宋祥云,岳 鑫,孔祥平,柳新偉,劉 蕾,李 妍,趙婷婷,曾路生,郭曉冬,李旭霖,劉慶花,金圣愛,崔德杰?
有機物料對鹽土腐殖物質組成和結構特征的影響*
宋祥云1,2,岳 鑫1,2,孔祥平3,柳新偉1,劉 蕾4,李 妍1,趙婷婷1,曾路生1,郭曉冬1,李旭霖1,劉慶花1,金圣愛1,崔德杰1,2?
(1. 青島農業大學資源與環境學院,山東青島 266109;2. 青島農業大學資源與環境學院,青島市農村環境工程研究中心,山東青島 266109;3. 青島農業大學化學與藥學院,山東青島 266109;4. 青島市嶗山區農業農村局,山東青島 266061)
通過室內培養試驗研究了秸稈、秸稈堆肥、秸稈生物質炭對黃河三角洲地區鹽土腐殖物質組成和結構特征的影響。結果表明,秸稈、秸稈堆肥和秸稈生物質炭主要增加了胡敏素含量,由對照的5.48 g·kg–1分別增加至11.20 g·kg–1、16.66 g·kg–1和20.60 g·kg–1。秸稈堆肥和生物質炭配施胡敏酸含量增加至1.36 g·kg–1,秸稈處理的富里酸由培養30 d時的3.77 g·kg–1下降至3.32 g·kg–1。土壤胡敏素含量與土壤有機碳含量在培養30 d(2= 0.84,< 0.001,= 10)和180 d(2= 0.98,< 0.001,= 10)時均呈顯著正相關關系。秸稈、秸稈堆肥、生物質炭均有利于富里酸脂族碳相對含量的增加。生物質炭有利于土壤胡敏酸芳香類物質的增加;而秸稈或秸稈堆肥進入土壤初期,尤其是秸稈堆肥更有利于胡敏酸中脂族和碳水化合物或多糖類物質的積累??傊?,生物質炭主要增加了胡敏素含量,秸稈堆肥與生物質炭配施更有利于增加胡敏酸含量。秸稈在進入土壤初期增加了富里酸含量。生物質炭與秸稈或秸稈堆肥配施時,生物質炭所占比例對胡敏素含量、胡敏酸芳香類物質含量和富里酸脂族碳含量影響較大。
黃河三角洲;鹽土;有機物料;腐殖物質;紅外光譜
土壤碳固定是當前有關陸地生態系統碳循環與全球變化的地球表層過程研究的重要優先領域[1]。秸稈還田、施用有機肥和生物質炭等均是有效增加土壤有機碳含量的方式[2-5]。這些增加土壤有機碳含量的過程主要增加了土壤中的腐殖物質含量。通常根據溶解度可將土壤腐殖物質分為胡敏酸、富里酸和胡敏素三個組分,占土壤有機碳含量的60%~80%[6-7]。秸稈深埋還田隨著年限增加土壤有機碳、富里酸和胡敏素的含量呈下降趨勢,胡敏酸的含量呈上升趨勢;胡敏酸縮合度、氧化度呈上升趨勢,脂族性減弱,芳香性增強[8]。室內培養實驗表明,培養初期,富里酸的形成速度大于胡敏酸;隨培養時間延長,富里酸轉化為胡敏酸或相互轉化;玉米秸稈分解最終增加了可提取腐殖質中胡敏酸的比例[9]。玉米秸稈生物質炭施用到土壤中可增加土壤胡敏酸、富里酸和胡敏素的含量,胡敏酸的縮合程度和芳香性降低,氧化度增加[5]。施用低量有機肥有利于土壤富里酸的積累,而高量有機肥對胡敏酸和胡敏素的積累有利[10]。但是上述研究分別采用秸稈還田、施用有機肥或生物質炭研究土壤腐殖物質組成和結構特征變化。對于同一種類秸稈分別以秸稈、秸稈堆肥或秸稈生物質炭形式進入土壤對土壤腐殖物質組成和結構特征的影響有待進一步研究。而這將有利于增強對有機物料以不同形式在土壤中固碳穩定機制的理解。Song等[11]對添加棉桿、棉桿堆肥、棉桿生物質炭培養30 d和180 d的黑土有機碳含量和結構特征研究結果表明,土壤有機碳分別有50.84%、41.03%和38.55%來源于棉桿生物質炭、棉桿堆肥和棉桿;棉桿生物質炭主要增加了有機碳的芳基碳含量,棉桿和棉桿堆肥更有利于酚類物質和烷基碳的含量增加[11]。就活性有機碳變化而言,秸稈還田對提高紅壤有機質質量較有機肥慢[12]。土壤腐殖化程度不同也會影響到土壤有機質質量。然而土壤胡敏酸、富里酸和胡敏素的含量和結構穩定性各不相同,秸稈、堆肥和生物質炭對它們的影響有待進一步研究。
以往研究結果[13]表明,土壤中添加玉米秸稈培養180 d玉米秸稈殘留量為32.2%;培養360 d玉米秸稈殘留量為30%;培養720 d玉米秸稈殘留量為25.3%,可見培養180 d時大部分秸稈均已經分解,可以解釋秸稈分解期間土壤腐殖物質形成規律和機理問題。通過對比培養初期(30 d)時土壤腐殖物質組成和結構變化,可以探究有機物料在土壤中不同腐解階段腐殖物質特征。本研究采用室內培養法,采集黃河三角洲地區鹽土,添加棉桿、棉桿堆肥、棉桿生物質炭培養30 d和180 d,分析了土壤腐殖物質含量的變化。采用紅外光譜法研究了胡敏酸和富里酸化學結構特征。探討秸稈、秸稈堆肥和秸稈生物質炭對黃河三角洲地區鹽土腐殖物質組成和結構穩定性的影響。
供試土壤為鹽土,于2015年12月6日采自山東省東營市利津縣碾李村(37° 23′ 46.93″ N,118° 10′ 34.83″ E),基本性質見表1。培養前土壤腐殖物質組分含量分別為:水溶性有機碳0.10 g·kg–1,胡敏酸0.92 g·kg–1,富里酸3.64 g·kg–1,胡敏素5.27 g·kg–1。
