劉陵順,胡 光,李永恒,呂興賀
(1.海軍航空大學 航空基礎學院,煙臺 264001; 2.中國人民解放軍92279部隊,煙臺 264001)
六相電機可以低壓大功率輸出并且提高了容錯能力,在電動汽車等領域得到了越來越廣泛的應用[1]。電機的定子是由兩套互差30°的三相繞組構成,兩套繞組的中性點是隔離的,如圖1所示。

圖1 基于九開關變換器的雙Y移30°PMSM驅動系統
多相電機的可靠性強,因此,在缺相狀態下的不對稱運行一直為研究的熱點。Zhao Yifan等專家根據矢量空間解耦方法推導出斷相故障下六相感應電機的數學模型[2],給出了缺相下PWM的調制方法;王永興等學者研究了六相永磁同步電機缺相的容錯控制[3];楊金波等學者提出了一相開路雙三相永磁同步電機建模與控制[4];歐陽紅林等學者給出了六相永磁同步電機缺相時不對稱運行的矢量控制方法[5]。目前,研究的重點都是基于傳統的十二開關變換器。在九開關變換器驅動的六相電機中,關于容錯控制的研究尚有欠缺。
本文采用矢量空間解耦的方法,建立了F相斷路后的雙Y移30°永磁同步電機(以下簡稱PMSM)的數學模型,九開關變換器應用空間矢量脈寬調制(以下簡稱SVPWM)算法進行容錯控制。
根據九開關變換器的拓撲結構,每個支路上開關管的通斷就必須滿足相應的開關約束條件[6]。約束條件有兩個:一是同一時刻同一支路上有且只有兩個開關管開通,中間開關管的開關信號由上、下兩個開關管的開關信號經“異或”運算獲得;二是任意時刻支路上的電壓VAN和VDN的關系為VAN≥VDN。
九開關變換器AD相支路上3個開關管允許的開關狀態及支路電壓,如表1所示。其中,Vdc表示直流側電壓大小,VAN和VDN分別表示A點、D點相對于直流側負極的電壓大小。

表1 九開關變換器的開關狀態

圖2 F相斷路后的電機繞組模型
根據傳統的背靠背十二開關變換器的開關規律以及九開關變換器相應的約束條件,我們可以得出九開關變換器工作時的27種開關模式,如表2所示。
結合表1、表2和圖2,可以繪制出當電機發生F相斷相故障后,九開關變換器在α-β平面的電壓空間矢量圖[7],如圖3所示。

圖3 九開關變換器電壓空間矢量圖
基于九開關變換器的雙Y移30°PMSM驅動系統中,SVPWM算法模塊是最為重要的,該模塊包含4個部分,即扇區判斷模塊、基礎作用時間模塊、六相時間比較模塊和調制模塊。

圖4 PWM模塊流程圖
九開關變換器有27種開關狀態,采用矢量空間解耦,將27種開關狀態矢量投影到3個相互正交的子空間:α-β子空間,z1-z2子空間,o1-o2子空間。機電能量轉換主要發生在α-β子空間,因此需在α-β子空間中合成基波電壓矢量。當電機發生F相斷相故障后,需要在α-β子空間內重新選擇電壓矢量,將α-β子空間進行扇區劃分,如圖5所示。

圖5 α-β子空間扇區電壓矢量圖
將三相電機的扇區判斷方法應用到雙Y移30°PMSM中,經過簡單的運算就可以得到Uref所在的扇區,減少了計算過程,提高了系統的響應速度。
因此,要引入A~F,令:

(1)
再令:
式中:sign(x)是符號函數,如果x>0,則sign(x)=1;如果x<0,則sign(x)=0。扇區值與N值關系如表3所示。

表3 扇區值與N值對應關系
將任意扇區相鄰的兩個基本電壓矢量的作用時間分別定義為t1和t2,直接利用正交電壓信號Uα和Uβ計算t1和t2。如圖6所示,例如當參考電壓矢量Uref落在第二扇區內,可以由U9,U26和兩個零矢量合成,作用時間分別為t1,t2,t0和t7,根據伏秒平衡原則可以得到各矢量的作用時間。

(3)

