徐婧,姜鈺,胡蘭,劉可杰,徐秀德
高粱抗炭疽病資源篩選及病情與產(chǎn)量損失的關系
徐婧,姜鈺,胡蘭,劉可杰,徐秀德
(遼寧省農(nóng)業(yè)科學院植物保護研究所,沈陽 110161)
【】針對高粱炭疽?。ǎ┰谏a(chǎn)上突發(fā)流行問題,以利用寄主抗病性控制病害為目的,在人工接種條件下篩選高粱抗炭疽病資源,明確病害嚴重度與產(chǎn)量損失關系,為高粱抗炭疽病育種和田間病害產(chǎn)量損失評估提供科學依據(jù)和指導。2016—2017年連續(xù)2年以高粱炭疽病菌()菌株SY-1為供試菌株,采用人工接種方法對74份國內外高粱種質資源抗高粱炭疽病特性進行測定和評價;利用已知對高粱炭疽病抗性不同的20份高粱資源作為供試材料,在人工接種條件下測定病害不同程度所造成的產(chǎn)量損失,并采用相關分析的方法分析高粱主要產(chǎn)量性狀與炭疽病為害程度之間的關系。從供試的74份資源中,篩選出表現(xiàn)高度抗?。╤ighly resistant,HR)資源21份,占鑒定資源總數(shù)的28.38%;抗?。╮esistant,R)資源12份,占鑒定資源總數(shù)的16.22%;中度抗病(moderately resistant,MR)資源26份,占鑒定資源總數(shù)的35.14%;感病(susceptible,S)資源8份,占鑒定資源總數(shù)的10.81%;高度感?。╤ighly susceptible,HS)資源7份,占鑒定資源總數(shù)的9.46%。病害嚴重程度與產(chǎn)量損失關系研究結果表明,高粱炭疽病對高粱單穗粒重和千粒重影響顯著,不同病情級別間的穗粒重及千粒重損失率差異顯著;病害嚴重程度(1—9級)間的穗粒重損失率幅度為0.37%—78.00%,千粒重損失率為0.03%—44.43%。相關分析表明,高粱穗粒重及千粒重損失率與病害級別均呈指數(shù)相關,隨著病害級別的升高,高粱穗粒重及千粒重損失率逐漸升高,且穗粒重損失率比千粒重損失率升高更快。病害嚴重度與癥狀表現(xiàn)關系密切,高度抗病(1級)資源的病株葉片上有不規(guī)則圓形小斑點,無分生孢子盤產(chǎn)生;抗?。?級)資源的病株葉片上有不規(guī)則圓形及橢圓形小型病斑,有零星分生孢子盤;中抗(5級)資源植株葉片上有大量不規(guī)則圓形、橢圓形斑點,有黑色分生孢子盤和孢子形成,穗枝梗亦有橢圓形斑點;感?。?級)資源植株葉片上有不規(guī)則圓形、橢圓形、長條形病斑,有大量黑色分生孢子盤和孢子形成,穗部枝梗病斑明顯,部分葉片枯死,個別植株近于死亡。高度感病(9級)資源植株葉片上病斑連片,有大量黑色分生孢子盤和孢子,穗部枝梗病斑較多,大部分葉片枯死,植株近于死亡。篩選出21份高抗資源,明確了高粱炭疽病病情級別與高粱產(chǎn)量損失呈指數(shù)相關,隨著病害級別的增高,高粱穗粒重及千粒重損失率相應升高。此外,高粱炭疽病不同病情級別相對應病害癥狀明顯不同。
高粱;炭疽??;抗性鑒定;產(chǎn)量損失
【研究意義】高粱((L.) Moench)是世界上重要的糧食作物之一,被用作飼料、釀制酒和醋的原料以及其他的工業(yè)原料。由亞線孢炭疽菌(P. Henn,曾用名為禾生炭疽菌(Ces.)G W Wilson)侵染引起的高粱炭疽病是世界上重要的高粱病害之一,在環(huán)境溫暖濕潤的熱帶和亞熱帶地區(qū)發(fā)生危害更為嚴重[1],可造成高粱產(chǎn)量損失達30%—100%[2]?!厩叭搜芯窟M展】歷史上,中國高粱炭疽病一直被認為是次要病害,盡管在南方高粱種植區(qū)有該病發(fā)生,但未見有造成嚴重損失的報道[3]。近年來,該病害在中國高粱產(chǎn)區(qū)具有不同程度發(fā)生,尤其是四川、云南、貴州、甘肅等省區(qū)發(fā)生嚴重,局部地區(qū)感病品種幾乎絕收,現(xiàn)已成為中國高粱生產(chǎn)上的主要病害[4]。