供試有機物料為棉花秸稈、棉花秸稈堆肥、棉花秸稈生物質炭,有機碳含量分別為443.7 g·kg–1、323.6 g·kg–1和576.6 g·kg–1;全氮含量分別為10.10g·kg–1、12.81 g·kg–1和15.59 g·kg–1。供試秸稈堆肥是棉花秸稈自然堆腐1 a后的堆肥物質;生物質炭是棉花秸稈在馬弗爐中500℃燒制4 h。
室內培養實驗在青島農業大學校內進行,共設置10個處理,每個處理3次重復。處理如下:CK(不添加任何物料)、CS(添加棉花秸稈)、CC(添加棉花秸稈堆肥)、CB(添加棉花秸稈生物質炭)、CSB1(棉花秸稈與棉花秸稈生物質炭按1︰2比例添加)、CSB2(棉花秸稈與棉花秸稈生物質炭按1︰1比例添加)、CSB3(棉花秸稈與棉花秸稈生物質炭按2︰1比例添加)、CCB1(棉花秸稈堆肥與棉花秸稈生物質炭按1︰2比例添加)、CCB2(棉花秸稈堆肥與棉花秸稈生物質炭按1︰1比例添加)、CCB3(棉花秸稈堆肥與棉花秸稈生物質炭按2︰1比例添加)。培養前先將未添加棉桿來源碳的土壤樣品含水量調節為土壤田間持水量的60%,在20℃培養2周,同時測定鹽土、棉桿生物質炭、棉桿堆肥、棉桿的C︰N比;然后向土壤中添加棉桿生物質炭、棉桿堆肥、棉桿等,再加(NH4)2SO4調節所有處理樣品的C︰N比為20︰1,調節樣品含水量為田間持水量的60%。其中,棉桿生物質炭添加量(CB處理)為45 t·hm–2(按20 cm土層計算),即棉桿生物質炭添加量占土壤樣品重量的2%。其余處理按與棉桿生物質炭用量等碳量添加至土壤中[11]。

表1 供試土壤基本性質
注:HN、Olsen P、AK、OC、TN、Sa分別代表土壤堿解氮、速效鉀、有機碳、全氮和鹽分。下同。Note:HN,Olsen P,AK,OC,TN and Sa stands for soil hydrolyzable nitrogen,Olsen phosphorus,available potassium,organic carbon,total nitrogen and salt,respectively. ①Cryids Aridisols. The same below
土壤堿解氮、pH、有機質等的測定采用常規分析方法[14]。土壤鹽分分析計算參考王境坤[15]的分析方法。
土壤腐殖物質的提取采用腐殖物質組成修改法[7]。土壤樣品經去離子水提取出水溶性有機物(Water soluble substances,WSS)后,用0.1 mol·L–1NaOH+ 0.1 mol·L–1Na4P2O7混合液提取出可提取腐殖物質(Extractable humic substances,HE)。繼續用0.5 mol·L–1H2SO4將可提取腐殖物質pH調至1,分離出胡敏酸(Humic acid,HA)和富里酸(Fulvic acid,FA),剩余殘渣為胡敏素(Humin,Hu)。
腐殖物質各組分及土壤有機碳(Soil organic carbon,SOC)采用重鉻酸鉀容量法測定,富里酸含量用可提取腐殖物質含量減去胡敏酸含量。
胡敏酸和富里酸的紅外光譜采用傅里葉變換紅外光譜儀(Nicolet iS5型,Thermo 公司,美國)進行測定。測定范圍4 000~400 cm–1。采用KBr壓片法制備待測樣品,KBr和樣品以200︰1比例進行混合壓片。分辨率為4 cm–1,掃描次數為16次。紅外光譜數據采用OMNIC 8︰2軟件進行分析,采用半定量分析計算各個峰面積,用各個峰面積占總峰面積的百分比作為各吸收峰的相對強度。
數據用Microsoft Office Excel 2010整理,用SPSS Statistic 19.0軟件檢驗進行顯著性差異分析。采用Microsoft Office Excel 2010和Origin7.0進行繪圖。
培養30 d和180 d鹽土水溶性有機碳、胡敏酸、富里酸和胡敏素的含量見表2。培養30 d時,秸稈處理和秸稈堆肥處理水溶性有機碳含量由對照的0.13 g·kg–1分別增加至0.14 g·kg–1和0.15 g·kg–1。秸稈生物質炭處理水溶性有機碳含量達到了0.12 g·kg–1。秸稈與生物質炭配施水溶性有機碳的含量在0.11~0.14 g·kg–1之間;秸稈堆肥與生物質炭配施水溶性有機碳的含量在0.12~0.18 g·kg–1之間。與培養30 d相比,培養180 d后各處理水溶性有機碳含量降低了,但是秸稈或秸稈堆肥處理水溶性有機碳含量仍是最高,分別為0.13 g·kg–1和0.12 g·kg–1。秸稈生物質炭處理水溶性有機碳含量為0.10 g·kg–1。秸稈與生物質炭配施水溶性有機碳的含量在0.06~0.11 g·kg–1之間;秸稈堆肥與生物質炭配施水溶性有機碳含量在0.06~0.09 g·kg–1之間。以上研究結果表明,秸稈或秸稈堆肥較生物質炭處理土壤水溶性有機碳含量高。

表2 培養30 d和180 d水溶性有機碳和腐殖物質含量
