李維 江虹 伍春 鄧皓文



摘 要:針對經典的Gardner定時恢復算法存在同步建立時間長、同步穩定性能差等問題,提出一種改進環路結構的Gardner定時同步恢復算法。首先,該算法選用立方插值和分段拋物線插值兩種插值濾波器進行插值,得到兩路最佳插值序列;其次,分別計算兩路插值序列對應的定時誤差并求加權平均值,得到環路的定時誤差;最后,以兩路最佳插值序列的加權平均值作為環路輸出。針對正交相移鍵控(QPSK)、正交幅度調制(16QAM)兩種調制信號進行了仿真驗證。仿真結果表明,該改進算法作用于QPSK信號時同步穩定性更好,相比作用于16QAM信號,其環路開始同步時碼元的位置對應的序列數明顯減小;并且該算法在信噪比為-5dB的情況下使QPSK信號星座圖收斂半徑為0.26左右,與類似鎖頻鎖相(FPLL)的改進Gardner定時恢復算法相比收斂半徑減小約0.08,該算法有效地縮短了同步建立的時間,提高了環路的穩定性,可廣泛應用于高速解調系統。
關鍵詞:位同步環路結構;改進型Gardner算法;加權平均;同步建立時間;同步性能
中圖分類號:TN911.7
文獻標志碼:A
Abstract: Aiming at the problems of long synchronization setup time and poor synchronization stability in classical Gardner timing recovery algorithms, a Gardner timing synchronization recovery algorithm with improved loop structure was proposed. Firstly, two interpolation filters with cubic interpolation and piece wise parabolic interpolation were used to obtain two optimal interpolation sequences. Secondly, the timing errors corresponding to the two interpolation sequences were calculated respectively and the weighted average value was obtained to gain the timing error of the loop. Finally, the weighted average value of two optimal interpolation sequences was used as the loop output. The simulation experiments of two modulated signals of Quadrature Phase Shift Keying (QPSK) and 16 Quadrature Amplitude Modulation (16QAM) were performed. Simulation results show that the synchronization stability of the proposed algorithm is better on QPSK signal. Compared with performing on 16QAM signal, the number of sequences corresponding to the position of the symbols when the loop starts the synchronization is obviously reduced. Additionally by using the propposed algorithm, the convergence radius of the QPSK constellation is about 0.26 when the SNR is -5dB. Compared with the improved Gardner timing recovery algorithm similar to Frequency and Phase Lock Loop (FPLL), the convergence radius is reduced by 0.08. This algorithm effectively shortens the synchronization setup time, improves the stability of the loop, and can be widely applied in high-speed demodulation system.
Key words: bit synchronization loop structure; improved Gardner algorithm; weighted average; synchronization setup time; synchronization performance
0 引言
定時恢復是數字解調技術中的關鍵環節,對解調系統的性能有著重要的影響[1-2]。早期的Gardner定時同步算法能夠較好地解決接收端接收到的信號與本地時鐘信號不一致的問題,但存在同步建立時間長、穩定性較差等缺陷,其環路性能難以滿足當前高速解調系統的需要[3-4]。隨著數字解調技術的快速發展,同步建立時間短、環路穩定性高的定時恢復算法成為一項迫切需求[5]。
為此,文獻[6]利用相鄰碼元符號相同時,對誤差檢測器檢測出的誤差進行取反,得出了一種改進的Gardner算法,記為改進的Gardner定時恢復算法1(modified Gardner timing recovery Algorithm 1,mGA1);文獻[7]對mGA1算法進行了改進(記為mGA2算法),降低了算法復雜度。上述兩種方法在一定程度上提高了符號同步的性能,但仍然存在算法復雜度高、硬件資源消耗大、環路穩定性較差等問題。為克服上述方法的不足,文獻[8]提出了一種類似鎖頻鎖相(Frequency and Phase Lock Loop, FPLL)的改進Gardner定時恢復算法(記為mGA3算法),其同步性能與mGA1算法和mGA2算法相比有了進一步的提升;但該算法在同步過程中,符號收斂速度較慢,定時抖動較大。為提高數據處理速度,文獻[9]在原有串行定時同步的基礎上,對Gardner算法進行了改進,提出了一種并行Gardner定時同步算法,在一定程度上提高了數據處理的速度;但環路分數間隔收斂時抖動較大,不穩定,且占用較多的乘法器、加法器資源。根據文獻[9]算法的設計思路,文獻[10]提出了一種類似的并行定時同步算法,通過確定中間采樣點的符號來計算定時誤差,節省了部分乘法器資源,提高了數據處理的速度;但環路結構復雜,實現較為困難,且同步性能有所下降。
4 結語
本文在研究Gardner定時同步算法原理的基礎上,為了解決傳統的Gardner定時同步算法及經典改進算法存在建立同步時間長、同步穩定性能差等問題,提出一種改進環路結構的Gardner定時同步算法。仿真結果表明,本文改進算法優于經典的Gardner定時恢復算法及已有改進算法,對于QPSK、16QAM信號,環路作用于QPSK時,穩定性更好,解調性能更佳;該算法使用兩路并行插值計算可能會占用更多的內存資源,但在一定程度上提高了同步性能,縮短同步建立的時間,具有良好的可實現性和應用價值。
參考文獻(References)
[1] 付永明, 朱江, 琚瑛玨. Gardner 定時同步環路參數設計及性能分析[J]. 通信學報, 2012, 33(6): 191-198. (FU Y M, ZHU J, JU Y J. Parameters design and performance analysis of the timing recovery loop based on Gardner timing detector[J]. Journal on Communications, 2012, 33(6): 191-198.)
