邢爽,馮京海
乳酸桿菌對肉雞生長性能影響的Meta分析
邢爽,馮京海
(中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所/動物營養(yǎng)學(xué)國家重點實驗室,北京 100193)
【】利用薈萃分析(Meta分析)研究日糧中添加乳酸桿菌對肉雞生長性能的影響,以期為肉雞生產(chǎn)提供一定的理論和數(shù)據(jù)參考。從國內(nèi)外數(shù)據(jù)庫中共檢索出符合分析要求的24篇文獻(xiàn),包括25項試驗,8 702個研究對象。采用Review Manager(version 5.3),計算各生長性能指標(biāo)的標(biāo)準(zhǔn)化均數(shù)差SMD(乳酸桿菌組和對照組均數(shù)的差值除以兩組標(biāo)準(zhǔn)差平均值的商),根據(jù)不同研究使用的樣本數(shù)量、指標(biāo)測定的標(biāo)準(zhǔn)差,確定不同研究結(jié)果的權(quán)重值,匯總多個相互獨立的研究結(jié)果。根據(jù)I2統(tǒng)計量對納入文獻(xiàn)的生長性能數(shù)據(jù)進(jìn)行異質(zhì)性檢驗,通過漏斗圖及egger檢驗分析納入文章的發(fā)表偏倚并進(jìn)行敏感性分析。由于本次分析各項指標(biāo)均存在顯著異質(zhì)性,故采用隨機效應(yīng)模型對連續(xù)型數(shù)據(jù)進(jìn)行分析,并根據(jù)乳酸桿菌菌種進(jìn)行亞組分析,探討不同乳酸桿菌對肉雞生長性能的影響效果。從試驗全期來看,飼糧中添加乳酸桿菌顯著提高肉雞的平均日增重(SMD=1.53,<0.001),顯著降低料重比(SMD=-1.50,<0.001),對采食量無顯著影響(0.470)。分別分析肉雞前期(1—21日齡)和后期(22—42日齡)的生長數(shù)據(jù)發(fā)現(xiàn),乳酸桿菌顯著提高肉雞前期平均日增重(SMD=1.05,<0.001),有提高后期日增重的趨勢(SMD=0.52,0.090),顯著降低前期料重比(SMD=-1.31,<0.001)和后期料重比(SMD=-0.94,<0.001)。從SMD的數(shù)值上可以看出,乳酸桿菌對肉雞前期的促生長效果優(yōu)于后期。漏斗圖及egger分析表明,前期F/G(0.012)和后期ADFI(0.006)偏倚性達(dá)到顯著水平,其他指標(biāo)的偏倚性不顯著(>0.05);敏感性分析發(fā)現(xiàn),日增重和料重比的分析結(jié)果穩(wěn)定。異質(zhì)性檢驗發(fā)現(xiàn),各生長指標(biāo)存在顯著異質(zhì)性(<0.001),根據(jù)乳酸桿菌菌種進(jìn)行亞組分析,可降低Meta分析結(jié)果的異質(zhì)性。亞組分析顯示,植物乳酸桿菌對肉雞全期日增重(1.98,<0.001)和飼料轉(zhuǎn)化效率(-1.66,<0.001)的促進(jìn)作用優(yōu)于干酪乳桿菌(0.51,-0.68,≤0.02)和約氏乳桿菌(1.15,-0.16,≤ 0.02)。Meta分析表明,乳酸桿菌可改善不同階段肉雞的日增重和飼料轉(zhuǎn)化效率,對采食量無顯著影響。不同乳酸桿菌的促進(jìn)作用存在差異,其中植物乳桿菌的促進(jìn)作用最優(yōu)。
乳酸桿菌;肉雞;生長性能;Meta分析
【研究意義】抗生素作為生長促進(jìn)劑曾在肉雞飼料中廣泛使用[1-3],長期使用抗生素可導(dǎo)致耐藥菌[4]、藥物殘留[5-6]以及腸道菌群失衡[7-8]等問題,嚴(yán)重威脅家禽以及人類的健康,各國紛紛制定法規(guī)限用或禁用抗生素。【前人研究進(jìn)展】益生菌作為抗生素的替代品受到研究人員的關(guān)注,其中乳酸桿菌的研究最為廣泛,然而大量研究的結(jié)果并不一致。部分研究發(fā)現(xiàn)乳酸桿菌可以改善肉雞的日增重,降低日采食量和料重比[9-12];部分研究證實乳酸桿菌對肉雞生長性能無顯著影響[13-16];還有部分研究表明日糧中添加乳酸桿菌抑制肉雞的生長[17-19]。研究結(jié)果的不一致一方面可能由于部分試驗的樣本量過小,隨機誤差過大,掩蓋了處理效應(yīng)。