該病菌可通過土壤、種子和氣流傳播[5-6],能侵染高粱葉片、莖稈和穗部枝梗等所有地上部分[7]。該病菌具有明顯致病性分化現(xiàn)象[8-11],易發(fā)生致病性變異,一旦新的生理小種產(chǎn)生,將導致病害突發(fā)流行,采用藥劑等防治措施難以奏效。生產(chǎn)實踐證明,種植抗性品種是防治高粱炭疽病的既經(jīng)濟又有效的措施,而抗病資源篩選是成功選育抗病品種的關鍵。國外學者高度重視利用寄主抗性防治高粱炭疽病,開展了抗病基因資源挖掘和抗性品種選育,Buiate等[12]分別用12個炭疽病菌株對87份高粱資源和63個雜交種進行接種,發(fā)現(xiàn)有14.94%的資源和19.04%的雜交種表現(xiàn)抗病性,且病菌不同菌株間的致病性有很大差別;Prom等[13]于2005—2006年,對40份來自中國的高粱試材進行抗性鑒定,篩選出PI430471、PI563905、PI563924和PI563960等抗高粱炭疽病材料,同年對來自烏干達的高粱資源進行抗性鑒定,篩選出一些抗病資源[14];此后,Prom等[15]于2007和2008年又對來自埃塞俄比亞、馬里、蘇丹和烏干達的72份高粱資源進行抗炭疽病鑒定,篩選出26份抗性資源,研究認為廣泛收集不同地區(qū)的高粱資源進行抗性鑒定將有助于篩選和獲得新的抗病資源。諸多高粱抗炭疽病資源鑒定研究采用自然發(fā)病進行[16-19],一些以抗病性遺傳和抗性基因標記為目的的研究多采用人工接種[20],但因所鑒定的試驗材料、試驗環(huán)境不同,及接種病菌小種和接菌量不同[21],資源抗感性評價結果不盡一致,育種者難以直接參考和利用?!颈狙芯壳腥朦c】中國高粱炭疽病是高粱生產(chǎn)上新流行的病害,有關高粱炭疽病研究資料甚少,僅有利用自然發(fā)病條件對當?shù)馗吡毁Y源的抗性進行觀察的報道[22-23],由于缺乏適宜的高粱抗炭疽病資源篩選和評價方法,人工接種條件下進行高粱抗炭疽病鑒定篩選工作開展困難,育種上抗病資源缺乏,致使生產(chǎn)上應用的高粱品種抗性水平低,病害加重流行?!緮M解決的關鍵問題】本研究以利用寄主抗病性控制病害為出發(fā)點,利用高粱抗炭疽病鑒定技術[24]進行高粱抗炭疽病資源鑒定和抗源篩選,使該技術得到進一步完善,篩選出抗病資源供育種者利用。同時研究明確病害嚴重度與產(chǎn)量損失關系,為高粱抗炭疽病育種和田間病害產(chǎn)量損失評估提供科學依據(jù)和技術支撐。
1.1.1 種質資源 供鑒定的高粱種質資源74份,來源于國內外收集引進及遼寧省農(nóng)業(yè)科學院植物保護研究所旱糧病害防控課題組在高粱抗病資源研究中新創(chuàng)自選品系。用已知高抗炭疽病材料L414B和高感材料NR10分別作為抗病和感病對照。上述高粱資源均經(jīng)嚴格套袋自交、性狀觀察,獲得純種子備用。
1.1.2 菌種 供試高粱炭疽病菌()菌株SY-1,采自遼寧省沈陽市田間自然發(fā)病的高粱炭疽病病葉,經(jīng)形態(tài)學、分子生物學鑒定和致病力測定獲得的強致病力菌株,于遼寧省農(nóng)業(yè)科學院植物保護研究所保存。
1.2.1 接種物制備 將供試菌株轉接到酪蛋白-乳糖水解液培養(yǎng)基(lactose casein hydrolysate medium)上,24℃光暗交替培養(yǎng)10—15 d,直至產(chǎn)生大量分生孢子。用無菌水將孢子從培養(yǎng)基上洗下,兩層紗布過濾后,將孢懸液濃度調節(jié)為1×105個/ml,供接種用。
1.2.2 抗病性鑒定 試驗于2016—2017年連續(xù)2年在遼寧省遼陽市試驗地進行。鑒定材料采用隨機排列,小區(qū)行長5 m,2行區(qū),行距0.6 m,小區(qū)保苗50株以上。試驗設年度間重復,田間管理按照常規(guī)高粱生產(chǎn)田進行。病害接種于高粱植株喇叭口末期,即喇叭口中可見旗葉尖端時期,用噴霧器將上述制備的孢子懸浮液噴灑于植株喇叭口中及周圍葉片上,每株用量10 ml,接種后24 h進行人工輔助噴霧、保濕。接種40 d后目測調查并記載鑒定材料的發(fā)病情況,重點調查接種部位葉片,病情級別及其抗性評價標準見表1。

