崔俊濤 宋寧 謝俊霞
[摘要] 目的 研究鐵負(fù)載試劑枸櫞酸鐵(FAC)和鐵螯合試劑去鐵胺(DFO)對(duì)脂多糖(LPS)誘導(dǎo)的BV2小膠質(zhì)細(xì)胞中脂質(zhì)運(yùn)載蛋白2(Lcn2)表達(dá)的影響。方法 為觀(guān)察鐵負(fù)載對(duì)Lcn2的影響,實(shí)驗(yàn)分為對(duì)照組、FAC組、LPS組、FAC+LPS組,對(duì)照組給予細(xì)胞培養(yǎng)液,F(xiàn)AC組與LPS組分別給予FAC或LPS處理24 h,F(xiàn)AC+LPS組給予FAC預(yù)處理4 h后應(yīng)用LPS處理24 h。為觀(guān)察鐵螯合對(duì)Lcn2的影響,實(shí)驗(yàn)分為對(duì)照組、DFO組、LPS組、DFO+LPS組,對(duì)照組給予細(xì)胞培養(yǎng)液,DFO組與LPS組分別給予DFO或LPS處理24 h,DFO+LPS組給予DFO預(yù)處理4 h后應(yīng)用LPS處理24 h。免疫印跡法檢測(cè)各組Lcn2蛋白表達(dá)。結(jié)果 與對(duì)照組比較,F(xiàn)AC不影響Lcn2蛋白表達(dá)水平(F=3.394,P>0.05),F(xiàn)AC預(yù)處理對(duì)LPS誘導(dǎo)的Lcn2蛋白表達(dá)上調(diào)沒(méi)有影響(F=4.182,P>0.05);DFO不影響Lcn2蛋白表達(dá)水平(F=0.575,P>0.05),DFO預(yù)處理對(duì)LPS誘導(dǎo)的Lcn2蛋白的表達(dá)也沒(méi)有影響(F=0.454,P>0.05)。結(jié)論 細(xì)胞內(nèi)鐵狀態(tài)改變對(duì)LPS誘導(dǎo)的Lcn2蛋白表達(dá)上調(diào)無(wú)明顯影響。
[關(guān)鍵詞] 小神經(jīng)膠質(zhì)細(xì)胞;脂籠蛋白質(zhì)2;神經(jīng)原性感染;鐵
[中圖分類(lèi)號(hào)] R338 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] 2096-5532(2020)02-0133-04
doi:10.11712/jms.2096-5532.2020.56.095 [開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200519.1434.008.html;2020-05-19 17:26
[ABSTRACT] Objective To investigate the effects of the iron reagent ferric ammonium citrate (FAC) and the iron chelator deferoxamine (DFO) on the expression of lipocalin-2 (Lcn2) in BV2 microglial cells treated with lipopolysaccharide (LPS). Methods For observing the effect of iron loading on Lcn2 expression, BV2 cells were divided into control group, FAC group, LPS group, and FAC+LPS group to be treated with cell culture medium, FAC for 24 h, LPS for 24 h, and FAC for 4 h followed by LPS treatment for 24 h, respectively. For observing the effect of iron chelation on Lcn2 expression, BV2 cells were divided into control group, DFO group, LPS group, and DFO+LPS group to be treated with cell culture medium, DFO for 24 h, LPS for 24 h, and DFO for 4 h followed by LPS treatment for 24 h, respectively. The Lcn2 protein level was determined by immunoblotting. ?Results Compared with the control group, FAC had no significant effect on Lcn2 protein expression (F=3.394,P>0.05); LPS upregulated its expression, and FAC pre-treatment failed to significantly alter the upregulation (F=4.182,P>0.05). DFO produced no significant change in Lcn2 protein expression (F=0.575,P>0.05), nor in LPS-induced Lcn2 upregulation (F=0.454,P>0.05). ?Conclusion Alteration of intracellular iron status has no effect on LPS-induced Lcn2 upregulation.