另一方面可能是由于不同試驗選用的乳酸桿菌菌種、飼喂劑量、飼喂方式、作用時間和環(huán)境條件不同造成的。【本研究切入點】采用傳統(tǒng)的基于定性的文獻(xiàn)綜述很難總結(jié)出乳酸桿菌對肉雞生長性能的影響規(guī)律。Meta分析可以通過定量的方法,根據(jù)不同研究使用的樣本數(shù)量、指標(biāo)測定的標(biāo)準(zhǔn)差,確定不同研究結(jié)果的權(quán)重值,匯總多個相互獨立的研究結(jié)果。同時考慮研究對象的異質(zhì)性來剖析結(jié)果差異,從而獲得更準(zhǔn)確的分析結(jié)果[20]。【擬解決的關(guān)鍵問題】利用Meta分析系統(tǒng)評價乳酸桿菌對肉雞不同生長階段生產(chǎn)性能指標(biāo)的影響,同時采用亞組分析,比較不同乳酸桿菌菌種的作用效果,以期為肉雞生產(chǎn)提供一定的理論和數(shù)據(jù)參考。
通過Web of Science、Science Direct、SpringerLink、Google學(xué)術(shù)、中國知網(wǎng)、維普和萬方數(shù)據(jù)庫篩選相關(guān)文獻(xiàn)。檢索方式為文章標(biāo)題和關(guān)鍵詞,英文檢索詞為:(lactobacillus or probiotics)and(broilers or poultry);中文檢索詞為:(乳酸桿菌或益生菌)和(肉雞或家禽)。文獻(xiàn)檢索時間截止到2018年4月。
(1)研究設(shè)計為隨機對照試驗;(2)研究對象為肉仔雞;(3)基礎(chǔ)日糧為玉米豆粕型日糧;(4)干預(yù)措施是在日糧中補充乳酸桿菌,并以基礎(chǔ)日糧作為對照,乳酸桿菌的添加劑量不在篩選范圍;(5)試驗以肉雞1日齡為開始時間,試驗持續(xù)時間為42 d;(6)肉雞生長性能的指標(biāo)包括平均日增重、平均日采食量或料重比,并且研究中給出了指標(biāo)的數(shù)值或平均值、標(biāo)準(zhǔn)差(SD)或標(biāo)準(zhǔn)誤(SE)。
(1)重復(fù)報告、會議論文、綜述、文獻(xiàn)摘要和未發(fā)表的文獻(xiàn);(2)試驗周期不符或者未在21或42日齡測定指標(biāo)的文獻(xiàn);(3)多種乳酸桿菌混合物或者乳酸桿菌與其他益生菌聯(lián)合作用的文獻(xiàn);(4)乳酸桿菌發(fā)酵飼料等加工處理后用于肉雞上的文獻(xiàn);(5)數(shù)據(jù)不全或者無法利用的文獻(xiàn)。
本研究使用Review Manager(version 5.3)進(jìn)行Meta數(shù)據(jù)分析。首先對納入文獻(xiàn)的生長性能數(shù)據(jù)進(jìn)行異質(zhì)性檢驗,以I2統(tǒng)計量為異質(zhì)性大小,以<0.05為異質(zhì)性顯著標(biāo)準(zhǔn)。由于本次分析發(fā)現(xiàn)各項指標(biāo)均存在顯著的異質(zhì)性,故采用隨機效應(yīng)模型對連續(xù)型數(shù)據(jù)進(jìn)行分析,計算效應(yīng)量,使得結(jié)果更加接近無偏估計。效應(yīng)量采用標(biāo)準(zhǔn)化均數(shù)差(standardized mean difference, SMD)表示,SMD為兩組(乳酸桿菌組和對照組)均數(shù)的差值除以兩組標(biāo)準(zhǔn)差平均值的商。SMD消除了不同試驗直接結(jié)果差異過大的影響。然后根據(jù)不同試驗所用樣本量和標(biāo)準(zhǔn)差的大小,確定試驗的權(quán)重,計算綜合SMD。通過漏斗圖查看納入文章的發(fā)表偏倚,并通過STATA 12.0進(jìn)行egger檢驗。如存在發(fā)表偏倚則進(jìn)行敏感性分析。敏感性分析的方法為:隨機刪除一篇納入文獻(xiàn),重新計算綜合SMD,連續(xù)操作10次,觀察綜合SMD的變異系數(shù)。由于本次分析各項指標(biāo)均存在顯著異質(zhì)性,因此根據(jù)乳酸桿菌菌種進(jìn)行亞組分析,探討不同乳酸桿菌對肉雞生長性能的影響效果。