表1 高粱炭疽病鑒定評價標準[24]
HR:高抗;R:抗;MR:中抗;S:感;HS:高感。下同
HR: Highly resistant; R: Resistant; MR: Moderately resistant; S: Susceptible; HS: Highly susceptible. The same as below
1.2.3 發(fā)病程度與產(chǎn)量損失的關系 依據(jù)高粱種質資源抗炭疽病鑒定結果,選取抗性不同的資源共20份(每抗性級別4份)作為供試材料,在人工接種條件下測定病害造成產(chǎn)量損失。田間試材采用隨機排列,小區(qū)行長8 m,4行區(qū),行距0.6 m,定苗時株距0.16 m,小區(qū)保苗200株,試驗重復3次。每小區(qū)一端3 m行長接種,另一端不接種作為對照。于高粱植株喇叭口末期,即在植株喇叭口中可見旗葉尖端時期,將上述方法(詳見1.2.1)制備的孢子懸浮液進行全株噴灑接種,噴液量以霧滴不流淌為宜。接種時,為了防止接種物飛濺感染未接種區(qū),將接種區(qū)植株用塑料布遮蓋24 h保濕。接種后,田間管理按照常規(guī)進行,40 d后目測調查并記載發(fā)病情況,病情級別及其抗性評價標準見表1。
在高粱籽粒成熟期收獲,每小區(qū)接種一端和不接種一端各按順序收獲大小較為均勻的高粱穗10穗,接種植株和未接種穗分別以病穗和健穗表示。將收獲的穗帶回室內充分晾曬后,分別測量并記錄穗粒重及千粒重等指標。千粒重測定去除不成型的癟粒和破損籽粒,僅測定有效籽粒。以單穗粒重損失作為產(chǎn)量損失,分析高粱炭疽病病情級別(嚴重度)與產(chǎn)量損失的關系。
1.2.4 數(shù)據(jù)分析 采用DPS 7.5軟件,利用鄧肯新復極差法分別在<0.05和<0.01水平對穗粒重損失率和千粒重損失率進行差異顯著性分析;采用excel軟件,對發(fā)病級別與粒重損失率的關系進行線性回歸分析。
通過田間接種鑒定試驗結果(表2)可見,從供試的74份資源中,篩選出表現(xiàn)1級、高抗(HR)的有21份,占鑒定資源總數(shù)的28.38%;表現(xiàn)3級、抗?。≧)的12份,占鑒定資源總數(shù)的16.22%;表現(xiàn)5級、中抗(MR)的資源26份,占鑒定資源總數(shù)的35.14%;表現(xiàn)7級、感?。⊿)的資源8份,占鑒定資源總數(shù)的10.81%;表現(xiàn)9級、高感(HS)的資源7份,占鑒定資源總數(shù)的9.46%。由鑒定結果可知,74份高粱資源2年的抗性表現(xiàn)基本一致,最終結果以抗性級別高的年份為準,表現(xiàn)1級抗性數(shù)量相對較多,是因為人為選擇具有抗性的材料作為供試材料的緣故。試驗所用的抗感對照資源L414B和NR10分別表現(xiàn)出其各自的抗病和感病特性,分別為1級和9級,說明試驗接菌量、接種方法、評價技術以及環(huán)境條件適宜高粱炭疽病發(fā)生、資源抗性評價結果有效。
2.2.1 產(chǎn)量損失測定 高粱收獲后,對供試資源產(chǎn)量進行測量及分析結果表明,高粱炭疽病對單穗粒重和千粒重影響顯著(表3),供試20份資源對高粱炭疽抗性表現(xiàn)明顯不同,不同抗性級別間的穗粒重、千粒重損失率差異顯著;病級(1—9級)間的穗粒重損失率幅度為0.37%—78.00%,而千粒重損失率為0.03%—44.43%。病級1級的4份資源接種區(qū)穗粒重降低幅度0.37%—1.13%,千粒重降低幅度0.03%—0.57%,且與對照差異不顯著,其產(chǎn)量損失可以忽略不計。病級為3級的4份資源粒重降低幅度2.27%—4.4%,千粒重降低幅度1.39%—3.29%;5級的4份資源穗粒重降低幅度8.03%—13.02%,千粒重降低幅度2.69%—6.57%;7級的4份資源穗粒重降低幅度35.47%—44.57%,千粒重降低幅度12.09%—16.04%;9級的4份資源穗粒重降低幅度56.18%—78.00%,千粒重降低幅度25.86%—43.44%。