[KEY WORDS] microglia; lipocalin 2; neurogenic inflammation; iron
炎癥與中樞神經(jīng)系統(tǒng)損傷和神經(jīng)系統(tǒng)疾病有關(guān),包括腦卒中、阿爾茨海默病、帕金森病和多發(fā)性硬化癥等[1-4]。脂質(zhì)運(yùn)載蛋白-2(Lcn2)是一種分子量為25 000的糖蛋白,是脂質(zhì)運(yùn)載蛋白家族的2號(hào)成員。Lcn2在細(xì)胞死亡、存活、遷移、入侵和鐵的傳遞等多種細(xì)胞進(jìn)程中發(fā)揮不同的調(diào)節(jié)作用[5-6]。當(dāng)機(jī)體處于炎癥狀態(tài)時(shí),Lcn2被高度上調(diào),在調(diào)節(jié)肝臟和大腦巨噬細(xì)胞活化中發(fā)揮作用[7-8]。已有研究結(jié)果顯示,中樞神經(jīng)系統(tǒng)中的神經(jīng)元、膠質(zhì)細(xì)胞均是Lcn2的細(xì)胞來(lái)源[9-10]。尤其是在膠質(zhì)細(xì)胞中,Lcn2在腦出血、脊髓損傷、慢性炎癥性疼痛和缺血性腦卒中表達(dá)上調(diào),參與疾病發(fā)生發(fā)展[11-13]。鐵是大腦中最豐富的氧化還原活性金屬,鐵代謝失調(diào)與多種神經(jīng)退行性疾病的發(fā)病有關(guān)[14]。在帕金森病(PD)中,鐵沉積和炎癥反應(yīng)均參與多巴胺能神經(jīng)元的選擇性損傷。然而,細(xì)胞內(nèi)鐵負(fù)載或鐵螯合對(duì)炎癥狀態(tài)下Lcn2蛋白表達(dá)的影響未見(jiàn)報(bào)道。本研究用脂多糖(LPS)處理BV2小膠質(zhì)細(xì)胞,觀(guān)察鐵負(fù)載以及鐵螯合狀態(tài)對(duì)LPS誘導(dǎo)的BV2小膠質(zhì)細(xì)胞Lcn2蛋白表達(dá)的影響。
1 材料和方法
1.1 實(shí)驗(yàn)材料
BV2小膠質(zhì)細(xì)胞購(gòu)于中國(guó)科學(xué)院上海細(xì)胞庫(kù);DMEM高糖培養(yǎng)液、胎牛血清(FBS)均購(gòu)于以色列Biological Industries(BI)公司;枸櫞酸鐵胺(FAC)、去鐵胺(DFO)、LPS購(gòu)于美國(guó)Sigma公司;β-actin抗體購(gòu)于北京博奧森公司;Lcn2抗體購(gòu)于美國(guó)R&D SYSTEM公司;HRP-IGg標(biāo)記的二抗購(gòu)于英國(guó)abcam公司;PVDF膜、ECL發(fā)光液均購(gòu)于美國(guó)Millipore公司;其他試劑均為國(guó)產(chǎn)分析純。
1.2 實(shí)驗(yàn)分組及處理
將細(xì)胞以2×104/cm2密度接種于6孔板,每孔加入2 mL細(xì)胞混懸液培養(yǎng)。以60%~70%細(xì)胞融合用于實(shí)驗(yàn)。為觀(guān)察鐵負(fù)載對(duì)Lcn2蛋白表達(dá)的影響,將細(xì)胞隨機(jī)分為對(duì)照組、FAC組、LPS組、FAC+LPS組,F(xiàn)AC組、LPS組先加入細(xì)胞培養(yǎng)液,4 h后更換為100 μmol/L FAC或1 mg/L LPS處理24 h;FAC+LPS組先加100 μmol/L FAC預(yù)處理,4 h后更換為1 mg/L LPS處理24 h。為觀(guān)察鐵螯合對(duì)Lcn2的影響,將細(xì)胞隨機(jī)分為對(duì)照組、DFO組、LPS組、DFO+LPS組,DFO組、LPS組先加入細(xì)胞培養(yǎng)液,4 h以后更換為100 μmol/L DFO或1 mg/L LPS繼續(xù)處理24 h;DFO+LPS組先加入100 μmol/L DFO預(yù)處理,4 h后更換為1 mg/L LPS處理24 h。所有對(duì)照組均應(yīng)用無(wú)血清細(xì)胞培養(yǎng)液處理。
1.3 蛋白質(zhì)免疫印跡實(shí)驗(yàn)檢測(cè)Lcn2蛋白表達(dá)
