

[摘要] 目的 探討淫羊藿苷(ICA)對脂多糖(LPS)誘導的原代星形膠質細胞炎癥反應的抑制作用。方法將細胞種于6孔板,分為對照組、LPS組和ICA給藥組。對照組先用1 μL二甲基亞礬(DMSO)處理細胞1 h,再加入1 μL生理鹽水;LPS組先用1 μL DMSO預處理細胞1 h,再加入LPS (終濃度1 mg/L)處理細胞6 h;ICA給藥組先用不同濃度的ICA (0.1、1.0、10.0、20.0 μmol/L)預處理細胞1 h,然后與LPS共同孵育細胞6 h。采用熒光定量PCR(RT-PCR)法分別檢測各組細胞膠質纖維酸性蛋白(GFAP)mRNA的表達。應用RT-PCR法檢測ICA給藥組(10.0 μmol/L)腫瘤壞死因子α(TNF-α)和白細胞介素1β(IL-1β) mRNA的表達,并與對照組、LPS組檢測結果比較。結果 與對照組相比較,LPS組的GFAP mRNA表達明顯升高(F=10.63,q=9.775,Plt;0.01);1.0、10.0、20.0 μmol/L的ICA均能夠明顯抑制LPS誘導的GFAP mRNA的表達(q=4.496~6.111,Plt;0.05),以10.0 μmol/L ICA的抑制效果最明顯(q=6.111,Plt;0.01)。與對照組相比較,LPS組的TNF-α和IL-1β mRNA表達明顯升高(F=243.50、378.60,q=30.040、36.000,Plt;0.01),10.0 μmol/L ICA組TNF-α和IL-1β mRNA表達較LPS組顯著降低(q=7.689、5.199,Plt;0.05)。結論 ICA能夠抑制LPS誘導的原代星形膠質細胞的活化和炎癥反應。
[關鍵詞] 淫羊藿甙;脂多糖;星形細胞;腫瘤壞死因子α;白細胞介素1β;神經膠質原纖維酸性蛋白質
[中圖分類號] Q421 "[文獻標志碼] A "[文章編號] 2096-5532(2020)02-0181-04
doi:10.11712/jms.2096-5532.2020.56.094 [開放科學(資源服務)標識碼(OSID)]
[網絡出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200519.1433.006.html;2020-05-19 17:25
[ABSTRACT] Objective To investigate the inhibitory effect of icariin (ICA) against lipopolysaccharide (LPS)-induced inflammatory response in primary astrocytes. "Methods Cells were seeded in a 6-well plate and divided into control group, LPS group, and ICA groups. The control group was treated with 1 μL DMSO for 1 h and then 1 μL normal saline for 6 h. The LPS group was treated with 1 μL DMSO for 1 h and then LPS (final concentration, 1 mg/L) for 6 h. The ICA groups received 1 h pretreatment with ICA at 0.1, 1.0, 10.0, and 20.0 μmol/L, respectively, followed by co-incubation with LPS for 6 h. RT-PCR was used to determine the mRNA expression of glial fibrillary acidic protein (GFAP) in all the groups, and to determine the mRNA expression of TNF-α and IL-1β in the control group, the LPS group, and the 10.0 μmol/L ICA group. "Results Compared with the control group, the LPS group showed a significantly higher mRNA expression level of GFAP (F=10.63,q=9.775,Plt;0.01); LPS-induced mRNA expression of GFAP was significantly inhibited by ICA at 1.0,10.0, and 20.0 μmol/L (q=4.496-6.111,Plt;0.05), with the strongest inhibitory effect at 10 μmol/L (q=6.111,Plt;0.01). The mRNA expression levels of TNF-α and IL-1β in the LPS group were significantly higher than those in the control group (F=243.50,378.60;q=30.040,36.000;Plt;0.01), and also significantly higher than those in the 10.0 μmol/L ICA group (q=7.689,5.199;Plt;0.05). "Conclusion ICA inhibits LPS-induced activation of primary astrocytes and inflammatory response.