2.2.2 高粱主要產(chǎn)量性狀與病情級別的關系 相關分析表明,高粱穗粒重損失率與高粱炭疽病發(fā)病級別(嚴重度)之間關系密切,隨著病害級別的升高,高粱穗粒重損失率相應升高,且病害級別越高,穗粒重損失率越高(圖1),呈指數(shù)相關(=0.6018e0.558x,2=0.9782)。高粱千粒重損失率與高粱炭疽病級別之間關系與穗粒重損失率與病害級別之間關系基本相同(圖2),同樣呈指數(shù)相關(=0.2314e0.5804x,2=0.96),隨著病害級別的升高,千粒重損失率亦相應升高。但隨著病害級別的升高,穗粒重損失率比千粒重損失率升高更快,可能發(fā)病嚴重程度不僅影響籽粒的灌漿充實,還影響穗粒數(shù)的多少。田間觀察發(fā)現(xiàn),感?。?級)和高感(9級)植株除了葉片上有大量病斑,大部分葉片近于枯死,而且小穗枝梗上病斑明顯,有的小穗枝梗已經(jīng)枯萎,明顯影響?zhàn)B分輸導和光合作用,這可能與高病情級別植株籽粒灌漿不充實,穗粒數(shù)降低較大有關。
2.2.3 病害癥狀與病情級別 2016—2017年連續(xù)2年對田間高粱炭疽病觀察發(fā)現(xiàn),接種區(qū)發(fā)病較為理想,未接種區(qū)不發(fā)病。接種區(qū)不同級別資源仍表現(xiàn)出原有抗性(圖3),對照區(qū)未發(fā)病。高度抗?。?級)和抗?。?級)資源的接種行(3 m)末端未見向外擴展,高抗(1級)資源病株葉片上有不規(guī)則圓形及橢圓形小斑點,無分生孢子盤產(chǎn)生,抗病(3級)資源的病株葉片上有不規(guī)則圓形及橢圓形小型病斑,有零星分生孢子盤,個別資源穗枝梗偶見小紅褐色斑點。中抗(5級)資源種植行末端的病害已向外蔓延約1 m左右,病害癥狀為植株葉片上有大量不規(guī)則圓形、橢圓形斑點,有黑色分生孢子盤和孢子形成,穗枝梗亦有橢圓形斑點。感?。?級)和高感(9級)的接種行末端病害向外擴展明顯(2—3 m),且發(fā)病嚴重,感?。?級)資源植株葉片上有不規(guī)則圓形、橢圓形、長條形病斑,有大量黑色分生孢子盤和孢子形成,部分葉片枯死,個別植株近于死亡,穗部枝梗病斑明顯,已明顯影響光合和養(yǎng)分輸導。高度感?。?級)資源植株葉片上病斑連片,有大量黑色分生孢子盤和孢子,穗部枝梗病斑較多,大部分葉片枯死,植株近于死亡。

表2 高粱資源對炭疽病抗性鑒定結果
*:自行創(chuàng)新選育材料 *: Selection of materials for self-innovation

表3 高粱炭疽病對高粱主要產(chǎn)量性狀的影響
大小寫字母分別表示在5%和1%水平差異顯著 Capital letters and lower-case letters are differences significant at 5% and 1% level, respectively

圖1 高粱穗粒重損失率與病害級別的關系

圖2 高粱千粒重損失率與病害級別的關系

A:1級;B:3級;C:5級;D:7級;E:9級 A: 1 scale; B: 3 scale; C: 5 scale; D: 7 scale; E: 9 scale
