edition, 2013, 41(4): 208-212. (in Chinese with English abstract)

[8] Yuan Panpan, Zhu Xingliang, Wang Lihong, et al. Design and test of separation harvesting device for wine grape[J], International Agricultural Engineering Journal, 2018, 27(3): 116-122.

[9] 楊蘭濤,王麗紅,坎雜,等. 4PZ-1型自走式釀酒葡萄收獲機的研制與試驗[J]. 農業工程學報,2017,33(1):38-44. Yang Lantao, Wang Lihong, Kan Za, et al. Development and test of 4PZ-1 self-propelled wine grape harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 38-44. (in Chinese with English abstract)

[10] 散鋆龍,楊會民,王學農,等. 振動方式和頻率對杏樹振動采收響應的影響[J]. 農業工程學報,2018,34(8):10-17. San Yunlong, Yang Huimin, Wang Xuenong, et al. Effects of vibration mode and frequency on vibration harvesting of apricot trees[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 10-17. (in Chinese with English abstract)

[11] 杜小強,李松濤,賀磊盈,等. 三維激振果品采收機構優化設計與試驗[J]. 農業工程學報,2017,33(16):48-55. Du Xiaoqiang, Li Songtao, He Leiying, et al. Optimal design and experiment on vibratory fruit harvesting mechanism with three-dimensional excitation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 48-55. (in Chinese with English abstract)

[12] Du Xiaoqiang, Chen Du, Zhang Qin, et al. Dynamic responses of sweet cherry trees under vibratory excitations[J]. Biosystems Engineering, 2012, 111(3): 305-314.

[13] Roger P, Gialis J M. Shakers with adjustable stiffness for harvesting machines and harvesting machines using such shakers: United States Patent, 7841160B2[P].2009-07-27.

[14] 杜小強,倪柯楠,武傳宇. 基于外旋輪線軌跡的果品振動采收機構研究[J]. 農業機械學報,2016,47(3):59-66. Du Xiaoqiang, Ni Ke’nan, Wu Chuanyu. Vibratory harvesting mechanism for tree fruit based on epitrochoid[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 59-66. (in Chinese with English abstract)

[15] 袁盼盼,張學軍,坎雜,等. 末端驅動式釀酒葡萄分離機構的設計及分析[J]. 農機化研究,2016,38(9):104-107. Yuan Panpan, Zhang Xuejun, Kan Za, et al. Design and analysis of end driven separation mechanism for wine grape[J]. Journal of Agricultural Mechanization Research, 2016, 38(9): 104-107. (in Chinese with English abstract)

[16] 鮑玉冬,楊闖,趙彥玲,等. 基于碰撞變形能的機械采收藍莓果實碰撞損傷評估[J]. 農業工程學報,2017,33(16):283-292. Bao Yudong, Yang Chuang, Zhao Yanling, et al. Collision injury assessment of mechanical harvesting blueberry fruit based on collision deformation energy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 283-292. (in Chinese with English abstract)

[17] Caprara C, Pezzi F. Measuring the stresses transmitted during mechanical grape harvesting[J]. Biosystems Engineering, 2011, 110(2): 97-105.

[18] Roger Pellenc, Jean-Marc Gialis. Berry harvesting machine, especially grape harvesting machine, equipped with a shaking system and mechatronic shaking control for this system: United States Patent: 2010/0024373 A1[P]. 2010-02-04.