通過在數(shù)據(jù)庫中對標(biāo)題和關(guān)鍵詞檢索,共獲得300篇相關(guān)文獻(xiàn),按照上述納入與排除標(biāo)準(zhǔn)逐步篩選后,最終有24篇文獻(xiàn)[9-10,12,14-17,21-37]納入本次Meta分析,包括25項試驗,8 702個研究對象。平均每個試驗348只肉雞,每個處理103只肉雞。其中在試驗前期(1—21日齡)測定生產(chǎn)性能指標(biāo)的有14篇,試驗后期(22—42日齡)有14篇,試驗全期(1—42日齡)有23篇。83%的文獻(xiàn)說明了肉雞品種(其中45%為Arbor Acres,20%為Ross,25%為Cobb,10%為其他品種)。試驗中肉公雞占46%,公母肉雞混合占21%,未標(biāo)明性別占33%。添加的乳酸桿菌菌種有植物乳桿菌、嗜酸乳桿菌、干酪乳桿菌、約氏乳桿菌、唾液乳桿菌、芽孢乳桿菌、發(fā)酵乳桿菌、羅伊氏乳桿菌和卷曲乳桿菌。乳酸桿菌的飼喂方式通過飲水或日糧,添加劑量為105—1010cfu/g(ml)。所有試驗均為玉米豆粕型日糧。
由表1可見,飼糧中添加乳酸桿菌顯著提高1—42日齡肉雞的平均日增重(<0.001),SMD為1.53,95% 置信區(qū)間(CI)為1.22—1.84;顯著降低料重比(<0.001),SMD為-1.50,95% CI為-1.92—-1.08;對采食量無顯著影響(0.470)。分別分析肉雞前期(1—21日齡)和后期(22—42日齡)的生長數(shù)據(jù)發(fā)現(xiàn),乳酸桿菌顯著提高肉雞前期日增重(SMD=1.05,<0.001),有提高后期日增重的趨勢(SMD=0.52,0.090);顯著降低前期料重比(SMD=-1.31,<0.001)和后期料重比(SMD=-0.94,<0.001)。從SMD的數(shù)值上可以看出,乳酸桿菌對肉雞前期的促生長效果優(yōu)于后期。

表1 乳酸桿菌對肉雞生長性能影響的Meta分析
n:肉雞試驗樣本比較數(shù),SMD:標(biāo)準(zhǔn)化均差,CI:置信區(qū)間,效應(yīng)量為隨機效應(yīng)模型
n: Number of comparisons, SMD: Standardized mean difference, CI: Confidence interval, Effect sizes were estimated from a random effects model
異質(zhì)性檢驗表明,不同階段生長性能指標(biāo)均存在顯著的異質(zhì)性(<0.001),I2值在97—99。因此本次分析采用了隨機效應(yīng)模型進(jìn)行計算綜合SMD,同時需要針對可能導(dǎo)致異質(zhì)性的關(guān)鍵因素進(jìn)行分組,進(jìn)一步進(jìn)行亞組分析。
運用Review Manager5.3,對納入文獻(xiàn)的效應(yīng)指標(biāo)進(jìn)行偏倚性分析。從漏斗圖(圖1)可以看出,散點基本位于中線兩側(cè),但不完全對稱,個別散點明顯偏離豎線,表明本次納入文獻(xiàn)存在部分發(fā)表偏倚;egger分析結(jié)果顯示,前期F/G(=0.012)和后期ADFI(=0.006)偏倚性達(dá)到顯著水平,其他指標(biāo)并未達(dá)到顯著水平(>0.05),因此對這兩個指標(biāo)meta分析結(jié)果的解讀需要謹(jǐn)慎。敏感性分析表明(表2),隨機刪除一篇文獻(xiàn)后,不同階段ADG和F/G的SMD與原結(jié)果差異不大,連續(xù)操作10次總變異系數(shù)在3.89%—7.13%,表明本次Meta分析的ADG和F/G結(jié)果具有很好的穩(wěn)定性,排除個別文獻(xiàn)后不會對Meta分析的結(jié)果造成明顯影響。而隨機刪除一篇文獻(xiàn)后,不同階段ADFI的SMD結(jié)果變異很大,10次總變異系數(shù)在13.38%—18.94%,表明不同文獻(xiàn)研究結(jié)果差異非常大,刪除一篇將影響到最終結(jié)果,這也可能是Meta分析后無法得到顯著結(jié)果的原因。