高粱炭疽病是世界性的重要高粱病害,國內外研究表明,高粱炭疽病具有突發(fā)性和爆發(fā)性,一旦發(fā)生蔓延迅速,對高粱危害極大,種植抗性品種是防治該病害最有效的措施。世界上許多國家針對該病害開展高粱基因資源挖掘、抗病性遺傳和抗性基因標記研究[25-26],取得諸多重要研究結果。Cuevas等[27]對來自津巴布韋的68份高粱資源進行表型研究及抗性鑒定,發(fā)現(xiàn)供試資源的表型特征相差很大,且篩選出25份對高粱炭疽病表現(xiàn)抗性的資源,之后又對80份來自布基納法索(Burkina Faso)和南非(South Africa)的高粱資源進行抗炭疽病鑒定,篩選出12份抗炭疽病材料,其中10份來自BFA,可見來自BFA的高粱抗源豐富[28],這些結果的取得得益于抗源篩選和評價技術研究等基礎,相比之下,中國在此方面研究資料較少。本研究以利用寄主抗病性控制病害為目的,在人工接種條件下進行高粱抗炭疽病資源鑒定,并提供育種者利用,克服了目前育種上利用病害自然發(fā)生進行資源抗性評價易受環(huán)境影響,結果不準確的弊端,解決了育種上抗性資源缺乏和針對性不強的問題,這對于高粱抗病育種及病害深入研究至關重要。
有關病害所致產(chǎn)量損失研究報道較少,Ali等[29]選用4個高粱炭疽病抗感性不同品種,在人工接菌條件研究了病害與產(chǎn)量損失關系,認為高度感病品種產(chǎn)量損失可達30%。Thomas等[30]報道,采用同一試驗區(qū)種植2個抗感性不同品種,在自然發(fā)病條件下,以藥劑控制區(qū)作為對照測定了病害所致的產(chǎn)量損失,研究認為病害所致產(chǎn)量損失可達67%;Cota等[2]采用在病害嚴重流行區(qū)和輕病區(qū)種植相同品種進行病害調查和產(chǎn)量損失測定,結果表明,病害所致產(chǎn)量損失高達86%。不同學者所得出的結果不同,結論差別較大,這可能與供試病菌的致病力、環(huán)境條件及試驗方法不同有關,盡管如此,這些結果很有價值。本文總結前人研究方法的優(yōu)點,在人工接種條件下,明確了高粱炭疽病病情級別(1—9級)各級別相對應病害所致產(chǎn)量損失,為病害預警及高粱田間產(chǎn)量損失評估提供了科學依據(jù)。然而,高粱炭疽病發(fā)生嚴重程度和造成的損失受多種因素影響[31],由于本研究供試材料數(shù)量有限,獲得結果有一定局限性,病害級別與穗粒重變化關系尚需多年資料積累逐步完善。
篩選出高度抗病資源21份。明確了高粱穗粒重和千粒重損失率與病害級別均成指數(shù)相關,病害級別越高,穗粒重和千粒重損失率越大。此外,高粱炭疽病不同病情級別相對應的病害癥狀明顯不同。
致謝:本研究承蒙國家谷子、高粱產(chǎn)業(yè)技術體系專家提供部分試驗資源,在此謹表謝意。
[1] Chala A, Alemu T, Prom L K, Tronsmo A M. Effect of host genotypes and weather variables on the severity and temporal dynamics of sorghum anthracnose in Ethiopia., 2010. 9(1): 39-41.
[2] Cota L V, Souza A G C, Costa R V, Silva D D, Lanza F E, Aguiar F M, Figueiredo J E F. Quantification of yield losses caused by leaf anthracnose on sorghum in Brazil., 2017: 1-7.
[3] 白金鎧. 雜糧作物病害. 北京: 中國農(nóng)業(yè)出版社, 1997: 219-222.
BAI J K.. Beijing: China Agricultural Press, 1997: 219-222. (in Chinese)
[4] 徐秀德, 劉志恒. 高粱病蟲害原色圖鑒. 北京: 中國農(nóng)業(yè)科學技術出版社, 2012: 112-118.
