999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Nonlinear Degenerate Anisotropic Elliptic Equations with Variable Exponents and L1 Data

2020-05-26 01:34:08KHELIFIHichemandMOKHTARIFares
關(guān)鍵詞:檢察機關(guān)功能

KHELIFI Hichemand MOKHTARI Fares

1Department of Mathematics and Informatics,University of Algiers,Algiers,Algeria.2 Street Didouche Mourad Algiers.

2Applied Mathematics Laboratory,Badji Mokhtar University-Annaba B.P.12,Algeria.

Abstract.This paper is devoted to the study of a nonlinear anisotropic elliptic equation with degenerate coercivity,lower order term and L1 datum in appropriate anisotropic variable exponents Sobolev spaces. We obtain the existence of distributional solutions.

Key Words:Sobolev spaces with variable exponents;anisotropic equations;elliptic equations;L1 data.

1 Introduction

In this paper we prove the existence of solutions to the nonlinear anisotropic degenerate elliptic equations with variable exponents,of the type

where Ω?RN(N ≥3)is a bounded domain with smooth boundary?Ω and the righthan d sidefinL1(Ω),We suppose thatai:Ω×R×RN →R,i=1,...,Nare Carathéodory functions such that for almost everyxin Ω and for every(σ,ξ)∈R×RNthe following assumptions are satisfied for alli=1,...,N

whereβ >0,α >0,and(1,+∞)are continuous functions andis such that

We introduce the function

The nonlinear termg:Ω×R×RN →R is a Carathéodory function such that for a.e.x∈Ω and all(σ,ξ)∈R×RN,we have

whereb:R+→R+is a continuous and increasing function with finite values,c ∈L1(Ω)and?ρ>0 such that:

In[1],the authors obtain the existence of renormalized and entropy solutions for the nonlinear elliptic equation with degenerate coercivity of the type

Forg ≡0 andf ∈Lm(·)(Ω),withm(x)≥m-≥1,equation of the from(1.1)have been widely studied in[2],where the authors obtain some existence and regularity results for the solutions.Ifg≡|u|s(x)-1u,

andf ∈Lm(Ω),withm ≥1,existence and regularity results of distributional solutions have been proved in[3].

As far as the existence results for our problem(1.1)there are three difficulties associated with this kind of problems.Firstly,from hypothesis(1.2),the operator

the operatorAis not coercive.Because,iftends to infinity then

So,the classical methods used in order to prove the existence of a solution for(1.1)cannot be applied. The second difficulty is represented in the fact thatg(x,u,?u)can not be defined frominto its dual,but fromintoL1(Ω). The third difficulty appears when we give a variable exponential growth condition(1.2)forai. The operatorApossesses more complicated nonlinearities;thus,some techniques used in the constant exponent case cannot be carried out for the variable exponent case.For more recent results for elliptic and parabolic case,see the papers[4–8]and references therein.

The paper is organized as follows.In Section 2,we present results on the Lebesgue and Sobolev spaces with variable exponents both for the isotropic and the anisotropic cases,and state the main results.The proof of the main result will be presented in Section 3.We start by giving an existence result for an approximate problem associated with(1.1).The second part of Section 3 is devoted to proving the main existence result by using a priori estimates and then passing to the limit in the approximate problem.

2 Preliminaries and statement of the main result

2.1 Preliminaries

In this sub-section,we recall some facts on anisotropic spaces with variable exponents and we give some of their properties.For further details on the Lebesgue-Sobolev spaces with variable exponents,we refer to[9–11]and references therein.Let Ω be a bounded open subset of RN(N ≥2),we denote

and

LetWe define the space

then the expression

holds true.We define the variable exponents Sobolev spaces by

which is a Banach space equipped with the following norm

Next,we defineas the closure ofinW1,p(·)(Ω). Finally,we introduce a natural generalization of the variable exponents Sobolev spacesthat will enable us to study with sufficient accuracy problem(1.1).Letwhereare continuous functions.We introduce the anisotropic variable exponents Sobolev spaces

with respect to the norm

We introduce the following notationas

Then

where p+is defined as in(2.1)(1.5),and C is a positive constant independent of u.Thusis an equivalent norm on

Proof.Put

Thanks to(Proposition 2.1 in[3]),we have

Using the convexity of the applicationwe obtain

We will use through the paper,the truncation functionTkat heightk(k >0),that isTk(s):=max{-k,min{k,s}}.