根據(jù)乳酸桿菌菌種進(jìn)行亞組分析后,結(jié)果的異質(zhì)性有一定程度的降低(表3)。這表明菌種差異是引起異質(zhì)性的重要來源,但亞組分析后異質(zhì)性仍然顯著,表明即使使用相同的菌種,乳酸桿菌的添加劑量、飼養(yǎng)方式以及肉雞品種、環(huán)境條件等方面不同仍可能導(dǎo)致試驗結(jié)果的差異。由表3可知,植物乳桿菌顯著提高肉雞全期日增重(SMD=1.98,<0.001),顯著降低料重比(SMD=-1.66,<0.001);嗜酸乳桿菌顯著提高肉雞日增重(SMD=1.58,<0.001),顯著降低采食量(SMD=-0.41,0.010)和料重比(SMD=-0.67,=0.020);干酪乳桿菌顯著提高全期肉雞日增重(SMD=0.51,0.002),降低料重比(SMD=-0.68,<0.001);約氏乳桿菌顯著提高肉雞日增重(SMD=1.15,0.002),顯著降低料重比(SMD=-0.16,0.020)。從SMD的數(shù)值上可以看出,植物乳桿菌和嗜酸乳桿菌的促生長效果優(yōu)于干酪乳桿菌;植物乳桿菌改善飼料轉(zhuǎn)化率的效果優(yōu)于其他三種乳桿菌。綜合而言,植物乳桿菌促進(jìn)肉雞生長性能的效果最優(yōu)。

A—C:肉雞前期;D—F:肉雞后期 A-C: broilers in the early stage; D-F: broilers in the late stage

表2 Meta分析結(jié)果的敏感性分析

表3 不同乳酸桿菌對肉雞全期生長性能影響的亞組分析
n:肉雞試驗樣本數(shù),SMD:標(biāo)準(zhǔn)化均差,Cl:置信區(qū)間。效應(yīng)量為隨機效應(yīng)模型
n: Number of comparisons, SMD: Standardized mean difference, CI: Confidence interval. Effect sizes were estimated from a random effects model
近年來大量文獻(xiàn)報道了乳酸桿菌對肉雞生長性能的影響,但結(jié)果存在很大差異。采用傳統(tǒng)的基于定性的文獻(xiàn)綜述很難總結(jié)出乳酸桿菌對肉雞生長性能的影響。本文采用Meta分析,根據(jù)不同研究使用的樣本數(shù)量、指標(biāo)測定的標(biāo)準(zhǔn)差,確定不同研究結(jié)果的權(quán)重值,匯總多個相互獨立的研究結(jié)果。結(jié)果發(fā)現(xiàn)乳酸桿菌可以顯著提高肉雞不同階段的日增重和飼料轉(zhuǎn)化效率。敏感性分析表明,乳酸桿菌提高肉雞不同階段日增重和飼料轉(zhuǎn)化效率的結(jié)果較為穩(wěn)定,并非受少數(shù)研究結(jié)果的影響,但關(guān)于采食量的分析結(jié)果敏感性較差,主要由于不同文獻(xiàn)關(guān)于肉雞采食量的結(jié)果差異較大,刪除任意一篇文獻(xiàn)將影響到最終分析結(jié)果,這可能是Meta分析無法得出顯著結(jié)果的原因。導(dǎo)致研究結(jié)果差異較大的主要原因可能有3個:所用菌種不同、添加劑量不同,肉雞的階段不同。但是亞組分析發(fā)現(xiàn),即使是同一菌種,對于采食量的影響仍無法得出顯著的一致結(jié)果,同樣針對肉雞前期和后期分別進(jìn)行meta分析,也未得出顯著的一致結(jié)果,我們又將所納入文獻(xiàn)中的添加劑量與采食量進(jìn)行了相關(guān)分析,也未發(fā)現(xiàn)添加劑量和采食量存在顯著的相關(guān)關(guān)系。推測乳酸桿菌對于肉雞采食量的影響可能存在較強的特異性,特定的菌種、特定的劑量、特定的使用階段將產(chǎn)生特定的效果。因而無法得出相對一致meta分析結(jié)果。雖然敏感性分析表明,乳酸桿菌提高肉雞日增重和飼料轉(zhuǎn)化效率的結(jié)果較為穩(wěn)定,但同樣存在顯著的異質(zhì)性,針對不同菌種進(jìn)行亞組分析后,異質(zhì)性明顯降低,但仍然達(dá)到顯著。這可能是由于不同試驗即使選用同一菌種,但是使用的菌株不同,或者飼喂劑量、飼喂方式以及環(huán)境條件、肉雞品種等存在差異造成的。