注:CK、CS、CC、CB、CSB1-3、CCB1-3分別表示對照即不添加有機物料、添加棉桿、添加棉桿堆肥、添加棉桿生物質炭以及棉桿和棉桿生物質炭分別按1︰2、1︰1和2︰1的比例添加,棉桿堆肥和棉桿生物質炭分別按1︰2、1︰1和2︰1的比例添加;WSS,水溶性有機碳;HA,胡敏酸;FA,富里酸;Hu,胡敏素。同一列中小寫字母代表同一時間不同處理間差異顯著(<0.05)。下同。Notes:CK,CS,CC,CB,CSB1-3,and CCB1-3 stands for CK(original soil),soil amended with cotton straw,soil amended with composted cotton straw,soil amended with cotton straw derived biochar,soil amended with cotton straw plus biochar at a ratio of 1︰2,1︰1 or 2︰1,soil amended with compost plus biochar at a ratio of 1︰2,1︰1 or 2︰1,respectively;WSS stands for water soluble organic carbon,HA for humic acid,FA for fulvic acid and Hu for humin. The lower case letters in the same column means significant difference at level<0.05. The same below
培養30 d時,單施秸稈、秸稈堆肥、秸稈生物質炭處理鹽土胡敏酸含量分別為1.27、2.07和1.32 g·kg–1,而培養180 d時分別下降至1.03、1.04 和1.02 g·kg–1。與培養30 d相比,培養180 d時秸稈與生物質炭配施處理胡敏酸的含量降低了0.17~0.86 g·kg–1,秸稈堆肥與生物質炭配施處理胡敏酸的含量降低了0.05~0.53 g·kg–1。以上研究結果表明,秸稈堆肥或秸稈堆肥與生物質炭配施土壤胡敏酸更穩定。
培養30 d時,秸稈處理較秸稈堆肥處理、生物質炭處理鹽土富里酸含量高,達到了3.77 g·kg–1。秸稈和生物質炭配施處理富里酸含量隨著秸稈施用比例提高而增加,秸稈和生物質炭比例達到2︰1時富里酸含量最高,為3.76 g·kg–1;秸稈堆肥和生物質炭配施處理富里酸含量也隨著秸稈施用比例提高而增加,秸稈堆肥和生物質炭比例達到2︰1時富里酸含量同樣最高,為4.08 g·kg–1。
與培養30 d相比,培養180 d時,秸稈堆肥處理和生物質炭處理富里酸含量分別增加至4.19 g·kg–1和4.05 g·kg–1,而秸稈處理富里酸的含量則降低至3.32 g·kg–1。培養180 d時,秸稈和生物質炭配施處理富里酸含量除了秸稈和生物質炭比例1︰2處理高于培養30 d時相應處理,其余兩個處理富里酸含量均低于30 d處理,并且隨著秸稈比例提高而降低,秸稈和生物質炭比例達到2︰1時富里酸含量降低至2.99 g·kg–1;而秸稈堆肥和生物質炭配施處理富里酸含量隨著秸稈堆肥施用比例提高而增加,秸稈堆肥和生物質炭比例達到2︰1時富里酸含量最高,為3.79 g·kg–1。以上研究結果表明,秸稈堆肥或生物質炭有利于鹽土富里酸含量的提高。
培養30 d時,秸稈、秸稈堆肥、生物質炭處理鹽土胡敏素含量分別為9.14、11.84和16.66 g·kg–1。秸稈和生物質炭配施隨著生物質炭比例降低胡敏素含量下降,當秸稈和生物質炭比例為2︰1時降至最低(13.23 g·kg–1)。秸稈堆肥和生物質炭配施也隨著生物質炭用量比例降低胡敏素含量下降,當秸稈堆肥和生物質炭比例為2︰1時降到最低為14.26 g·kg–1。但是秸稈堆肥和生物質炭配施胡敏素含量高于秸稈和生物質炭配施處理。
培養180 d時,秸稈、秸稈堆肥、生物質炭處理鹽土胡敏素含量分別增加至11.20、16.66和20.60 g·kg–1。秸稈和生物質炭配施仍然隨著生物質炭用量比例降低胡敏素含量下降,當秸稈和生物質炭比例為2︰1時降至最低(13.18 g·kg–1)。而秸稈堆肥和生物質炭配施隨著秸稈堆肥比例提高胡敏素含量增加,當秸稈堆肥和生物質炭比例為2︰1時增加至最高(19.34 g·kg–1)。土壤胡敏素含量和土壤有機碳含量在培養30 d(2= 0.84,< 0.001,= 10)和180 d(2= 0.98,< 0.001,= 10)時均呈顯著正相關關系(圖1)。
以上研究結果表明,秸稈、秸稈堆肥、生物質炭處理均可提高土壤胡敏素含量。秸稈和生物質炭配施鹽土胡敏素含量受生物質炭比例影響更明顯;而秸稈堆肥和生物質炭配施培養初期土壤胡敏素含量受生物質炭所占比例影響較大,培養后期影響減小。

圖1 培養30 d和180 d胡敏素和土壤有機碳含量之間相關性