[KEY WORDS] icariin; lipopolysaccharides; astrocytes; tumor necrosis factor-alpha; interleukin-1beta; glial fibrillary acidic protein
星形膠質細胞是中樞神經系統數量最多、分布最為廣泛的一類神經膠質細胞[1],在修復再生、免疫應答、能量代謝調節、神經遞質代謝、營養、突觸可塑性以及血-腦脊液屏障完整性的維持等多個方面發揮重要作用[2-5]。許多研究表明,星形膠質細胞的過度激活導致的炎癥反應在阿爾茨海默癥、帕金森病等神經退行性疾病的病理過程有重要作用[6-7]。因此,抑制星形膠質細胞的炎癥反應,減輕星形膠質細胞的過度活化是神經退行性疾病的一種有效治療策略。脂多糖(LPS)可通過與星形膠質細胞的Toll樣受體4(TLR4)結合,導致星形膠質細胞的活化,引起膠質纖維酸性蛋白(GFAP)表達的增加并釋放腫瘤壞死因子-α(TNF-α)和白細胞介素1β(IL-1β)等炎性因子,引發神經炎癥損傷神經元[8-10]。淫羊藿苷(ICA)是淫羊藿總黃酮中的一種重要生物活性成分,具有調節內分泌、補腎壯陽、誘導成骨細胞分化、抗衰老和抗腫瘤等功效[11-13]。有研究發現,ICA通過抑制TNF-α、白細胞介素-6(IL-6)、環氧合酶-2(COX-2)、誘導型一氧化氮合酶(iNOS)的mRNA表達,抑制LPS誘導的小鼠急性肺部炎癥反應[14]。那么ICA是否能通過抑制星形膠質細胞的炎癥反應來保護神經元從而阻止神經退行性疾病的進展,目前尚未見報道。本研究采用分子生物學技術,研究ICA對LPS誘導的原代星形膠質細胞GFAP、TNF-α和IL-1β mRNA 表達的影響。
1 材料與方法
1.1 試劑及其來源
ICA購自上海同田生物技術有限公司,用二甲基亞砜(DMSO)溶液稀釋為所需實驗濃度。LPS購自Sigma公司。DMEM/F12培養基和胎牛血清購自BI公司;青霉素/鏈霉素儲存液購于新華制藥廠,開啟前分裝,-20 ℃保存備用。新生24 h的SD大鼠購于青島大任富城畜牧有限公司。TRIzol購自Invitrogen 公司;逆轉錄試劑盒和SYBR green購于Takara公司;引物由Takara公司設計并合成。
1.2 細胞培養及分組
在超凈工作臺取新生24 h左右的SD大鼠(SPF級)大腦,然后分離出中腦,用滅菌后的PBS清洗3次后,輕輕剝離腦膜和血管。將腦組織剪碎,吹打使細胞分散,收集細胞懸液至大離心管中,以1 000 r/min 離心5 min。棄上清,加入DMEM/F12完全培養基(含胎牛血清、青霉素/鏈霉素混合液),將細胞吹打重懸,然后接種于鋪有poly-D的150 cm2培養瓶中,放置在含體積分數0.05 CO2、37 ℃的細胞培養箱中培養,每隔2 d更換1次培養液。待細胞長滿后,放到恒溫搖床以37 ℃、210 r/min震蕩16~18 h后,棄掉上清,用DMEM/F12基礎培養基清洗細胞3次,加入2.5 g/L的胰酶消化1~3 min,用含血清的完全培養基終止消化,輕柔吹打將貼于培養瓶上的細胞吹下,收集細胞。然后,以1 000 r/min離心5 min后,將星形膠質細胞接種到6孔板中。當6孔板內的細胞融合達到80%左右時,將細胞分為對照組(A組)、LPS組(B組)、0.1 μmol/L ICA+LPS組(C組)、1.0 μmol/L ICA+LPS(D組)、10.0 μmol/L ICA+LPS(E組)、20.0 μmol/L ICA +LPS(F組)。A組給予1 μL的DMSO處理1 h,再加入1 μL生理鹽水;B組用1 μL DMSO預處理1 h,再加入LPS(終濃度1 mg/L)共同作用6 h;C組、D組、E組、F組分別用0.1、1.0、10.0和20.0 μmol/L ICA 1 μL預處理1 h,再加入LPS(終濃度1 mg/L)共同作用6 h。
1.3 熒光定量PCR(RT-PCR)檢測GFAP、TNF-α和IL-1β的mRNA表達