乳酸桿菌具有較強的產(chǎn)酸能力,通過降低腸道pH值,維持腸道菌群的穩(wěn)態(tài),同時可以分泌細(xì)菌素,以及通過占位競爭等方式減少腸道有害菌的數(shù)量,維持腸道健康,保證腸道正常的消化吸收功能,這是乳酸桿菌發(fā)揮益生效果的關(guān)鍵因素[38-41]。另外乳酸桿菌可以產(chǎn)生多種酶[42],促進(jìn)碳水化合物和蛋白質(zhì)的降解,其發(fā)酵產(chǎn)生的揮發(fā)性脂肪酸,也可被腸道直接利用,這也是乳酸桿菌促進(jìn)肉雞生產(chǎn)性能的因素之一。本文分析表明,乳酸桿菌對肉雞前期的促生長效果優(yōu)于后期。在肉雞生長前期,腸道優(yōu)勢菌群處于逐步建立的過程,容易受到外界因素的干擾,導(dǎo)致腸道菌群失衡,影響肉雞的生長和健康,此時添加乳酸桿菌有利于維持肉雞腸道的菌群平衡,因此對于肉雞生長前期作用效果更為顯著。本文亞組分析表明,植物乳桿菌、嗜酸乳桿菌、干酪乳桿菌和約氏乳桿菌均能顯著的促進(jìn)肉雞生長性能的效果,綜合而言,植物乳桿菌的促進(jìn)作用最優(yōu)。植物乳桿菌具有較強的產(chǎn)酸和體外抑菌作用[43-44],同時是一種典型的兼性厭氧菌,且具有良好的耐酸、耐膽鹽和粘附腸上皮細(xì)胞的特性[45],這可能是其改善肉雞生長性能的關(guān)鍵原因。目前有關(guān)植物乳桿菌的應(yīng)用研究最多,表明其受到廣泛的關(guān)注。今后需要進(jìn)一步研究植物乳桿菌菌種內(nèi)不同亞種或不同菌株的促生長效果,以期篩選出更加有效的益生菌株。
Meta分析結(jié)果顯示乳酸桿菌能顯著提高肉雞不同階段日增重和飼料轉(zhuǎn)化效率。從SMD的數(shù)值上可以看出,乳酸桿菌對肉雞前期的促生長效果優(yōu)于后期;亞組分析表明,植物乳桿菌、嗜酸乳桿菌、干酪乳桿菌和約氏乳桿菌均可顯著的促進(jìn)肉雞生長性能的效果,綜合而言,植物乳桿菌的促進(jìn)作用最優(yōu)。
[1] Lee K W, Hong Y H., Lee S H, Jang S I, Park M S, Bautista D A, Ritter G D, Jeoung,H Y, An D J, Lillehoj E P, Lillehoj H S. Effects of anticoccidial and antibiotic growth promoter programs on broiler performance and immune status.2012, 93(2): 721-728.
[2] Chattopadhyay M K. Use of antibiotics as feed additives: a burning question.2014, 5: 334.
[3] Eckert N H, Lee J T, Hyatt D, Stevens S M, Anderson S, Anderson P N, Beltran R, Schatzmayr G, Mohnl M, Caldwell D J. Influence of probiotic administration by feed or water on growth parameters of broilers reared on medicated and nonmedicated diets.2010, 19(1): 59-67.
[4] Forgetta V, Rempel H, Malouin F, Vaillancourt J R, Topp E, Dewar K, Diarra M S. Pathogenic and multidrug- resistantfrom broiler chicken.2012, 91(2): 512-525.
[5] Carvalho I T, Santos L. Antibiotics in the aquatic environments: A review of the European scenario., 2016, 94: 736-757.