藥物處理結(jié)束后,收集6孔板內(nèi)細(xì)胞蛋白,使用BCA蛋白定量試劑盒檢測(cè)蛋白濃度,按照每孔總蛋白20 μg計(jì)算上樣量,應(yīng)用SDS-PAGE凝膠電泳(80 V、40 min,120 V、90 min),然后使用電轉(zhuǎn)儀(300 mA、90 min)濕轉(zhuǎn)到0.22 μm 的PVDF膜上,加入50 g/L脫脂奶粉于室溫?fù)u床孵育2 h,加入Lcn2(1∶1 000)和β-actin(1∶5 000)一抗于4 ℃搖床孵育過(guò)夜,24 h后分別加入山羊抗兔(1∶5 000)、兔抗山羊(1∶5 000)的HRP-IgG二抗室溫孵育1 h,然后用TBST溶液洗3次,每次10 min,ECL發(fā)光液顯影后用Image J軟件分析Lcn2 蛋白表達(dá)。
1.4 統(tǒng)計(jì)學(xué)處理
應(yīng)用SPSS 22.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,計(jì)量資料結(jié)果以±s表示,多因素影響的組間比較采用析因設(shè)計(jì)的方差分析。以P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) ?果
2.1 FAC對(duì)LPS誘導(dǎo)的Lcn2蛋白表達(dá)的影響
對(duì)照組、FAC組、LPS組、FAC+LPS組Lcn2蛋白表達(dá)水平分別為0.747±0.099、0.756±0.062、1.095±0.095和0.937±0.102(n=6)。析因設(shè)計(jì)方差分析顯示,F(xiàn)AC和LPS兩種因素不存在交互作用(F=4.182,P>0.05),因此分析FAC、LPS單獨(dú)對(duì)Lcn2蛋白表達(dá)的影響。FAC處理后,Lcn2蛋白表達(dá)不變(F=3.394,P>0.05);LPS處理后,Lcn2蛋白的表達(dá)則明顯上調(diào),差異有統(tǒng)計(jì)學(xué)意義(F=42.204,P<0.05)。
2.2 DFO對(duì)LPS誘導(dǎo)的Lcn2蛋白表達(dá)的影響
對(duì)照組、DFO組、LPS組、DFO+LPS組Lcn2蛋白表達(dá)水平分別為0.725±0.169、0.739±0.272、1.207±0.232和1.068±0.223(n=6)。析因設(shè)計(jì)方差分析顯示,DFO和LPS兩種因素不存在交互作用(F=0.454,P>0.05),因此分析FAC、LPS單獨(dú)對(duì)Lcn2蛋白表達(dá)的影響。DFO處理后,Lcn2蛋白表達(dá)不變(F=0.575,P>0.05);LPS處理后,Lcn2蛋白的表達(dá)則明顯上調(diào),差異有統(tǒng)計(jì)學(xué)意義(F=16.579,P<0.05)。
3 討 ?論
Lcn2為中樞神經(jīng)系統(tǒng)中的炎癥蛋白和鐵調(diào)節(jié)因子,參與神經(jīng)退行性疾病的發(fā)生發(fā)展。在生理?xiàng)l件下,正常大腦Lcn2蛋白表達(dá)非常低。然而,損傷或炎癥可顯著上調(diào)Lcn2表達(dá),并可能對(duì)鐵的穩(wěn)態(tài)產(chǎn)生調(diào)節(jié)作用[15-16]。Lcn2有兩種細(xì)胞受體:第1種是megalin,它屬于一種多配體內(nèi)吞受體,主要由腎臟上皮細(xì)胞表達(dá)以促進(jìn)腎臟Lcn2的重吸收;第2種是24p3R,屬于有機(jī)陽(yáng)離子轉(zhuǎn)運(yùn)家族,在許多組織中表達(dá),并以特別高的水平存在于腎上皮細(xì)胞、巨噬細(xì)胞、中性粒細(xì)胞、小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和神經(jīng)元中[17-18]。在LPS誘導(dǎo)的炎癥模型中,LPS誘導(dǎo)中樞神經(jīng)系統(tǒng)分泌的Lcn2作為激活星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的輔助信號(hào),促進(jìn)腦卒中和腦損傷后的神經(jīng)血管修復(fù),并對(duì)膿毒癥所致的腦損傷和行為改變發(fā)揮抗炎作用[19-20]。還有研究顯示,Lcn2能誘導(dǎo)促炎細(xì)胞因子以及誘導(dǎo)型一氧化氮合酶分泌,這可能會(huì)造成繼發(fā)性損傷并阻礙其恢復(fù)[11]。對(duì)PD動(dòng)物模型研究顯示,黑質(zhì)中上調(diào)的Lcn2能促進(jìn)神經(jīng)毒性和神經(jīng)炎癥,并導(dǎo)致黑質(zhì)紋狀體多巴胺能投射的損傷和小鼠運(yùn)動(dòng)行為異常[21]。本文研究結(jié)果也證實(shí),促炎因素LPS在BV2小膠質(zhì)細(xì)胞中能誘導(dǎo)Lcn2表達(dá)上調(diào)。