Xu X D, Liu Z H.. Beijing: China Agricultural Science and Technology Press, 2012: 112-118. (in Chinese)
[5] GwaryD M, MailafiyaD M,JibrinT J. Survival ofand other seed-borne fungi in sorghum seeds after twenty months of storage., 2006, 8(5): 676-679.
[6] Cardwell K F, Hepperly P R, Frederiksen R A. Pathotypes ofand seed transmission of sorghum anthracnose., 1989, 73: 255-257.
[7] Frederiksen R A. Anthracnose stalk rot//Frederiksen A(Ed.).. St. Paul, MN: APS Press, 1986: 27.
[8] Casela C R,Fredriksen R A. Pathogenic variability in monoconidial isolates of the sorghum anthracnose fungusfrom single lesions and from monoconidial cultures., 1994, 19: 149-153.
[9] Marley P S, Thakur R P, Ajayi O. Variation among foliar isolates ofof sorghum in nigeria., 2001, 69(2): 133-142.
[10] Prom LK, Perumal R, Erattaimuthu S R, Little C R, No E G,Erpelding J E, Rooney W L, Odvody G N, MagillC W. Genetic diversity and pathotype determination ofisolates causing anthracnose in sorghum., 2012, 133(3): 671-685.
[11] Costa R V, Zambolim L, Cota L V, Silva D D, ParreiraD F, Lanza F E, Souza A G C. Pathotypes ofin response to sorghum populations with different levels of genetic diversity in sete lagoas-mg., 2015, 163(7/8): 543-553.
[12] Buiate E A S, Souza E A D, Vaillancourt L, Resende I, Klink U P. Evaluation of resistance in sorghum genotypes to the causal agent of anthracnose., 2010, 10(10): 166-172.
[13] Prom L K, Erpelding J E, Garcia N M. Chinese sorghum germplasm evaluated for resistance downy mildew and anthracnose., 2007, 2(1): 26-31.
[14] Prom L K, Isakeit T, Perumal R, Erpelding J E, Rooney W, Magill C W. Evaluation of the Ugandan sorghum accessions for grain mold and anthracnose resistance., 2011, 30(5): 566-571.