[6] Ronquillo M G, Hernandez J C A. Antibiotic and synthetic growth promoters in animal diets: review of impact and analytical methods.2017, 72: 255-267.
[7] Zorriehzahra M J, Delshad S T, Adel M, Tiwari R, Karthik K, Dhama K, Lazado C C. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review.2016, 36(4): 228-241.
[8] GAO P, MA C, SUN Z, WANG L, HUANG S, SU X, XU J, ZHANG H. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken., 2017, 5(1): 91.
[9] Wang H, Ni X, Qing X, Zeng D, Luo M, Liu L, Li G, Pan K, Jing B. Live probioticBS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers.2017, 8: 1073.
[10] Forte C, Manuali E, Abbate Y, Papa P, Vieceli L, Tentellini M, Trabalza-Marinucci M, Moscati L. Dietarypositively influences growth performance, gut morphology, and gut microbiology in rurally reared chickens.2017, 97(3): 930-936.
[11] Apata D F. Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a culture of.2008, 88(7): 1253-1258.
[12] Panda A K, Rao S V R, Raju M V L N, Sharma S R. Dietary supplementation ofon performance and serum biochemico-lipid profile of broiler chickens., 2006, 43(3): 235-240.
[13] Awad W A, Ghareeb K, Abdel-Raheem S, B?hm J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens.2009, 88(1): 49-56.
[14] Yu B, Liu J R, Chiou M Y, Hsu Y R, Chiou P W S. The effects of probioticPg4 strain on intestinal characteristics and performance in broilers.2007, 20(8): 1243-1251.
[15] Han J, Wang Y, Song D, Lu Z, Dong Z, Miao H, Wang W, He J, Li A. Effects ofandon growth performance, immune function and volatile fatty acid level of caecal digesta in broilers., 2018, 29(1): 798-807.
[16] Liu L, Ni X, Zeng D, Wang H, Jing B, Yin Z, Pan K. Effect of a dietary probiotic,BS15, on growth performance, quality traits, antioxidant ability, and nutritional and flavour substances of chicken meat.2017, 57(5): 920-926.
[17] 李陽, 常文環(huán), 張姝, 鄭愛娟, 劉國華, 蔡輝益, 劉偉. 飼糧添加殼寡糖和干酪乳桿菌對肉雞生長性能、肌肉品質(zhì)及抗氧化性能的影響. 動物營養(yǎng)學(xué)報, 2016, 28(5): 1450-1461.
Li Y, Chang W H, Zhang S, Zheng A J, Liu G H, Cai H Y, Liu W. Effects of dietary chitosan oligosaccharide andon growth performance,meat quality and antioxidant function of broilers., 2016, 28(5): 1450-1461. (in Chinese)
[18] Zou X, Xiao R, Li H, Liu T, Liao Y, Wang Y, Wu S, Li Z. Effect of a novel strain ofM8 and tea polyphenol diets on performance, meat quality and intestinal microbiota in broilers.2018, 17(2): 396-407.
[19] Li Z, Wang W, Liu D, Guo Y. Effects ofon the growth performance and intestinal health of broilers challenged with.2018, 9(1): 25.
[20] Sauvant D, Schmidely P, Daudin J J, St-Pierre N R. Meta-analyses of experimental data in animal nutrition.2008, 2(8): 1203-1214.
[21] Huang M K, Choi Y J, Houde R, Lee J W, Lee B, Zhao X. Effects ofand an acidophilic fungus on the production performance and immune responses in broiler chickens.2004, 83(5): 788-795.
[22] Salarmoini M, Fooladi M H. Efficacy ofas probiotic to improve broiler chicks performance., 2010, 13: 165-172.
[23] Thanh N T, Loh T C, Foo H L, Hair-Bejo M, Azhar B K. Effects of feeding metabolite combinations produced byon growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers.2009, 50(3): 298-306.
[24] Loh T C, Thanh N T, Foo H L, HAIR-BEJO M, Azhar B K. Feeding of different levels of metabolite combinations produced byon growth performance, fecal microflora, volatile fatty acids and villi height in broilers., 2010, 81(2): 205-214.
[25] Peng Q, Zeng X F, Zhu J L, Wang S, Liu X T, Hou C L, Thacker P A, Qiao S Y. Effects of dietaryB1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens.2016, 95(4): 893-900.
[26] Shen X, Yi D, Ni X, Zeng D, Jing B, Lei M, Bian Z, Zeng Y, Li T, Xin J. Effects ofon production performance, immune characteristics, antioxidant status, and intestinal microflora of bursin-immunized broilers.2014, 60(4): 193-202.