本研究用胡敏酸、富里酸各個吸收峰的峰面積占總特征峰面積的百分比表示其不同吸收強度(表3和表4)[16]。土壤胡敏酸和富里酸紅外光譜吸收峰歸屬(圖2)如下:3 340 cm–1處是羧酸、酚類、醇類等的—OH伸縮振動;2 920 cm–1和2 850 cm–1是脂族結構中—CH2和—CH3的C—H伸縮振動;1 620 cm–1是芳香碳化合物C=C伸縮振動或醌、酮和酰胺I帶的C=O伸縮振動;1 420 cm–1是碳水化合物的C—O對稱振動;1 100 cm–1是多糖結構中C—O伸縮振動[16]。根據表3,培養30 d后,各個處理胡敏酸在3 340 cm–1處吸收峰相對強度均低于對照;秸稈和生物質炭配施在3 340 cm–1處吸收峰相對強度隨秸稈或秸稈堆肥比例增加而降低,而秸稈堆肥和生物質炭配施則呈升高趨勢。與對照相比,各處理鹽土胡敏酸在2 920 cm–1處吸收強度增加,并且隨著秸稈或秸稈堆肥比例加大而增大;(2 920+2 850)/1 620作為脂族碳/芳香碳比表征脂族碳和芳香碳相對變化。對照處理脂族碳/芳香碳比為0.01,各處理均大于對照處理。秸稈和生物質炭配施脂族碳/芳香碳比隨著秸稈比例提高而增大,由0.018增加至0.036;秸稈堆肥和生物質炭配施脂族碳/芳香碳比也隨著秸稈堆肥用量加大而增大,由0.036增加至0.044。胡敏酸各處理在1 620 cm–1處吸收峰相對強度均大于對照處理。秸稈和生物質炭配施在1 620 cm–1處吸收峰相對強度由17.58%增加至18.19%;秸稈堆肥和生物質炭配施在1 620 cm–1處吸收峰相對強度由18.27%增加至18.70%。與對照相比,各處理在1 420 cm–1和1 100 cm–1處吸收峰相對強度也增加了,其相對強度在秸稈堆肥處理或秸稈堆肥與生物質炭配施處理大于秸稈或秸稈與生物質炭配施處理。以上研究結果表明,秸稈或秸稈堆肥進入土壤初期,尤其是秸稈堆肥更有利于胡敏酸中脂肪族和碳水化合物或多糖類物質的積累。

表3 培養30 d和180 d土壤胡敏酸紅外光譜各吸收峰相對強度

表4 培養30 d和180 d土壤富里酸紅外光譜各吸收峰相對強度
培養180 d后,各個處理胡敏酸在3 340 cm–1處吸收峰相對強度均低于對照;秸稈和生物質炭配施在3 340 cm–1處吸收峰相對強度隨秸稈比例增加而提高,而秸稈堆肥和生物質炭處理在3 340 cm–1處吸收峰相對強度隨著秸稈堆肥比例提高而降低。秸稈和秸稈堆肥處理胡敏酸在2 920 cm–1處吸收峰相對強度分別為0.26%和0.24%,仍高于對照處理;但是生物質炭、秸稈和生物質炭配施、秸稈堆肥和生物質炭配施在2 920 cm–1處的吸收峰相對強度或脂族碳/芳香碳比均低于對照處理。對照處理在1 620 cm–1處吸收峰相對強度為16.86%,秸稈堆肥處理吸收峰相對強度為18.95%,秸稈處理、生物質炭處理吸收峰相對強度均低于對照。秸稈和生物質炭配施處理在1 620 cm–1處吸收峰相對強度低于對照,但是隨著秸稈比例增大而提高,由16.25%提高至16.70%;秸稈堆肥和生物質炭配施在1 620 cm–1處吸收峰相對強度以秸稈堆肥和生物質炭比例為2︰1時高于對照處理,為17.50%,其余處理則低于對照處理。對照在1 420 cm–1處吸收峰相對強度為9.31%,其余處理均低于對照處理;與對照相比,胡敏酸在1 100 cm–1處各處理吸收峰相對強度增加了。以上研究結果表明,秸稈、秸稈堆肥或生物質炭使土壤胡敏酸中脂族結構隨著培養時間增加而減少,多糖類物質仍然增加。施用生物質炭有利于土壤胡敏酸芳香類物質的增加。
根據表4,培養30 d時,秸稈處理富里酸在3 340 cm–1處吸收峰相對強度高于對照;秸稈和生物質炭配施、秸稈堆肥和生物質炭配施在3 340 cm–1處吸收峰相對強度隨秸稈或秸稈堆肥比例增加而降低。對照處理、秸稈堆肥處理、生物質炭處理在2 920 cm–1處吸收峰相對強度分別為0.105%、0.147%和0.156%;脂族碳/芳香碳比分別為0.007、0.009和0.01。秸稈和生物質炭配施處理在2 920 cm–1、2 850 cm–1處吸收峰相對強度隨著生物質炭比例降低而下降,分別由0.343%下降至0.183%,以及由0.142%下降至0.027%;脂族碳/芳香碳比則由0.028下降至0.012。秸稈堆肥和生物質炭配施處理在2 920 cm–1、2 850 cm–1處吸收峰相對強度隨著秸稈堆肥比例增大而增加,分別由0.152%增加至0.181%,以及由0.013%增加至0.025%;脂族碳/芳香碳比則由0.010增加至0.012。
培養180 d時,秸稈處理、秸稈堆肥處理胡敏酸在3 340 cm–1處吸收峰相對強度高于對照;秸稈和生物質炭配施在3 340 cm–1處吸收峰相對強度隨秸稈或秸稈堆肥比例增加而降低。與對照相比,各個處理在2 920 cm–1、2 850 cm–1處吸收峰相對強度以及脂族碳/芳香碳比均大于對照;秸稈和生物質炭配施處理在2 920 cm–1、2 850 cm–1處吸收峰相對強度以及脂族碳/芳香碳比隨著生物質炭比例降低而略有減少,分別由0.153減少至0.147、由0.030減少至0.023以及由0.012減少至0.010。秸稈堆肥和生物質炭配施處理在2 920 cm–1、2 850 cm–1處吸收峰相對強度以及脂族碳/芳香碳比隨著生物質炭比例降低而減少,分別由0.250減少至0.146、由0.076減少至0.025以及由0.019減少至0.010。