[19] Baisan Ioan. Theoretical studies concerning elastic bars deformation from grapes harvesting machine[J]. Journal of Engineering Studies and Research, 2012, 18(2): 18-24

[20] 李成松,高振江,坎雜,等. 雙支撐釀酒葡萄果實振動分離裝置作業機理[J]. 農業工程學報,2015,31(4):26-32. Li Chengsong, Gao Zhenjiang, Kan Za, et al. Operation mechanism of double support vibration separation device for wine grape berry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 26-32. (in Chinese with English abstract)

[21] 李成松. 釀酒葡萄振動分離機理及裝置的研究[D]. 北京:中國農業大學,2015. Li Chengsong. Study on Vibration Separation Mechanism and Equipment of Wine Grape[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)

[22] 王業成,陳海濤,林青. 黑加侖采收裝置參數的優化[J]. 農業工程學報,2009,25(3):79-83. Wang Yecheng, Chen Haitao, Lin Qing. Optimization of parameters of blackcurrant harvesting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 79-83. (in Chinese with English abstract)

[23] 史亮,范久臣,喬晗. 基于ADAMS 的藍莓采摘機構設計與仿真[J]. 機械研究與應用,2015,28(4):158-160. Shi Liang, Fan Jiuchen, Qiao Han. Design and simulation of blueberry picking mechanism based on the ADAMS[J]. Mechanical Research & Application, 2015, 28(4): 158-160. (in Chinese with English abstract)

[24] 王海濱,郭艷玲,鮑玉冬,等. 振動式藍莓采摘的機理分析與仿真[J]. 農業工程學報,2013,29(12):40-46. Wang Haibin, Guo Yanling, Bao Yudong, et al. Mechanism analysis and simulation of blueberry harvest by vibration mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 40-46. (in Chinese with English abstract)

[25] 郭艷玲,鮑玉冬,何培莊,等. 手推式矮叢藍莓采摘機設計與試驗[J]. 農業工程學報,2012,28(7):40-45. Guo Yanling, Bao Yudong, He Peizhuang, et al. Design and experiment analysis of hand-push lowbush blueberry picking machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 40-45. (in Chinese with English abstract)

[26] 孫恒. 機械原理[M]. 北京:高等教育出版社,2005.

[27] 李成松,高振江,坎雜,等. 釀酒葡萄果-蒂振動分離試驗[J]. 農業工程學報,2015,31(9):39-44. Li Chengsong, Gao Zhenjiang, Kan Za, et al. Experiment of fruit-pedicle vibration separation of wine grape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 39-44. (in Chinese with English abstract)

[28] 蒲應俊. 面向柑橘機械化收獲的樹冠振動系統設計與性能試驗[D]. 楊凌:西北農林科技大學,2018. Pu Yingjun. Design and Performance Experiments of a Canopy Shaking System for Mechanical Harvesting Citrus[D]. Yangling: Northwest A & F university, 2018. (in Chinese with English abstract)

[29] 李建波. PA6/TPU/MMT復合材料葉片擠出機制備及其結構性能研究[D].華南理工大學,2014. Li Jianbo. Study on Structure and Performance of PA6/TPU/MMT Composites Processed by Vane Extruder[D]. Guangzhou: South China University of Technology, 2014. (in Chinese with English abstract)

[30] 葡萄栽培和葡萄酒釀制設備葡萄收獲機試驗方法:GBT25393-2010[S]. 北京:中國標準出版社,2011.

[31] 農業機械試驗條件測定方法的一般規定:GB/T5262-2008[S]. 北京:中國標準出版社,2009.

[32] 駱春曉. 蔬菜缽苗取苗機構的優化設計及試驗研究[D]. 杭州:浙江理工大學,2013. Luo Chunxiao. The Optimization Design and Test Study of Pick-up Mechanism for Vegetable Potted Seeding[D]. Hangzhou: Zhejiang Sci-Tech university, 2013. (in Chinese with English abstract)

[33] 邱軼兵. 試驗設計與數據處理[M]. 北京:中國科學技術大學出版社,2008.

[34] 葛宜元. 試驗設計方法與Design-Expert軟件應用[M]. 哈爾濱:哈爾濱工業大學出版社,2014.