[15] Prom L K, Erpelding J, Perumal R, Isakeit T, Cuevas H. Response of sorghum accessions from four African countries against, causal agent of sorghum anthracnose., 2012, 3(1): 125-129.
[16] Erpelding J E. Field assessment of anthracnose disease response for the sorghum germplasm collection from the Mopti Region., 2010, 5(3): 363-369.
[17] Derese S A, Shimelis H, Mwadzingeni L, Laing M. Agro-morphological characterisation and selection of sorghum landraces., 2018: 1-11.
[18] Mofokeng M A, Shimelis H, Laing M, Shargie N. Sorghum [(L.) Moench] breeding for resistance to leaf and stalk anthracnose,, and improved yield: progress and prospects., 2017, 11(9): 1078-1085.
[19] Mofokeng M A, Shimelis H, Laing M, Shargie N G. Genetic variability, heritability and genetic gain for quantitative traits in South African sorghum genotypes., 2019, 13(1): 1-10.
[20] Biruma M, Martin T, Fridborg I, Okori P, Dixelius C. Two loci in sorghum with NB-LRR encoding genes confer resistance to., 2012, 124(6): 1005-1015.
[21] Rosewich U L, Pettway R E, McDonald B A, Duncan R R, Frederiksen R A. Genetic structures and temporal dynamics ofpopulation in sorghum disease nursery., 1998, 88: 1087-1093.
[22] 張長偉, 潘學賢, 汪遠宏, 程開祿, 黃富, 曾富言. 高粱炭疽病的嚴重度和品種抗性分級標準. 云南農(nóng)業(yè)大學學報, 1998, 13(1): 37-42.
Zhang C W, Pan X X, Wang Y H, Cheng K L, Huang F, Zeng F Y. A proposal standard for the classification of sorghum anthracnose rating index and resistant index., 1998, 13(1):37-42. (in Chinese)
[23] 鄧小鋒, 彭秋, 劉天友, 李青風. 貴州地方高粱資源炭疽病害田間抗性評估. 西南農(nóng)業(yè)學報, 2017, 30(5): 1074-1077.
Deng X F, Peng Q, Liu T Y, Li Q F. Resistance to anthracnose of local sorghum varieties in Guizhou., 2017, 30(5): 1074-1077. (in Chinese)
[24] 徐婧, 劉可杰, 胡蘭, 姜鈺, 王巖, 張明會, 尤廣蘭, 徐秀德, 王艷紅, 黃欣陽. 高粱抗炭疽病鑒定技術規(guī)程DB 21/T 2807-2017. 遼寧省質量技術監(jiān)督局. 2017.
XU J, LIU K J, HU L, JIANG Y, WANG Y, ZHANG M H, YOU G L, XU X D, WANG Y H, HUANG X Y. Rule for evaluation of sorghum resistance to anthracnose. Liaoning Quality and Technical Supervision Bureau, 2017. (in Chinese)
[25] Ramasamy P, Menz M A, Mehta P J, Katil S, Gutierrez- Rojas L A, Klein R R, Klein P E, Prom L K, Schlueter J A, Rooney W L, Magill C W. Molecular mapping of Cg1, a gene for resistance to anthracnose () in sorghum., 2009, 165: 597-606.
[26] BURRELL A M, Sharma A, Patil N Y, Collins S D, Anderson W F, Rooney W, Klein P. Sequencing of an anthracnose-resistant sorghum genotype and mapping of a major QTL reveal strong candidate genes for anthracnose resistance., 2015, 55(2): 790.
[27] Cuevas H E, Prom L K, Erpelding J E, Brotons V. Assessments of genetic diversity and anthracnose disease response among Zimbabwe sorghum germplasm., 2014, 133(2): 234-242.
[28] Cuevas H E, Prom L K, Isakeit T, Radwan G. Assessment of sorghum germplasm from Burkina Faso and South Africa to identify new sources of resistance to grain mold and anthracnose., 2016, 79: 43-50.