鐵是大腦中最豐富的氧化還原活性金屬,是各種生理過(guò)程的必需微量元素,包括氧轉(zhuǎn)運(yùn)(通過(guò)血紅蛋白)、氧化還原反應(yīng)、神經(jīng)遞質(zhì)合成、髓鞘產(chǎn)生和許多線(xiàn)粒體功能。但是,由于鐵易于釋放電子并產(chǎn)生活性氧(ROS),過(guò)多的鐵蓄積會(huì)導(dǎo)致氧化應(yīng)激和鐵死亡,過(guò)量的鐵還能導(dǎo)致線(xiàn)粒體功能障礙,激活星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞,這是PD病人多巴胺能神經(jīng)元易感性的重要原因之一[22]。大量研究顯示,PD病人存在鐵代謝異常[23-24]。而鐵螯合療法通過(guò)降低不穩(wěn)定的鐵的水平能預(yù)防和治療PD小鼠模型[25]。本實(shí)驗(yàn)室前期研究結(jié)果表明,中腦神經(jīng)元應(yīng)用FAC處理4 h或以上時(shí)間,細(xì)胞內(nèi)鐵含量明顯增加,表現(xiàn)為細(xì)胞內(nèi)鐵蛋白水平明顯上調(diào);應(yīng)用DFO處理4 h或以上時(shí)間,細(xì)胞內(nèi)鐵含量明顯降低,表現(xiàn)為鐵蛋白水平明顯下調(diào)[26]。有報(bào)道指出:當(dāng)使用外源性鐵處理MPTP小鼠時(shí),Lcn2誘導(dǎo)的體內(nèi)神經(jīng)毒性增加;但當(dāng)使用DFO處理時(shí),Lcn2誘導(dǎo)的神經(jīng)毒性降低[21]。因此我們推測(cè),抑制Lcn2的表達(dá)或活性可能有助于保護(hù)成人大腦中的SN-Str多巴胺能系統(tǒng)。本文研究結(jié)果還顯示,無(wú)論是FAC還是DFO處理對(duì)Lcn2蛋白的表達(dá)均無(wú)影響,說(shuō)明細(xì)胞內(nèi)鐵含量不影響Lcn2表達(dá)。此外,本文結(jié)果還顯示,無(wú)論是鐵負(fù)載還是鐵螯合,對(duì)LPS誘導(dǎo)的Lcn2蛋白表達(dá)上調(diào)均無(wú)影響。Lcn2基因表達(dá)主要控制在轉(zhuǎn)錄水平。核因子-κB(NF-κB)是Lcn2基因轉(zhuǎn)錄的最重要調(diào)節(jié)因子。由于腦損傷不可避免地伴隨著炎癥反應(yīng),NF-κB作為炎癥信號(hào)通路的主要調(diào)節(jié)因子,發(fā)揮了上調(diào)Lcn2基因表達(dá)的作用。由于神經(jīng)元NF-κB活性最小,因此NF-κB依賴(lài)的Lcn2基因在中樞神經(jīng)系統(tǒng)膠質(zhì)細(xì)胞中的表達(dá)占主導(dǎo)地位[27]。NF-κB通過(guò)與Lcn2基因啟動(dòng)子區(qū)結(jié)合而激活Lcn2的表達(dá),因此抑制NF-κB通路可明顯降低Lcn2的表達(dá)[27-29]。推測(cè)雖然LPS本身可通過(guò)NF-κB途徑激活Lcn2表達(dá),但由于小膠質(zhì)細(xì)胞對(duì)鐵的緩沖能力較強(qiáng),因此不會(huì)增加LPS對(duì)Lcn2的調(diào)控作用。但在長(zhǎng)期處于高鐵水平的在體狀態(tài)下,鐵是否會(huì)改變炎癥誘導(dǎo)的Lcn2表達(dá)上調(diào)需要進(jìn)一步研究。
綜上所述,在BV2小膠質(zhì)細(xì)胞中,無(wú)論是鐵負(fù)載、鐵螯合本身還是預(yù)處理對(duì)促炎因素LPS誘導(dǎo)的Lcn2蛋白表達(dá)均無(wú)明顯影響。本實(shí)驗(yàn)為L(zhǎng)cn2在細(xì)胞內(nèi)鐵狀態(tài)和炎癥狀態(tài)改變時(shí)的表達(dá)調(diào)控提供了一定的實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1] ANRATHER J, IADECOLA C. Inflammation and stroke: an overview[J]. Neurotherapeutics: the Journal of the American Society for Experimental Neurotherapeutics, 2016,13(4):661-670.