[35] 張學軍,白圣賀,靳偉,等. 氣力式矮密栽培紅棗撿拾機研制[J]. 農業工程學報,2019,35(12):1-9. Zhang Xuejun, Bai Shenghe, Jin Wei, et al. Development of pneumatic collecting machine of red jujube in dwarfing and closer cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 1-9. (in Chinese with English abstract)

Development of crankshaft vibration threshing and harvesting equipment for wine grape

Yuan Panpan, Zhu Xingliang, You Jia, Han Changjie, Zhang Xuejun※, Guo Hui

(,,830052,)

At present, the wine grape harvesting method is still the traditional manual picking with scissor, because the grape fruit is randomly distributed among the branches, the manual harvesting is difficult and the operation efficiency is low. Therefore, mechanized harvesting of wine grape has become an urgent need. Vibration harvesting is one of the main methods of fruit harvesting at home and abroad. The mechanical harvesting of blueberries, blackcurrant, grape and other berries mainly vibrates the fruit tree by means of incentive source, so that the fruit and the connected branches produced a relative movement, the joints produced deformation and fracture, and the fruits falling. However, the domestic wine grape harvesting machines are immature, which has great damage to plant, low threshing efficiency, high fruit broken rate, low reliability and so on. In order to meet the requirements of wine grape mechanization harvest, a crankshaft vibration threshing device was put forward, the device was mainly composed of crankshaft, clamping vibration mechanism, elastic vibration rod, synchronous belt driving system, frame and so on, the driving crankshaft and the driving crankshaft were connected by a synchronous belt, and the elastic vibration monomers composed of parallel crank and rocker mechanism on both sides were in the same phase and moved synchronously in the same direction. The wine grape plant was held by the clamping vibration mechanism on both sides, and was driven to perform a regular variable motion, so that the wine grape grains fall off the grape stem. The angular displacement and angular velocity of the working parts were obtained based on the kinematics analysis of the crank and rocker mechanism. The main factors affecting the vibration operation effect were the length and angular velocity of the crank. The elastic vibrating rod were divided into straight segment and arc segment. The material of PA6 nylon and PU polyurethane with high mechanical strength, flexibility and resilience were selected as the material of vibrating rods. Based on the elastic deformation theory of the elastic vibrating rod, the maximum deformation of the elastic vibration rod was calculated, the influence of the elastic deformation of the elastic vibration rod on the amplitude was analyzed, and the amplitude of the elastic vibration rod in the vibration state was obtained. Furthermore, the clamping spacing, rotating speed and eccentricity were selected as the influencing factors, and wine grape threshing rate and broken rate were selected as the response value for three factors and three levels two Sub-regression orthogonal test design, and the regression equations to describe the relationships between the factors and assessment indexes were established by using the regression analysis and response surface analysis with the software Design-Expert 8.0.6. The optimum combination of the selected parameters was obtained and verified, and the experimental verification of the mathematical model was also conducted. The test results showed that the factors had great effects on the performance of wine grape vibration threshing device. The significant effects of rotating speed, eccentricity and clamping spacing on threshing rate were in a decreasing order. The significant effects of rotating speed, clamping spacing and eccentricity on broken rate were in a decreasing order. Verification test results indicated thtat when the clamping spacing was 193 mm, the rotating speed was 720 r/min and the eccentricity was 38.8 mm, wine grape threshing rate of the device was 93.06% and broken rate was 1.54%, which was basically consistent with the prediction results of model optimization, and the structural design was reasonable. This study provides a reference for the mechanization harvesting of wine grape and vibration harvesting of other fruits.

agricultural machinery; harvesting; vibration; wine grape; crankshaft

袁盼盼,朱興亮,尤佳,等.釀酒葡萄曲軸式振動脫粒收獲裝置研制[J]. 農業工程學報,2020,36(9):67-74.doi:10.11975/j.issn.1002-6819.2020.09.008 http://www.tcsae.org

Yuan Panpan, Zhu Xingliang, You Jia, et al. Development of crankshaft vibration threshing and harvesting equipment for wine grape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 67-74. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.09.008 http://www.tcsae.org