按照TRIzol reagent說明書提取總RNA,然后按照逆轉錄試劑盒說明書的要求將mRNA逆轉錄為cDNA。將cDNA放入實時熒光定量PCR儀中,采用SYBR green染料法分別檢測相關基因的表達。PCR反應體系為20.0 μL,內含:SYBR green染料10.0 μL,RNA free water 8.2 μL,上下游引物各0.4 μL以及cDNA 1.0 μL。經過40個循環完成擴增,并在程序后添加溶解曲線,以檢測擴增品質。以不添加cDNA的擴增溶液為空白對照組。使用2-ΔΔCT法計算目的基因(GFAP、TNF-α、IL-1β)和內參基因GAPDH的相對表達量,同時檢查溶解曲線是否為單峰、引物擴增效率及擴增的相關系數等情況。RT-PCR引物及其序列見表1。
1.4 統計學處理
應用Graph Pad Prism 5.0統計軟件進行數據處理,計量資料結果以±s形式表示,數據間比較采用單因素方差分析(One-Way ANOVA),并繼以Tukey法進行兩兩比較。
2 結 "果
2.1 各組GFAP mRNA表達比較
與對照組比較,LPS組的GFAP mRNA表達明顯升高,差異有顯著性(F=10.63,q=9.775,Plt;0.01);1.0、10.0、20.0 μmol/L的ICA均可明顯抑制LPS誘導的原代星形膠質細胞GFAP mRNA的表達(q=4.496~6.111,Plt;0.05),其中10.0 μmol/L ICA的抑制作用最明顯(q=6.111,Plt;0.01)。因此,后續實驗我們將10.0 μmol/L的ICA作為最佳用藥濃度。見表2。
2.2 各組TNF-α和IL-1β mRNA表達比較
與對照組相比較,LPS組原代星形膠質細胞TNF-α和IL-1β的mRNA表達均明顯升高,差異有統計學意義(F=243.50、378.60,q=30.040、36.000,Plt;0.01);與LPS組相比,10 μmol/L ICA能夠明顯抑制原代星形膠質細胞TNF-α和IL-1β mRNA的表達,差異均有統計學意義(q=7.689、5.199,Plt;0.05)。見表3。
3 討 "論
體內和體外研究均表明,星形膠質細胞在神經退行性疾病的發病過程中起著至關重要的作用。與小膠質細胞相似,星形膠質細胞受到炎性刺激過度激活,會產生大量的炎性因子如IL-1β和TNF-α等,從而導致神經元的損傷[15-16]。已有研究顯示,在不同的帕金森病動物模型中均發現星形膠質細胞反應性增生;且在嚙齒類動物的中樞神經系統和周圍神經系統實驗性損傷模型中觀察到,星形膠質細胞特異性標志物GFAP表達增加[17],提示星形膠質細胞可能參與了神經退行性疾病的發病與進展[18-19]。
ICA是從小檗科植物淫羊藿中提取的一種黃酮類化合物,具有骨保護、促生殖、抗腫瘤、改善心腦血管功能、神經保護、抗炎等多種功效[20-24]。本課題組前期研究證明,在離體細胞和整體動物水平,ICA均能夠對抗神經毒素對多巴胺能神經元的損傷,發揮神經保護作用[25]。本研究通過LPS誘導原代星形膠質細胞的炎癥反應以制備神經炎癥模型,探討ICA的抗炎作用。GFAP是主要分布于中樞神經系統星形膠質細胞的一種蛋白質,是星形膠質細胞活化的標志物[26-27]。在腦損傷和中樞系統發生病變的過程中,星形膠質細胞會被大量激活,GFAP的表達上調[28-30]。本實驗結果顯示,LPS能夠使原代星形膠質細胞GFAP的表達明顯上調,應用不同濃度的ICA預處理后,GFAP mRNA的表達被不同程度地抑制,提示ICA能夠抑制星形膠質細胞的過度活化,其中10 μmol/L的ICA作用效果最明顯,因此后續實驗我們將10 μmol/L作為ICA的最佳用藥濃度。此外,LPS能夠明顯誘導星形膠質細胞炎性因子TNF-α和IL-1β mRNA的表達,而應用濃度為10 μmol/L的ICA預處理后能夠明顯抑制LPS誘導的上述兩種炎性因子的基因表達,因而有效地減少了星形膠質細胞的炎癥反應,將有利于減低炎性因子對神經元的損傷。
綜上所述,ICA能夠抑制LPS誘導的原代星形膠質細胞的活化和炎癥反應,為今后應用ICA對抗神經炎癥提供了實驗依據。
[參考文獻]
[1] JI R R, DONNELLY C R, NEDERGAARD M. Astrocytes in chronic pain and itch[J]. Nature Reviews Neuroscience, 2019,20(11):667-685.