[2] NEWCOMBE E A, CAMATS-PERNA J, MALLONE L S, et al. Inflammation: the link between comorbidities, genetics, and Alzheimers disease[J]. Journal of Neuroinflammation, 2018,15(1):276.
[3] TIWARI P C, PAL R. The potential role of neuroinflammation and transcription factors in Parkinson disease[J]. Dialogues in Clinical Neuroscience, 2017,19(1):71-80.
[4] PATEJDL R, PENNER I K, NOACK T K, et al. Multiple sclerosis and fatigue: a review on the contribution of inflammation and immune-mediated neurodegeneration[J]. Autoimmunity Reviews, 2016,15(3):210-220.
[5] KEHRER J P. Lipocalin-2: pro-or anti-apoptotic[J]? Cell Biology and Toxicology, 2010,26(2):83-89.
[6] DEVIREDDY L R, GAZIN C, ZHU X C, et al. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and Iron uptake[J]. Cell, 2005,123(7):1293-1305.
[7] BORKHAM-KAMPHORST E, VAN DE LEUR E, ZIMMERMANN H W, et al. Protective effects of lipocalin-2 (LCN2) in acute liver injury suggest a novel function in liver homeostasis[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2013,1832(5):660-673.
[8] WEI Ni, ZHENG Mingzhe, XI Guohua, et al. Role of lipocalin-2 in brain injury after intracerebral hemorrhage[J]. Journal of Cerebral Blood Flow and Metabolism, 2015,35(9):1454-1461.
[9] JEON S, JHA M K, OCK J, et al. Role of lipocalin-2-Chemokine axis in the development of neuropathic pain following peripheral nerve injury[J]. Journal of Biological Chemistry, 2013,288(33):24116-24127.
[10] MUCHA M, SKRZYPIEC A E, SCHIAVON E, et al. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(45):18436-18441.
[11] RATHORE K I, BERARD J L, REDENSEK A, et al. Lipocalin 2 plays an immunomodulatory role and has detrimental effects after spinal cord injury[J]. The Journal of Neuroscien-ce: the Official Journal of the Society for Neuroscience, 2011,31(38):13412-13419.