以上研究結果表明,培養初期,秸稈堆肥和生物質炭有利于土壤富里酸脂族碳的增加。秸稈和生物質炭配施過程中生物質炭對富里酸脂族碳相對含量影響大于秸稈。培養后期,秸稈、秸稈堆肥、生物質炭、生物質炭與秸稈或秸稈堆肥配施均有利于富里酸脂族碳相對含量的增加,生物質炭對其影響更大。

注:圖2a)和圖2b)分別是培養30 d和180 d胡敏酸紅外光譜,圖2c)和圖2d)分別是培養30 d和180 d富里酸紅外光譜。Note:The figure a)and b)is the FTIR spectrum of HA in the soil incubated for 30 and 180 days,respectively. The figure c)and d)is the FTIR spectrum of FA in the soils incubated for 30 and 180 days,respectively.
生物質炭有豐富的孔隙結構,具有穩定性,可以改善土壤物理性質,提高土壤酶活性和微生物多樣性[17-20]。土壤中施用有機物料的性質、來源、施用量不同不僅可以增加土壤有機碳的含量,同時也影響了土壤中原有腐殖物質組成和結構[4,21-22]。土壤中原有的有機碳分別有38.55%、41.03%和50.84%被秸稈碳、秸稈堆肥碳和秸稈生物質炭有機碳替代[11]。玉米秸稈配施化肥能夠顯著提高土壤總有機碳和輕組有機碳含量,而豬糞配施化肥則更有助于土壤微生物量碳和水溶性有機碳的積累[22]。趙亮[23]采用室內培養實驗研究了不同有機物料對土壤腐殖物質組成的影響,結果表明棉花、麥草秸稈、木屑形成腐殖物質含量依次增高。低量有機肥有利于土壤富里酸的積累,高量有機肥有助于胡敏酸和胡敏素的積累[10]。秸稈或有機肥本身腐解形成土壤腐殖物質尤其是胡敏酸有利于土壤腐殖化度的提高。生物質炭可提高土壤有機碳的含量。張葛等[5]研究表明,施用生物質炭更有助于表層有機碳和腐殖物質的積累。生物質炭也可以影響土壤腐殖物質的水平[24]。Jindo等[25]研究表明,施用生物質炭可以提高10%的土壤腐殖物質含量。本研究中秸稈、秸稈堆肥和秸稈生物質炭均主要增加了土壤胡敏素含量,但是施用生物質炭胡敏素增加量大于施用秸稈或秸稈堆肥(表2)。這可能與生物質炭不易被微生物分解,主要殘留于胡敏素中有關。胡敏素是經稀堿液提取出胡敏酸、富里酸后的剩余物質,生物質炭未被提取出即殘留在胡敏素中,形成了胡敏素的一部分。胡敏素在土壤腐殖物質中所占比例可能較我們以往的認識更多[26]。本研究中秸稈或秸稈堆肥處理土壤胡敏酸含量均增加(表2)。秸稈或秸稈堆肥本身更有利于土壤中腐殖化度的提高。李翠蘭等[9]研究表明,玉米秸稈分解最終增加了可提取腐殖質中胡敏酸的比例。這也證明了秸稈在土壤中腐解最終提高了土壤腐殖化度。本研究中培養實驗所采用的土壤采集自0~20 cm土層。有研究表明,玉米秸稈進入土壤亞表層(20~40 cm),也增加了土壤胡敏酸、富里酸和胡敏素的含量,改善了腐殖物質的組成[2]。相對而言,秸稈堆肥或秸稈堆肥與生物質炭配施更有利于增加土壤胡敏酸含量。本研究中秸稈堆肥或生物質炭也有利于鹽土富里酸含量的提高(表2)。生物質炭有可能由于激發效應促使原有土壤腐殖物質向富里酸轉化。同時,生物質炭也可以被氧化[27]。因此,推測有可能生物質炭本身被氧化分解形成了一部分富里酸。
通常腐殖物質被認為具有異質性,氣候、土壤類型、植被類型等對腐殖物質的形成均有影響。但是腐殖物質還具有脂族性特征[21],植物殘體在土壤中的腐解過程調控著土壤有機質(碳)的化學組成和空間分布[28]。此外,進入土壤的有機物質形態是否對腐殖物質結構特征產生影響關系到腐殖物質的穩定性。不同類型土壤以及不同有機物料來源的腐殖物質在氧化度和羧基含量上有差異[29]。本研究中秸稈、秸稈堆肥和秸稈生物質炭均來源于秸稈,但是分別以秸稈、堆肥、生物質炭這三種形態進入土壤后的紅外光譜研究表明,三者對土壤胡敏酸和富里酸化學結構影響不同(圖2)。培養初期,秸稈或秸稈堆肥,尤其是秸稈堆肥更有利于胡敏酸中脂肪族、碳水化合物、多糖類物質的積累。秸稈堆肥和生物質炭有利于土壤富里酸脂族碳的增加。秸稈和生物質炭配施過程中生物質炭對富里酸脂族碳相對含量影響大于秸稈處理。秸稈、秸稈堆肥或生物質炭使土壤胡敏酸中脂族碳相對含量隨著培養時間增加而減少,而多糖類物質仍然增加。施用生物質炭有利于土壤胡敏酸芳香類物質的增加。培養后期,秸稈處理、秸稈堆肥處理、生物質炭處理或配施均有利于富里酸脂族碳相對含量的增加,生物質炭對其影響更大(表3和表4)。相對而言,施用生物質炭胡敏酸結構更為復雜[30]。本研究也表明施用生物質炭胡敏酸芳香族物質相對含量增加(表3)。以往的研究[11]表明,施用生物質炭可增加土壤有機碳的芳基碳相對含量,而秸稈堆肥處理可增加土壤有機碳的烷基碳和酚類物質相對含量。長期施用堆肥土壤腐殖物質烷基碳含量增加[31]。通過長期施用豬糞也表明,胡敏酸烷基碳相對含量增加[32]。相對生物質炭而言,堆肥更有利于胡敏酸脂族碳含量的增加。
秸稈、秸稈堆肥和秸稈生物質炭均主要增加了土壤胡敏素含量,生物質炭效果更明顯。土壤胡敏素和有機碳含量呈顯著正相關關系。秸稈堆肥或生物質炭有利于鹽土胡敏酸和富里酸含量的提高,同時二者配施更有利于增加土壤胡敏酸含量。秸稈、秸稈堆肥、生物質炭均有利于富里酸脂族碳相對含量的增加。相對而言,堆肥更有利于胡敏酸脂族碳含量的增加,生物質炭更有利于胡敏酸芳香族碳含量的增加。