2019-12-05

2020-03-23

國家自然科學基金(51605411);國家自然科學基金(51805461);新疆高校科研計劃項目(XJEDU2017S018)

袁盼盼,講師,主要從事農業機械設計與智能農業裝備的研究。Email:ypp_xnd@163.com

張學軍,博士,教授,博士生導師,主要從事農業機械設計與智能農業裝備的研究。Email:tuec@163.com

10.11975/j.issn.1002-6819.2020.09.008

S225.99

A

1002-6819(2020)-09-0067-08

猜你喜歡
振動
振動的思考
科學大眾(2023年17期)2023-10-26 07:39:14
某調相機振動異常診斷分析與處理
大電機技術(2022年5期)2022-11-17 08:12:48
振動與頻率
天天愛科學(2020年6期)2020-09-10 07:22:44
This “Singing Highway”plays music
具非線性中立項的廣義Emden-Fowler微分方程的振動性
中立型Emden-Fowler微分方程的振動性
基于ANSYS的高速艇艉軸架軸系振動響應分析
船海工程(2015年4期)2016-01-05 15:53:26
主回路泵致聲振動分析
UF6振動激發態分子的振動-振動馳豫
計算物理(2014年2期)2014-03-11 17:01:44
帶有強迫項的高階差分方程解的振動性
主站蜘蛛池模板: 狠狠干综合| 国产香蕉一区二区在线网站| 狠狠色综合久久狠狠色综合| 欧美激情视频一区| 精品一区二区三区自慰喷水| 久久女人网| 91娇喘视频| 国产熟睡乱子伦视频网站| 九九热在线视频| 国产免费福利网站| 午夜福利在线观看成人| 国产精品成人免费综合| 丁香六月激情婷婷| 亚洲无码A视频在线| 韩日无码在线不卡| 久久久亚洲国产美女国产盗摄| 51国产偷自视频区视频手机观看| 18禁高潮出水呻吟娇喘蜜芽| 国产高清国内精品福利| 亚洲Av激情网五月天| 国产欧美日韩综合一区在线播放| 内射人妻无码色AV天堂| 114级毛片免费观看| 日本人真淫视频一区二区三区| 欧美视频二区| 国产丝袜无码精品| 亚洲欧美综合在线观看| 无码内射中文字幕岛国片 | 性69交片免费看| 综合色亚洲| 思思热在线视频精品| 亚洲男女天堂| 青青热久麻豆精品视频在线观看| 亚洲精品福利网站| AV色爱天堂网| 91视频首页| 日韩欧美成人高清在线观看| 国产精品黑色丝袜的老师| 日本欧美精品| 1级黄色毛片| 欧美自慰一级看片免费| 狠狠色综合久久狠狠色综合| 一级毛片基地| 婷婷开心中文字幕| 亚洲91精品视频| 久久精品亚洲中文字幕乱码| 亚洲区第一页| 丁香综合在线| 国产第一页屁屁影院| 日本免费一区视频| 天天躁夜夜躁狠狠躁躁88| 97国产在线观看| 午夜a视频| 国产成人艳妇AA视频在线| 无码一区二区三区视频在线播放| 亚洲男人的天堂视频| 三级国产在线观看| 日韩大片免费观看视频播放| 激情爆乳一区二区| 欧美国产日本高清不卡| 久久77777| 午夜国产在线观看| 国产在线欧美| 欧美在线综合视频| 亚洲男人的天堂久久香蕉| 青青青国产免费线在| 欧美日韩国产成人高清视频| 国产精品视屏| 91精品aⅴ无码中文字字幕蜜桃| 日韩高清一区 | 欧美激情,国产精品| 亚洲午夜国产片在线观看| 97久久精品人人| 毛片在线看网站| 亚洲区视频在线观看| 亚洲小视频网站| 欧美成人免费午夜全| 超碰91免费人妻| 91区国产福利在线观看午夜 | 日韩高清在线观看不卡一区二区| 人妻精品久久无码区| 亚洲第一天堂无码专区|