[12] JHA M K, SANGMIN J, MYUNGWON J, et al. The pivotal role played by lipocalin-2 in chronic inflammatory pain[J]. Experimental Neurology, 2014,254:41-53.
[13] MYUNGWON J, JONG-HEON K, JANG E, et al. Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice[J]. Journal of Cerebral Blood Flow and Metabolism, 2014,34(8):1306-1314.
[14] WARD R, ZUCCA F A, DUYN J H, et al. The role of Iron in brain ageing and neurodegenerative disorders[J]. Lancet Neurology, 2014,13(10):1045-1060.
[15] CHIA W J, DAWE G S, ONG W Y. Expression and localization of the iron-siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity[J]. Neurochemistry International, 2011,59(5):591-599.
[16] IP J P, NOCON A L, HOFER M J, et al. Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration[J]. Journal of Neuroinflammation, 2011,8:124.
[17] JHA M K, SHINRYE L, DONG H P, et al. Diverse functio-nal roles of lipocalin-2 in the central nervous system[J]. Neuroscience & Biobehavioral Reviews, 2015,49:135-156.
[18] SCHIEFNER A, RODEWALD F, NEUMAIER I, et al. The dimeric crystal structure of the human fertility lipocalin glycodelin reveals a protein scaffold for the presentation of complex glycans[J]. Biochemical Journal, 2015,466(1):95-104.
[19] WU L M, YANG D, LOK J, et al. Lipocalin-2 enhances angiogenesis in rat brain endothelial cells via reactive oxygen species and iron-dependent mechanisms[J]. Journal of Neurochemistry, 2015,132(6):622-628.
[20] XING Changhong, WANG Xiaoshu, CHENG Chongjie, et al. Neuronal production of lipocalin-2 as a Help-Me signal for glial activation[J]. Stroke, 2014,45(7):2085-2092.
[21] KIM B W, JEONG K H, KIM J H, et al. Pathogenic upregulation of glial lipocalin-2 in the parkinsonian dopaminergic system[J]. Journal of Neuroscience, 2016,36(20):5608-5622.
[22] NATALIA P M, URRUTIA P J, LOURIDO F, et al. Mitochondrial Iron homeostasis and its dysfunctions in neurodege-nerative disorders[J]. Mitochondrion, 2015,21:92-105.
[23] DEXTER D T, WELLS F R, AGID F, et al. Increased nigral iron content in postmortem parkinsonian brain[J]. The Lancet,1987,330(8569):1219-1220.
[24] AYTON S, LEI P, HARE D J, et al. Parkinsons disease Iron deposition caused by nitric Oxide-induced loss of of β-amyloid precursor protein[J]. Journal of Neuroscience, 2015,35(8):3591-3597.
[25] KAUR D, YANTIRI F, RAJAGOPALAN S, et al. Genetic or pharmacological Iron chelation prevents MPTP-induced neurotoxicity in vivo:a novel therapy for Parkinsons disease[J]. Neuron, 2003,37(6):899-909.
[26] WANG Jun, BI Mingxia, LIU Huiying, et al. The protective effect of lactoferrin on ventral mesencephalon neurons against MPP+ is not connected with its Iron binding ability[J]. Scientific Reports, 2015,5(1):10729.
[27] CUI J, GUO X, LI Q, et al. Hepcidin-to-ferritin ratio is decreased in astrocyte tracellular Alpha-synuclein and Iron exposure[J]. Front Cell Neurosci, 2020,14:47.
[28] LI L X, FREI B. Iron chelation inhibits NF-κB mediated adhesion molecule expression by inhibiting p22 phox protein expression and NADPH oxidase activity[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2006,26(12):2638-2643.
[29] RYU-SUKE F, TANAKA K, MORIMATSU M, et al. Spermatogonial cell-mediated activation of an IκBζ-independent nuclear factor-κB pathway in sertoli cells induces transcription of the lipocalin-2 gene[J]. Molecular Endocrinology, 2006,20(4):904-915.
(本文編輯 黃建鄉(xiāng))