[1] Pan G X,Zhou P,Li L Q,et al. Core issues and research progresses of soil science of C sequestration. Acta Pedologica Sinica,2007,44(2):327–337. [潘根興,周萍,李戀卿,等. 固碳土壤學的核心科學問題與研究進展. 土壤學報,2007,44(2):327—337.]
[2] Dou S. Improving subsoil fertility through a new technology of continuous in belt and deep incorporation of corn stover. Journal of Plant Nutrition and Fertilizer,2017,23(6):1670—1675. [竇森. 玉米秸稈“富集深還”與土壤亞表層培肥. 植物營養與肥料學報,2017,23(6):1670—1675.]
[3] Wang Q Y,Yang Y Z,Xu M G,et al. Effects of long-term straw returning on stability of mineral- complexed organic matter in Shajiang black soil. Acta Pedologica Sinica,2019,56(5):1108—1117. [王擎運,楊遠照,徐明崗,等. 長期秸稈還田對砂姜黑土礦質復合態有機質穩定性的影響. 土壤學報,2019,56(5):1108—1117.]
[4] Wu H Y,Li M D,Liu Q F,et al. Effects of different modes of straw returning on soil structure and character of soil organic matter. Chinese Journal of Soil Science,2012,43(4):836—841. [吳海勇,李明德,劉瓊峰,等. 稻草不同途徑還田對土壤結構及有機質特征的影響. 土壤通報,2012,43(4):836—841.]
[5] Zhang G,Dou S,Xie Z B,et al. Effect of biochar application on composition of soil humus and structural characteristics of humic acid. Acta Scientiae Circumstantiae,2016,36(2):614—620. [張葛,竇森,謝祖彬,等. 施用生物質炭對土壤腐殖質組成和胡敏酸結構特征影響. 環境科學學報,2016,36(2):614—620.]
[6] Weil R,Brady C. The nature and properties of soils. Columbus:Pearson,2016:548—549.
[7] Dou S,Yu S Q,Zhang J J. Effects of carbon dioxide concentration on humus formation in corn stalk decomposition. Acta Pedologica Sinica,2007,44(3):458—466. [竇森,于水強,張晉京. 不同CO2濃度對玉米秸稈分解期間土壤腐殖質形成的影響. 土壤學報,2007,44(3):458—466.]
[8] Dong S S,Dou S,Shao M J,et al. Effect of corn stover deep incorporation with different years on composition of soil humus and structural characteristics of humic acid in black soil. Acta Pedologica Sinica,2017,54(1):150—159. [董珊珊,竇森,邵滿嬌,等. 秸稈深還不同年限對黑土腐殖質組成和胡敏酸結構特征的影響. 土壤學報,2017,54(1):150—159.]
[9] Li C L,Zhang J J,Dou S,et al. Dynamic change in amounts of soil humic acid and fulvic acid during corn stalk decomposition. Journal of Jilin Agricultural University,2009,31(6):729—732. [李翠蘭,張晉京,竇森,等. 玉米秸稈分解期間土壤腐殖質數量動態變化的研究. 吉林農業大學學報,2009,31(6):729—732.]