[27] Taheri H R, Moravej H, Tabandeh F, Zaghari M, Shivazad M. Efficacy of combined or single use ofLT116 andLT171 on broiler performance., 2010, 51(5): 580-585.
[28] 劉磊, 朱立賢. 芽孢乳桿菌對肉仔雞生產(chǎn)性能、腸道發(fā)育和微生物菌群的影響. 動物營養(yǎng)學(xué)報, 2011, 23(12): 2136-2142.
Liu L, Zhu L X. Effects ofon performance, intestinal development and microflora of broilers.2011, 23(12): 2136-2142. (in Chinese)
[29] 梁海威, 朱海洋, 張琳, 白明昧, 張建營, 秦貴信, 甄玉國. 植物乳桿菌對肉雞生長性能和血清生化指標(biāo)的影響. 中國畜牧獸醫(yī), 2015, 42(3): 589-596.
Liang H W, Zhu H Y, Zhang L, Bai M M, Zhang J Y, Qin G X, Zhen Y G. Effect ofon growth performance and serum biochemical indices of broilers.2015, 42(3): 589-596.(in Chinese)
[30] 林顯華, 李春鳳, 王靜, 王芳, 谷巍. 植物乳桿菌對肉雞生長性能和蛋白質(zhì)消化率的影響. 飼料廣角, 2013(14): 28-30.
Lin X H, Li C F, Wang J, Wang F, Gu W. Effects ofon growth performance and protein digestibility of broilers.2013(14): 28-30.(in Chinese)
[31] 趙巍, 孫喆, 王欣, 付麗, 梁海威, 甄玉國. 滅活植物乳桿菌培養(yǎng)物對肉仔雞生長性能、盲腸菌群及血清生化指標(biāo)的影響. 中國獸醫(yī)學(xué)報, 2016, 36(8): 1440-1445.
Zhao W, Sun Z, Wang X, Fu L, Liang H W, Zhen Y G. Effect of inactivatedcultures on growth performance, cecal microflora and serum biochemical indexes of broilers.2016, 36(8): 1440-1445.(in Chinese)
[32] 劉偉學(xué), 武文斌. 干酪乳酸桿菌對肉雞生長性能及消化功能的影響. 飼料與畜牧, 2011(12): 8-11.
Liu W X, Wu W B. Effects ofon growth performance and digestive function of broilers., 2011(12): 8-11.(in Chinese)
[33] 付果花. 發(fā)酵乳桿菌-F-6對肉雞生長性能及消化功能的影響[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué), 2010.
Fu G H. Effects off-6 on growth performance and digestive function of broiler chickens[D]. Huhhot: Inner Mongolia Agricultural University, 2010.(in Chinese)
[34] Shokryazdan P, Faseleh J M, Liang J B, Ramasamy K, Sieo C C, Ho Y W. Effects of amixture on performance, intestinal health and serum lipids of broiler chickens.2017, 12(5): e0175959.
[35] De C A, Sirri F, Manfreda G, Moniaci P, Giardini A, Zampiga M, Meluzzi A. Effect of dietary supplementation withD2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens., 2017, 12(5): e0176309.
[36] Vantsawa P A,Umar T, Bulus T. Effects of probioticon performance of broiler chickens.2017, 5(8):302-306.
[37] 劉乃芝, 陳靜, 崔詩法, 閆福海, 谷巍. 添加不同水平的植物乳桿菌對肉雞生產(chǎn)性能和免疫機能的影響. 江西農(nóng)業(yè)學(xué)報, 2012, 24(6): 108-111.
Liu N Z, Chen J, Cui S F, Yan F H, Gu W. Effects of supplementing different levels ofon growth performance and immunity of Broilers.2012, 24(6): 108-111.(in Chinese)
[38] Aiba Y, Suzuki N, Kabir A M, Takagi A, Koga Y. Lactic acid-mediated suppression ofby the oral administration ofas a probiotic in a gnotobiotic murine model., 1998, 93(11): 2097-2101.
[39] Deraz S F, Karlsson E N, Hedstr?m M, Andersson M M, Mattiasson B. Purification and characterisation of acidocin D20079, a bacteriocin produced byDSM 20079.2005, 117(4): 343-354.