Lemma 2.1([12]).Let g∈Lp(·)(Ω)and gn∈Lp(·)(Ω)with‖gn‖p(·)≤C.If gn(x)→g(x)almost everywhere inΩ,then gn ?g in Lp(·)(Ω).

2.2 Statement of main result

We will extend the notion of distributional solution,see[12,13],to problem(1.1)as follows:

Definition 2.1.Let f ∈L1(Ω)a measurable function u is said to be solution in the sense of distributions to the problem(1.1),if

Our main result is as follows

Theorem 2.2.Let f ∈L1(Ω).Assume(1.2)-(1.8)and(2.4).Then problem(1.1)has at least one solution in the sense of distributions.

3 Proof of the main result

3.1 Approximate solution

Let(fn)nbe a sequence inL∞(Ω)such thatfn →finL1(Ω)with|fn|≤|f|(for examplefn=Tn(f))and we consider the approximate problem

Lemma 3.1.Let f ∈L1(Ω).Assume(1.2)-(1.8)and(2.4).Then,problem(3.1)has at least one solution in the sense of distributions.

Consider the following problem

Lemma 3.2.Let f ∈L1(Ω).Assume that(1.2)-(1.8)and(2.4)hold,then the problem(3.2)has at least one solution unk in the sense of distributions.

Then by using(3.3)and(3.4)we conclude thatis bounded.For the coercivity,by using(1.4),(1.7),and(2.5),we get

then

It remains to show thatis pseudo-monotone.Let(um)mbe a sequence insuch that

We will prove that

Using(3.5),(3.8),(3.9),and thatum →uinwe have

therefore,thanks to(3.5),(3.9),and(3.10),we write

On the other hand,by(1.3),we obtain

在刑事訴訟過程中,檢察機關(guān)天生擁有比被告人更為強大的公訴權(quán),處于絕對的優(yōu)勢地位。如果檢察機關(guān)的這種天生的權(quán)力不受到外部程序控制的話很容易被濫用。庭前會議制度擁有對公訴權(quán)進行司法審查與控制的功能,能夠有效地防止檢察機關(guān)濫用公訴權(quán),可以把一些不符合起訴條件的案件排除在審判程序之外,對進入審判程序的案件起到一個篩選和過濾的功能。

In view of Lebesgue dominated convergence theorem and(3.6),we have

By(3.7)and(3.5),we get

this implies,thanks to(3.11),that

Proof.The proof uses the same technique as in(Lemma 4.1 of[3])and is omited here.

Proof.It is similar to the proof of Theorem 4.2 of[13].

3.2 A priori estimates

Proof.Leth>0.TakingTh(un)as a test function in(3.1),then

By dropping the nonnegative term in(3.13),(1.7),and(1.4)we get

then

Consequently,

TakingTh(un)as a test function in(3.1),and dropping the first nonnegative term in the left-hand side,we obtain

By combining(1.8),(3.14)and(3.15),forh=ρ,we deduce that

This ends the proof of Lemma 3.6.

3.3 The strong convergence of the truncation

Proof.Leth ≥j >0 andwn=T2j(un-Th(un)+Tj(un)-Tj(u)).We setφj(s)=s·exp(δs2),whereδ=(l(j)/(2α))2,l(j)=b(j)(1+|j|)γ++,and

LetM=4j+h.SinceDiwn=0 on{|un|>M}andφj(wn)has the same sign asunon the set{|un|>j}(indeed,ifun >jthenun-Th(un)≥0 andTj(un)-Tj(u)≥0,it follows thatwn ≥0).Similarly,we show thatwn ≤0 on the set{un <-j}.

By takingφj(wn)as a test function in(3.1),we obtain

Takingyn=un-Th(un)+Tk(un)-Tk(u),we have

that is equivalent to

where

Arguing as in[13],we can prove that

By(3.16)and(3.17)we conclude that

Using(3.18)and arguing as in[13],we get

Thanks to(3.18)and(3.19),we obtain

Then by lettinghtends to infinity in the previous inequality,we get

Thanks to Lemma 2.2,we obtain

3.4 The equi-integrability of g(x,un,?un)and passage to the limit

Thanks to(3.20),we have

Using that(ai(x,un,?un))nis bounded in,and Lemma 2.1,we obtain

Now,letEbe a measurable subset of Ω.For allm>0,we have by using(1.6)

Since(DiTm(un))nconverges strongly inthen for allε>0,there existsδ>0 such thatmeas(E)<δand

On the other hand,usingT1(un-Tm-1(un))as a test function in(3.1)form>1,we obtain

there existsm0>0 such that

Using(3.21)and(3.22),we deduce the equi-integrability ofg(x,un,?un).In view of Vitali’s theorem,we obtain

Lettingn →+∞,we can easily pass to the limit in this equation,to see that this last integral identity is true foruinstead ofun.This proves Theorem(2.2).