[10] Liang Y,Han X Z,Ding X L,et al. Distribution of soil organic carbon and nitrogen in density fractions on black soil as affected by different amounts of organic manure application. Journal of Soil and Water Conservation,2012,26(1):174—178. [梁堯,韓曉增,丁雪麗,等. 不同有機肥輸入量對黑土密度分組中碳、氮分配的影響. 水土保持學報,2012,26(1):174—178.]
[11] Song X,Li Y,Yue X,et al. Effect of cotton straw-derived materials on native soil organic carbon. Science of the Total Environment,2019,663:38—44.
[12] Xu M G,Yu R,Wang B R. Labile organic matter and carbon management index in red soil under long-term fertilization. Acta Pedologica Sinica,2006,43(5):723—729. [徐明崗,于榮,王伯仁. 長期不同施肥下紅壤活性有機質與碳庫管理指數變化. 土壤學報,2006,43(5):723—729.]
[13] Zhang J J,Dou S,Cao Y C. Study on decomposition and transformation of soil organic matter during incubation experiment. Journal of Soil and Water Conservation,2004,18(5):23—26. [張晉京,竇森,曹亞澄. 特定培養條件下土壤有機質分解轉化規律的研究. 水土保持學報,2004,18(5):23—26.]
[14] Bao S D. Soil and agricultural chemistry analysis. Beijing:China Agriculture Press. 2000,25—114. [鮑士旦. 土壤農化分析. 北京:中國農業出版社,2000,25—114.]
[15] Wang J K. Analysis the relationship between soil salinity and conductivity in Tianjin Xiqing district. Jilin Water Conservancy,2015(9):28—32. [王境坤. 天津市西青區土壤含鹽量與電導率關系分析. 吉林水利,2015(9):28—32.]
[16] Song X Y,Li L Q,Zhang X H,et al. Molecular changes of ferric oxide bound soil humus during the decomposition of maize straw. Chemical and Biological Technologies in Agriculture,2016,3(1):1—7.
[17] Fang J,Jin L,Cheng L L,et al. Advancement in research on stability of biochar in the environment. Acta Pedologica Sinica,2019,56(5):1034—1047. [方婧,金亮,程磊磊,等. 環境中生物質炭穩定性研究進展. 土壤學報,2019,56(5):1034—1047.]
[18] Liu C T,Hou J W,Suo Q Y,et al. Structure and performance characterization of maize straw biochar-based fertilizer. Soils,2019,51(3):465—469. [劉長濤,侯建偉,索全義,等. 玉米秸稈生物質炭基肥的結構與性質表征. 土壤,2019,51(3):465—469.]
[19] Yan T T,Ding Z J,Zhu Q,et al. Effects of biochar on physicochemical properties of Yellow-brown Soil and growth ofseedlings. Soils,2018,50(4):681—686. [嚴陶韜,丁子菊,朱倩,等. 生物質炭對黃棕壤理化性質及龍腦樟幼苗生長的影響. 土壤,2018,50(4):681—686.]
[20] Zhang Q M,Chen R X,Guan C W,et al. Effects of different organic materials on soil improvement and tobacco yield and quality. Soils,2018,50(5):929—933. [張啟明,陳仁霄,管成偉,等. 不同有機物料對土壤改良和烤煙產質量的影響. 土壤,2018,50(5):929—933.]
[21] Senesi N,Plaza C,Brunetti G,et al. A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biology and Biochemistry,2007,39(6):1244—1262.
[22] Liang Y,Han X Z,Song C,et al. Impacts of returning organic materials on soil labile organic carbon fractions redistribution of mollisol in northeast China. Scientia Agricultura Sinica,2011,44(17):3565—3574. [梁堯,韓曉增,宋春,等. 不同有機物料還田對東北黑土活性有機碳的影響. 中國農業科學,2011,44(17):3565—3574.]
[23] Zhao L. Effect of different organic materials on soil fertility. Yangling,Shaanxi:Northwest A & F University,2012. [趙亮. 不同有機物料對土壤肥力的影響. 陜西楊凌:西北農林科技大學,2012.]
[24] Madari B E,Lima L B,Silva M A S,et al. Carbon distribution in humic substance fractions extracted from soils treated with charcoal(biochar). // Xu J,Wu J,He Y,et al. Functions of natural organic matter in changing environment. Dordrecht:Springer Netherlands,2013:1003—1006.
[25] Jindo K,Suto K,Matsumoto K,et al. Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresource Technology,2012,110:396—404.
[26] Tadini A M,Nicolodelli G,Mounier S,et al. The importance of humin in soil characterisation:A study on Amazonian soils using different fluorescence techniques. Science of the Total Environment,2015,537:152—158.
[27] Hayes M H B. Relationships between biochar and soil humic substances. // Xu J,Wu J,He Y,et al. Functions of natural organic matter in changing environment. Dordrecht:Springer Netherlands,2013:959—963.
[28] Wang J K,Xu Y D,Ding F,et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization:A review. Acta Pedologica Sinica,2019,56(3):528—540. [汪景寬,徐英德,丁凡,等. 植物殘體向土壤有機質轉化過程及其穩定機制的研究進展. 土壤學報,2019,56(3):528—540.]
[29] Zheng Y Y,Zhang J B,Tan J,et al. Chemical composition and structure of humus relative to sources. Acta Pedologica Sinica,2019,56(2):386—397. [鄭延云,張佳寶,譚鈞,等. 不同來源腐殖質的化學組成與結構特征研究. 土壤學報,2019,56(2):386—397.]