[2] 王磊, 隋強, 杜昌澔, 等. 自噪聲抑制Gardner算法及位同步環路設計[J]. 紅外與激光工程, 2017, 46(6): 187-192. (WANG L, SUI Q, DU C H, et al. Self-noise abatement Gardner algorithm and bit synchronous loop design[J]. Infrared and Laser Engineering, 2017, 46(6): 187-192.)
[3] 肖磊. 并行高速通信解調系統中同步技術的研究與實現[D]. 成都: 電子科技大學, 2017: 28-45. (XIAO L. Study and implementation of synchronization for parallel high data rate demodulation system[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 28-45.)
[4] GARDNER F M. A BPSK/QPSK timing-error detector for sampled receivers[J]. IEEE Transactions on Communications, 1986, 34(5): 423-429.
[5] 崔龍斌. QAM解調數據并行處理定時同步技術研究[D]. 成都: 電子科技大學, 2018: 9-39. (CUI L B. Research on parallel timing synchronization technology in QAM demodulation data[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 9-39.)
[6] LIM D. A modified Gardner detector for symbol timing recovery of M-PSK Signals[J]. IEEE Transactions on Communications, 2004, 52(10): 1643-1647.
[7] YANG D W, YAN C X, WANG H, et al. Extension to Gardner timing error detector for QPSK signals[C]// Proceedings of International Conference on Wireless Communications and Signal Processing. Piscataway: IEEE, 2010: 1-5.
[8] 劉偉, 姚遠程, 秦明偉. 一種改進的Gardner定時同步算法[J]. 計算機工程, 2013, 39(11): 299-302. (LIU W, YAO Y C, QIN M W. An improved Gardner timing synchronization algorithm[J]. Computer Engineering, 2013, 39(11): 299-302.)
[9] LI H, WANG Z, WANG H. A high speed parallel timing synchronization algorithm for 16QAM[C]// Proceedings of the 13th International Computer Conference on Wavelet Active Media Technology and Information Processing. Piscataway: IEEE, 2016: 403-407.
[10] HU J, ZHU L, WANG J. The implementation of high speed parallel timing synchronization algorithm based on FPGA[C]// Proceedings of the 10th International Conference on Communication Software and Networks. Piscataway: IEEE, 2018: 484-487.
[11] 吳鳳輝. 高階QAM解調中的同步算法研究[D]. 哈爾濱: 哈爾濱工業大學, 2016: 10-51. (WU F H. Research on synchronization algorithms for high order QAM demodulation[D]. Harbin: Harbin Institute of Technology, 2016: 10-51.)
[12] LENG W M, ZHANG Y, YANG Z X. A modified Gardner detector for multilevel PAM/QAM system[C]// Proceedings of the 2008 International Conference on Communications, Circuits and Systems. Piscataway: IEEE, 2008: 891-895.
[13] ERUP L, GARDNER F M, HARRIS R A. Interpolation in digital modems. II. implementation and performance[J]. IEEE Transactions on Communications, 1993, 41(6): 998-1008.
[14] 王星泉. 一種改進型APSK盲定時同步誤差估算法[J]. 科學技術與工程, 2015, 15(10): 195-196. (WANG X Q. A modified blind timing error estimation algorithm for APSK[J]. Science Technology and Engineering, 2015, 15(10): 195-196.)