Example 3.1.As a prototype example,we consider the model problem

wheref ∈L1(Ω)andas in Theorem 2.2.

Acknowledgments

The authors would like to thank the referees for the useful comments and suggestions that substantially helped improving the quality of the paper.

猜你喜歡
檢察機關(guān)功能
也談詩的“功能”
中華詩詞(2022年6期)2022-12-31 06:41:24
關(guān)于非首都功能疏解的幾點思考
懷孕了,凝血功能怎么變?
媽媽寶寶(2017年2期)2017-02-21 01:21:24
“簡直”和“幾乎”的表達功能
檢察機關(guān)業(yè)務(wù)運行機制面臨的難題及解決之道
檢察機關(guān)適用刑事和解制度淺析
檢察機關(guān)預(yù)防職務(wù)犯罪探析
檢察機關(guān)強化刑事訴訟監(jiān)督權(quán)的法理闡釋
淺議檢察機關(guān)會計司法鑒定的主要職責(zé)
中西醫(yī)結(jié)合治療甲狀腺功能亢進癥31例
主站蜘蛛池模板: 美女免费黄网站| 国产精品美乳| 中文字幕永久在线观看| 青青久久91| 国产一级妓女av网站| 久久人人爽人人爽人人片aV东京热| 永久在线精品免费视频观看| 国产地址二永久伊甸园| 久久青青草原亚洲av无码| 亚洲欧美人成电影在线观看| 国产麻豆va精品视频| 国产黄网站在线观看| 欧美成人亚洲综合精品欧美激情| 欧美有码在线| 亚洲欧洲日韩国产综合在线二区| 久久综合干| 欧美亚洲一二三区| 综合人妻久久一区二区精品| 精品国产免费观看| 夜夜爽免费视频| 国产在线一区视频| 亚洲妓女综合网995久久 | 天天综合色天天综合网| 日韩在线成年视频人网站观看| 国产在线精彩视频二区| 久久伊人久久亚洲综合| 粗大猛烈进出高潮视频无码| 色综合a怡红院怡红院首页| 四虎亚洲国产成人久久精品| 国产精品久久自在自2021| 91精品国产丝袜| 五月天天天色| 日韩少妇激情一区二区| 亚洲一区色| 日韩国产综合精选| 久久亚洲国产视频| 5555国产在线观看| 九九热视频精品在线| 成人午夜视频免费看欧美| 中文字幕一区二区人妻电影| 中文字幕亚洲电影| 久久综合国产乱子免费| 91精品啪在线观看国产| 亚洲无码精彩视频在线观看| 免费无遮挡AV| 欧洲亚洲欧美国产日本高清| 欧美在线视频a| 亚洲视频免费在线| 亚洲三级色| 国产精品刺激对白在线| 亚洲人成日本在线观看| 中国毛片网| 亚洲区一区| 亚洲精品国偷自产在线91正片| 成人午夜视频在线| 国产女人18水真多毛片18精品| 国产精品毛片一区视频播| 亚洲国产天堂在线观看| 国产精品久久久精品三级| 99久久精品免费观看国产| 国产91久久久久久| 激情無極限的亚洲一区免费| 亚洲最猛黑人xxxx黑人猛交| 91亚洲视频下载| 91久久偷偷做嫩草影院电| 日韩a级片视频| 国产91色| 国产成人精品免费视频大全五级| 美女被操91视频| 色婷婷啪啪| 蝴蝶伊人久久中文娱乐网| 丁香婷婷综合激情| 99这里只有精品6| www.狠狠| 免费无码网站| 97精品国产高清久久久久蜜芽| 乱系列中文字幕在线视频 | www.日韩三级| 亚洲成人高清无码| 一级黄色网站在线免费看| 日韩无码真实干出血视频| 欧美精品aⅴ在线视频|