[2] SPAMPINATO S F, BORTOLOTTO V, CANONICO P L, et al. Astrocyte-derived paracrine signals: relevance for neurogenic niche regulation and blood-brain barrier integrity[J]. Frontiers in Pharmacology, 2019,10:1346.
[3] PAJARILLO E, RIZOR A, LEE J, et al. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics[J]. Neuropharmacology, 2019,161:107559.
[4] FALKOWSKA A, GUTOWSKA I, GOSCHORSKA M, et al. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism[J]. International Journal of Molecular Sciences, 2015,16:25959-25981.
[5] BURDA J E, BERNSTEIN A M, SOFRONIEW M V. Astrocyte roles in traumatic brain injury[J]. Experimental Neurology, 2016,275(3, SI):305-315.
[6] JAYARAJ R L, BEIRAM R, AZIMULLAH S, et al. Lycopo-dium attenuates loss of dopaminergic neurons by suppressing " oxidative stress and neuroinflammation in a rat model of Parkinson’s disease[J]. Molecules, 2019,24:2182.
[7] ACOSTA C, ANDERSON H D, ANDERSON C M. Astrocyte dysfunction in alzheimer disease[J]. Journal of Neuroscience Research, 2017,95(12):2430-2447.
[8] LIU Tong, GAO Yongjing, JI Rurong. Emerging role of Toll-like receptors in the control of pain and itch[J]. Neuroscience Bulletin, 2012,28(2):131-144.
[9] GORINA R, FONT-NIEVES M, MARQUEZ-KISINOUSKY L, et al. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NF kappa B signaling, MAPK, and Jak1/Stat1 pathways[J]. Glia, 2011,59(2):242-255.
[10] BOWMAN C C, RASLEY A, TRANGUCH S L, et al. Cultured astrocytes Express toll-like receptors for bacterial pro-ducts[J]. Glia, 2003,43(3):281-291.
[11] ZHANG Lei, ZHANG Xuan, LI Kuifeng, et al. Icariin promotes extracellular matrix synthesis and gene expression of chondrocytes in vitro[J]. Phytotherapy Research, 2012,26(9):1385-1392.
[12] HUANG Xin, ZHU Danyan, LOU Yijia. A novel anticancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells[J]. European Journal of Pharmacology, 2007,564(1/3):26-36.