[30] Zhou G Y,Dou S,Liu S J. The structural characteristics of biochar and its effects on soil available nutrients and humus composition. Journal of Agro-Environment Science,2011,30(10):2075—2080. [周桂玉,竇森,劉世杰. 生物質炭結構性質及其對土壤有效養分和腐殖質組成的影響. 農業環境科學學報,2011,30(10):2075—2080.]
[31] Simonetti G,Francioso O,Nardi S,et al. Characterization of humic carbon in soil aggregates in a long-term experiment with manure and mineral fertilization. Soil Science Society of America Journal,2012,76(3):880.
[32] Song X Y,Liu J T,Jin S G,et al. Differences of C sequestration in functional groups of soil humic acid under long term a pplication of manure and chemical fertilizers in North China. Soil and Tillage Research,2018,176:51—56.
Effects of Application of Organic Material on Composition and Structural Characteristics of Humic Substances in Saline Soil
SONG Xiangyun1, 2, YUE Xin1, 2, KONG Xiangping3, LIU Xinwei1, LIU Lei4, LI Yan1, ZHAO Tingting1, ZENG Lusheng1, GUO Xiaodong1, LI Xulin1, LIU Qinghua1, JIN Shengai1, CUI Dejie1, 2?
(1. College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China; 2. College of Resources and Environment, Qingdao Agricultural University, Qingdao Rural Environmental Engineering Research Center, Qingdao, Shandong 266109, China;3. College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, Shandong 266109, China; 4. Bureau of Agriculture and Countryside, Laoshan District, Qingdao, Shandong 266061, China)
Returning straw into soil and applying composted straw and biochar derived from straw are effective ways of increasing soil organic carbon (SOC).Samples of saline soil were collected from the Yellow River Delta and incubated for 30 and 180 days in lab in order to study effects of application of straw, compost and biochar on composition and structural characteristics of humic substances in the soil.Results show that the practices increased humin (Hu) more than humic acid (HA) and fulvic acid (FA). The content of Hu increased from 5.48 g·kg–1increased to 11.20 g·kg–1、16.66 g·kg-1and 20.60 g·kg–1, after 180 days of incubation. In addition, the content of HA increased to 1.36 g kg–1in the plot applied with compost plus biochar, while in the plot of straw returning, the content of FA decreased from 3.77 g·kg–1to 3.32 g·kg–1, after 30 days of incubation. Positive correlations were observed between the contents of Hu and SOC in the plots incubated for either 30 (2= 0.84,< 0.001,= 10)or 180(2= 0.98,< 0.001,= 10) days. Organic carbon (OC) increased mainly in Hu, especially in the plot applied with biochar. Both application of compost or returning of straw were conducive to increasing HA and FA, and application of compost plus biochar was more significant in the effect of increasing HA. The content of Hu was mainly affected by the ratio of biochar in the plots applied with biochar plus straw. Application of straw, compost or biochar was in favour of accumulation of aliphaic groups of FA, and good to accumulation of aliphaic groups and carbohydrate in HA at the initial stage in the plots applied with straw or compost, especially with compost. Application of biochar was good to increasing aromatic groups in HA, while application of straw or compost, especially the latter, was to increasing aliphatic groups and polysaccharide at the initial stage of incubation. But afterwards, aliphatic groups deceased, while polysacharide went on increasing with the incubation lasting, regardless of treatment.In summary, biochar mainly increases the content of Hu, while compost plus biochar is in favor of increasing HA. However, straw increases the content of FA at the initial incubation stage. The ratio of biochar in the plots of applied with biochar plus straw or compost affects the content of Hu, aromatic functional groups of HA and aliphatic groups of FA.
Yellow River Delta; Salt-affected soil; Organic materials; Humic substances; Fourier Transform infrared spectroscopy (FTIR) spectra
S151.9
A
10.11766/trxb201904200187
宋祥云,岳鑫,孔祥平,柳新偉,劉蕾,李妍,趙婷婷,曾路生,郭曉冬,李旭霖,劉慶花,金圣愛,崔德杰. 有機物料對鹽土腐殖物質組成和結構特征的影響[J]. 土壤學報,2020,57(2):414–424.
SONG Xiangyun,YUE Xin,KONG Xiangping,LIU Xinwei,LIU Lei,LI Yan,ZHAO Tingting,ZENG Lusheng,GUO Xiaodong,LI Xulin,LIU Qinghua,JIN Shengai,CUI Dejie. Effects of Application of Organic Material on Composition and Structural Characteristics of Humic Substances in Saline Soil[J]. Acta Pedologica Sinica,2020,57(2):414–424.
* 國家自然科學基金項目(41501246)、山東省現代農業產業技術體系棉花崗位創新團隊項目(SDAIT-03-06)和國家重點研發計劃項目(2018YFD0800303)資助Supported by the National Natural Science Foundation of China(No. 41501246),the Modern Agricultural Industry and Technology System for Innovation Team of Cotton Domain in Soil and Fertilizer Post of Shandong Province in China(No. SDAIT-03-06)and the National Key Research and Development Program of China(No. 2018YFD0800303)
,E-mail:cuidejie@163.com
宋祥云(1981—),男,山東淄博人,博士,副教授,從事土壤有機質研究。E-mail:xsong@qau.edu.cn
2019–04–20;
2019–10–28;
優先數字出版日期(www.cnki.net):2019–12–06
(責任編輯:陳榮府)