圖6 矢量正交分解圖
經過扇區作用模塊和基礎電壓矢量作用時間模塊得到相應基礎作用時間T1和T2后,可以由六相時間比較模塊得到不對稱六相時間TA~TF,最后與載波相比較得出調制波。
為了簡化分析,對雙Y移30°PMSM作下列假設:
(1)磁路線性,忽略磁滯及渦流損耗;
(2)不計定子表面齒、槽的影響,轉子上無阻尼繞組;
(3)繞組正弦分布;
(4)忽略電機漏感。

圖7 電機F相斷路后系統圖
電機在自然坐標系下的電壓和磁鏈方程:

(4)
ψs=LsIs+γsψm
(5)
式中:us,Is,ψs為電機的電壓矩陣、電流矩陣、磁鏈矩陣;Rs,Ls,γs為電機的電阻矩陣、定子電感系數矩陣、磁鏈系數矩陣;ψm為永磁體在各相繞組產生的磁鏈幅值。當電機發生F相斷路時,將正常六相系數矩陣去掉第六行和第六列,可以得到斷相后的系數矩陣。
當F相斷路后的靜止變換矩陣T5s可以根據矢量空間解耦的方法來確定。
T5s=[αβz1z2z3]
(6)
該矩陣為正交單位矩陣,在機電能量轉換子空間上增加三個不涉及機電能量轉換的三個子空間。

(7)
電機無故障工作時,各相的電流幅值相等且相位關系與繞組在空間上相差的電角度相同[4]。當電機F相發生斷路時,電機運轉時變得不對稱,兩套繞組中線點隔離的連接方式如圖7所示。根據公式以及與幅值不變的約束條件,可以得出電機F相斷路后的靜止變換矩陣[4]。

(8)
只有α-β平面進行機電能量轉換,所以將其變換到d-q旋轉坐標系中,變換矩陣:
T5r=PT5s
(9)

(10)
將式(8)~式(10)分別代入式(4)和式(5)中,可以得到新的電壓方程[4]:

(11)
式中:

(12)

(13)
引入微分算子p,得:
可以得出旋轉坐標系中電流與電壓的數學關系。
電磁轉矩由各相電流和電感、磁鏈矩陣決定,可以得出:

(15)
化簡可得:
Te=3p[(Ld-Lq)idiq+iqψm]
(16)
式中:p表示極對數;id和iq表示旋轉坐標系上的d軸和q軸電流。
在MATLAB/Simulink中,對本文提到的九開關變換器驅動的雙Y移30°PMSM容錯控制進行可行性驗證,仿真結果如圖8所示。
九開關變換器的開關頻率為10 kHz,直流母線電壓設定為Udc=300 V,雙三相PMSM參數:R=0.291 Ω,Ld=Lq=4.586 mH,ψm=0.049 6 Wb,p=2,J=0.052 kg·m2,電機初始給定轉速n=100 r/min,負載轉矩TL=5 N·m。
仿真結果如圖8所示。圖8(a)顯示了F相斷路,未容錯控制時磁鏈是一個橢圓形軌跡,諧波分量較大;圖8(b)顯示了F相斷相后,未容錯控制的電機定子六相電流;圖8(c)為F相斷相后,未容錯控制的轉子轉速,轉速波動比較大;圖8(d)顯示了F相斷相后,未容錯控制的電磁轉矩,轉矩脈動較大,電機不能保持平穩運行;圖8(e)顯示了F相斷相后,容錯控制的電機定子六相電流;圖8(f)顯示了F相斷相后,容錯控制的轉速,與容錯控制前相比轉速波動較小;圖8(g)顯示了F相斷相后,容錯控制的電磁轉矩,與容錯前相比電磁轉矩脈動較小,電機可以保持穩定運行。圖8顯示的波形結果證明了所提算法的可行性。

(a) 未容錯控制的磁鏈圖

(b) 未容錯控制的 電機定子六相電流

(c) 未容錯控制的 轉子轉速

(d) 未容錯的 電磁轉矩

(e) 容錯控制的 電機定子六相電流

(f) 容錯控制的 轉速圖

(g) 容控制的錯 電磁轉矩圖圖8 F相斷相后未容錯控制和容錯控制的仿真對比
本文對F相斷路后的雙Y移30°PMSM建立了數學模型,根據九開關變換器的工作原理,應用九開關變換器特有的SVPWM算法,對電機進行了容錯控制,并進行了仿真實驗。當電機發生單相斷路時,應用本文的容錯控制策略,電機依然按照指定轉速運轉,有效減少了斷相后的電磁轉矩脈動,滿足其平穩運行的要求,提高了系統的可靠性。