[13] CHUNG B H, KIM J D, KIM C K, et al. Icariin stimulates angiogenesis by activating the MEK/ERK-and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells[J]. Biochemical and Biophysical Research Communications, 2008,376(2):404-408.
[14] XU Changqing, LIU Baojun, WU Jinfeng, et al. Icariin atte-nuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-kappa B signaling pathway[J]. European Journal of Pharmacology, 2010,642(1/3):146-153.
[15] TANAKA T, KAI S, MATSUYAMA T, et al. General anesthetics inhibit LPS-induced IL-1beta expression in glial cells[J]. PLoS One, 2013,8(12): e82930.
[16] SAIJO K, WINNER B, CARSON C T, et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death[J]. Cell, 2009,137(1):47-59.
[17] ZHANG Fangxue, XU Renshi. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson’s di-sease and cell culture via inactivating TLR4/NF-κB pathway[J]. Biomedicineamp; Pharmacotherapy, 2018,97:1011-1019.
[18] TRONCOSO-ESCUDERO P, PARRA A, NASSIF M, et al. Outside in: unraveling the role of neuroinflammation in the progression of Parkinson’s disease[J]. Frontiers in Neurology, 2018,9:860.
[19] FELLNER L, IRSCHICK R, SCHANDA K, et al. Toll-like receptor 4 is required for alpha-synuclein dependent activation of microglia and astroglia[J]. Glia, 2013,61:349-360.
[20] 路宇仁,陳昳冰,崔元璐,等. 淫羊藿苷藥理作用研究進展[J]. 中國實驗方劑學雜志, 2018,24(17):209-220.
[21] ZHOU Heng, YUAN Yuan, LIU Yuan, et al. Icariin atte-nuates angiotensin Ⅱ-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways[J]. Experimental and Therapeutic Medicine, 2014,7:1116-1122.
[22] ZHENG Yaxin, ZHU Guofu, HE Jingyi, et al. Icariin targets Nrf2 signaling to inhibit microglia-mediated neuroinflammation[J]. International Immunopharmacology, 2019,73:304-311.
[23] ZHANG Shuncong, FENG Pengbo, MO Guoye, et al. Icariin influences adipogenic differentiation of stem cells affected by osteoblast-osteoclast co-culture and clinical research adipogenic[J]. Biomedicine amp; Pharmacotherapy, 2017,88:436-442.
[24] 陳茹,蘇瑩,柳江. 淫羊藿苷通過Wnt/β-catenin信號通路對卵巢癌細胞CAOV3增殖的影響[J]. 醫學研究雜志, 2019,48(3):44-49.
[25] CHEN Wenfang, WU Lin, DU Zhongrui, et al. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson’s disease: involvement of PI3K/Akt and MEK/ERK signaling pathways[J]. Phytomedicine, 2017,25:93-99.
[26] 戴淑馨,王宇,林麗芳,等. PR-957對A1反應性星形膠質細胞形成的影響[J]. 中國當代兒科雜志, 2019,21(11):1110-1115.
[27] 蘇曉梅,張丹參. 星形膠質細胞與神經退行性疾病的相關性[J]. 中國藥理學與毒理學雜志, 2019,33(10):868-869.
[28] ULLAH F, ASGAROV R, VENIGALLA M, et al. Effects of a solid lipid curcumin particle formulation on chronic activation of microglia and astroglia in the GFAP-IL6 mouse model[J]. Scientific Reports, 2020,10(1):2365.
[29] PEKNY M, WILHELMSSON U, TATLISUMAK T, et al. Astrocyte activation and reactive gliosis-a new target in stroke[J]? Neuroscience Letters, 2019,689:45-55.
[30] KOSUGE Y, KANEKO E, NANGO H, et al. Bidens pilosa extract administered after symptom onset attenuates glial activation, improves motor performance, and prolongs survival in a mouse model of amyotrophic lateral sclerosis[J]. Oxidative Medicine and Cellular Longevity, 2020,2020:1020673.
(本文編輯 黃建鄉)