[29] ALI M E K, Warren H L, Lantin R X. Relationship between Anthracnose leaf blight and losses in grain yield of sorghum., 1987, 71: 803-806.
[30] Thomas M D, Sissoko I S, Scko M. Development of leaf anthracnose and its effect on yield and grain weight of sorghum in West Africa., 1996, 80: 151-153.
[31] Chala A, Brur M B, Tronsmo A M. Incidence and severity of sorghum anthracnose in Ethiopia., 2010, 9(1): 23-30.
Evaluation of sorghum accessions resistance againstand Relationship between severity and yield loss on Sorghum
XU Jing, JIANG Yu, HU Lan, LIU KeJie, Xu XiuDe
(Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161)
Base on the new problems of sorghum anthracnose () prevalent recent years in sorghum production, screening sorghum disease-resistant resources under artificial inoculation conditions was carried out with the purpose of use host resistance to control the disease. The results of this study were expected to provide scientific basis and guidance for sorghum anthracnose resistance breeding and yield loss assessment in the field.During the year of 2016 and 2017, 74 sorghum accessions from home and abroad were identified for disease resistance by artificial inoculation with pathogen isolate of(SY-1). Twenty accessions with different rating scale were used as test materials to determine yield losses caused by anthracnose diseases under artificial inoculation. The relationship between rating scale (severity) of disease and the main yield traits of sorghum was clarified by using the method of correlation analysis.The results showed that there were 21 accessions rated as highly resistant (HR) and accounted for 28.38% of the total of 74 sorghum accessions, 12 accessions rated as resistant (R) and accounted for 16.22%, 26 accessions rated as moderate resistant (MR) and accounted for 35.14%, 8 accessions rated as susceptibility (S) and accounted for 10.81%, and 7 accessions rated as high susceptibility (HS) and accounted for 9.46% of the total accessions. The relationship between the severity of disease and yield loss was clarified. The results showed that 1000-grain weight and grain weight per panicle of sorghum are significantly affected by sorghum anthracnose. The reduction of grain weight per panicle between 1- 9 grade diseased plants was 0.37%-78.00%, and the reduction of 1000-grain weight was 0.03%-44.43%. Correlation analysis showed that both of grain weight per panicle and 1000-grain weight had an exponential relationship with the rating scale of disease. The reduction rate of grain weight per panicle and 1000-grain weight of sorghum rise significantly with the increase of rating scale of disease, and the rise of reduction rate of grain weight per panicle is more rapid than that of 1000-grain weight. There was a close relationship between the severity and symptoms of disease. Accessions rated as HR showed symptoms of red spots on inoculated leaves, but no acervuli in the lesions and R accessions showed small circular to oval spots and acervuli development. MR accessions showed symptoms of abundant circular to oval spots on inoculated leaves and black acervuli development and some lesions also appear on panicle-stalk. S accessions showed circular to oval and long strip spots on inoculated leaves with abundant black acervuli development. Lesions on panicle-stalk were visible and part of leaves wilt and some diseased plants were died. On the HS accessions lesions join to cover a large proportion of the leaf and panicle-stalk surface with abundant black acervuli. Most leaves of diseased plants wilt and the whole plants were near death.In this study, 21 accessions with highly resistant (HR) were screened. Both of grain weight per panicle and 1000-grain weight had an exponential relationship with the rating scale of the disease, and with the increase of rating scale, the loss rate of grain weight per panicle and 1000-grain weight of sorghum were increased correspondingly. In addition, the disease symptoms of sorghum anthracnose were obviously different with disease rating scale.
sorghum;; evaluation of resistance; yield loss
10.3864/j.issn.0578-1752.2019.22.012

2019-06-12;
2019-09-20
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系建設專項資金(CARS-06)、遼寧省博士啟動基金(20180540112)
徐婧,Tel:13478839929;E-mail:mljasmine2004@163.com。通信作者姜鈺,Tel:15804050906;E-mail:jiangyumiss@163.com
(責任編輯 李莉)