[40] Ao X, Zhang X, Shi L, Zhao K, Yu J, Dong L, Cao Y, Cai Y. Identification of lactic acid bacteria in traditional fermented yak milk and evaluation of their application in fermented milk products., 2012, 95(3): 1073-1084.
[41] Hussein A R, Khalaf Z Z, Samir Z, Samir R. Antibacterial activity of crud Bacteriocin-like substance against food borne bacterial pathogens.2018, 59(1A): 16-24.
[42] 趙紅霞, 詹勇, 許梓榮. 乳酸菌的研究及其應(yīng)用. 江西飼料, 2003, 1: 9-12.
Zhao H X, Zhan Y, Xu Z R. Research and application of., 2003, 1: 9-12.(in Chinese)
[43] Wilson S, Norton P, Haverson K, Leigh J, Bailey M. Development of the palatine tonsil in conventional and germ-free piglets.2005, 29(11): 977-987.
[44] Von Mollendorff J W, Todorov S D, Dicks L M T. Comparison of bacteriocins produced by lactic-acid bacteria isolated from boza, a cereal-based fermented beverage from the Balkan Peninsula., 2006, 53(3): 209-216.
[45] Bujalance C, Moreno E, Jimenez-Valera M, Ruiz- Bravo A. A probiotic strain ofstimulates lymphocyte responses in immunologically intact and immunocompromised mice.2007, 113(1): 28-34.
Effects ofSupplements on Growth Performance of Broilers: a Meta-analysis
XING Shuang, FENG JingHai
(Institute of Animal Science, Chinese Academy of Agricultural Sciences/State Key Laboratory of Animal Nutrition, Beijing 100193)
【】The purpose of present study was to analyze the effects ofsupplements on the growth performance of broilers by meta-analysis. 【】A total of 24 articles, including 25 trials and 8 702 subjects, were retrieved from domestic and foreign databases. Reviewing Manager (version 5.3) was used to calculate the standardized mean difference (SMD)(the difference betweengroup and control group divided by the mean of standard deviation between the two groups). According to the number of samples used in different studies and the standard deviation determined by the indicators, the weights of different research results were determined, and several independent research results were summarized. According to I2statistics, the heterogeneity of growth performance data was tested, and the publication bias was analyzed by funnel plot and egger test. The random effect model was used to analyze the continuous data for the significant heterogeneity of each index in this analysis and subgroup analysis was carried out according tostrains to explore the effects of differenton the growth performance of broilers.【】The analysis showed thatsignificantly increased the ADG (SMD=1.53,<0.001) and reduced the F/G (SMD= -1.50,<0.001) of broilers during 0-6 week period of the experiment, and had no significant effect on feed intake (=0.470).significantly increased the ADG of broilers (SMD=1.05,<0.001) in the growing period, and had a tendency to improve ADG (SMD=0.52,0.090) in the finishing period, significantly reduced the growing F/G (SMD= -1.31,<0.001) and the finishing F/G (SMD= -0.94,<0.001). The growth-promoting effect ofon broilers was better than that the finishing period according to the value of SMD. Funnel plot and egger analysis showed that the bias of F/G (P=0.012) and ADFI (P=0.006) in the early stage reached a significant level, while the biases of other indicators were not significant (>0.05). Sensitivity analysis found that random deletion of arbitrary literature data had little effect on the analysis of daily gain and feed-to-weight ratio, indicating that the above results were stable and were not affected by one or several articles. The heterogeneity test found that there was significant heterogeneity in the analysis results of each growth index (<0.001), indicating that the results of different literatures differed greatly, possibly due to differences in thespecies or feeding doses used in different studies. Subgroup analysis based onspecies could reduce the heterogeneity of the meta-analysis. Subgroup analysis showed thatpromoted the daily weight gain (1.98,<0.001) and feed conversion efficiency (-1.66,<0.001) on broiler 0-6 week period better than(0.51, -0.68,≤0.02) and(1.15, -0.16,≤0.02). 【】In conclusion, the meta-analysis showed thatcould increase the daily weight gain and feed conversion efficiency of broilers at different period, and had no significant effect on feed intake. The promotion effect ofwas different, among whichwas better.
; broilers; growth performance; meta-analysis
10.3864/j.issn.0578-1752.2020.01.017

2019-03-07;
2019-04-15
國家重點研究發(fā)展計劃(2016YFD0500509)、中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS09)
邢爽,E-mail:1194325185@qq.com。通信作者馮京海,E-mail:fjh6289@126.com
(責(zé)任編輯 林鑒非)