999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

土壤侵蝕對坡耕地耕層質量退化作用及其評價趨勢展望

2019-11-08 00:55:40史東梅金慧芳蔣光毅
農業工程學報 2019年18期
關鍵詞:評價質量

史東梅,金慧芳,蔣光毅

土壤侵蝕對坡耕地耕層質量退化作用及其評價趨勢展望

史東梅1,金慧芳1,蔣光毅2

(1. 西南大學資源環境學院,重慶 400715; 2. 重慶市水土保持生態環境監測總站,重慶 401147)

土壤侵蝕是導致坡耕地耕層質量退化和土壤生產力不穩定的關鍵驅動因素。該文從水蝕區坡耕地侵蝕控制和生產功能角度,在解析地塊尺度土壤侵蝕、水土保持、農業活動對坡耕地耕層生態過程作用特征的基礎上,系統分析了土壤侵蝕對坡耕地耕層質量退化作用、影響效應及作用途徑。認為:1)坡耕地耕層質量變化由降雨侵蝕、耕作活動交互作用的生態過程決定,2種作用的時間、空間尺度不同;耕層土壤參數在坡耕地農業生產中作用分為保水、保土、保肥和增產潛力,由地塊尺度農作物-耕層耦合效應決定土壤生產能力、坡耕地水土流失特征及耕層侵蝕性退化方向及程度。2)土壤侵蝕對坡耕地耕層質量退化作用表現為土壤性質惡化、土壤質量劣化、土地生產力衰退3個方面,耕層土壤物理性質變異程度大于化學性質變異,徑流作用導致的土地生產力衰退大于土壤流失作用。3)坡耕地耕層質量評價指標體系應兼顧侵蝕下降、產量提升2個目標,地塊尺度診斷指標有效土層厚度、耕層厚度、土壤容重、土壤抗剪強度、土壤有機質、土壤滲透性可作為合理耕層評價最小數據集;坡耕地合理耕層適宜性分為5級,其診斷指標分級標準宜與土壤侵蝕分級和耕地地力分級銜接。4)坡耕地合理耕層評價未來應密切關注耕層質量診斷指標最小數據集、坡耕地合理耕層閾值/適宜值分級標準、坡耕地水土流失阻控標準擬定3個主要方向。研究可為深入認識坡耕地侵蝕性退化機制,辨識坡耕地合理耕層調控途徑以及坡耕地合理耕層構建技術參數提供依據。

土壤;侵蝕;有機質;坡耕地;耕層質量;退化作用;合理耕層;診斷指標

0 引 言

坡耕地是中國主要耕地資源類型,可占全國耕地面積35.09%;西南區是中國坡耕地分布最為集中地區,大于15°坡耕地為該地區坡耕地79.28%[1],坡耕地在未來相當時期內仍然是中國重要糧食和農產品生產基地。耕層指在自然土壤基礎上,經過人類長期的耕作、施肥、灌溉等活動及自然因素的持續作用形成的農業耕作土壤,它包括耕作層(表土層)、犁底層、心土層和底土層[2];坡耕地合理耕層指一定耕作制度下,可持續維持農作物正常生長且能實現侵蝕控制雙重目標的坡耕地耕層土壤質量基準(benchmark),采用在地塊尺度上可綜合反映土壤生產力過程和土壤侵蝕控制的土壤屬性(或多)指標表征[3]。國內外對坡耕地“土壤侵蝕—土壤質量—土地生產力”相關研究主要集中在坡面侵蝕土壤退化途徑及評價指標[4-5]、土壤侵蝕對土壤質量退化影響[6-7]、土壤侵蝕與土地生產力及農作物產量侵蝕響應的(erosion-productivity impact calculator,EPIC)模型、土壤生產力指數(productivity index,PI)模型和土壤侵蝕可持續模型(an expertsystem/neural network model,ImpelERO)[8-11]等方面。美國農業部(land evaluation and site assessment, LESA)系統規定,當用于耕地保護目的時,LE與SA權重比為1:2[12];中國農業部地力評價系統包括氣候、立地條件、剖面性狀、耕層理化性質、土壤養分狀況、障礙因素、土壤管理7類共64項指標[13],上述2類評價體系都包含了諸多土壤自然物理、化學指標和人為耕作活動指標。本文在水蝕區坡耕地主要生態過程分析基礎上,綜合分析了土壤侵蝕對坡耕地耕層土壤性質、土壤質量、土壤生產力退化作用影響,總結了侵蝕條件下坡耕地耕層質量評價指標及方法,討論了坡耕地合理耕層評價指標及程度分級思路,從坡耕地土壤侵蝕機理、農作物產量水土保持原理的視角,提出未來侵蝕條件下坡耕地合理耕層評價應密切關注的3個問題。

1 水蝕區坡耕地主要生態過程分析

1.1 耕層及耕層質量

農業耕作土壤在人為熟化過程和自然因素繼續作用下所形成的層次結構是其主要標志,在深、淺耕條件其耕層結構與自然土壤層次發育特征如下所示(圖1a),在耕深30~40 cm條件下,活動層(0~40 cm)關系作物前期生長,穩定層(30~40 cm)關系作物后期生長,>40~50 cm以下一般不做翻耕處理[2]。耕層是人類為了栽培作物,利用工具對土壤進行擾動的深度層,旱作土壤耕層的表土層(0~15 cm)、穩定層(>15~35 cm)、心土層(>35~60 cm)和犁底層(耕層與心土層之間)組合特征對作物根系和產量具有重要意義;穩定層也稱根系活躍層,與表土層共同組成耕層,而犁底層一般存在于耕層和心土層之間[14]。在深松條件下耕作土壤剖面構型可分為活動層、穩定層、保證層(圖1b),耕作層又分為表土層(0~15 cm)和犁底層(>15~20 cm),心土層(>20~40 cm)養分水分因素比較穩定,可供作物后期生長的需求,而底土層(>40 cm)對農作物產量形成幾乎沒有調控作用[3,14]。深松技術通過改善耕層剖面構型、改良土壤結構性能,實現耕層土壤蓄水保土保肥效應,以獲得農作物高產穩產。

圖1 耕層土壤剖面構型分析

根據以上分析,坡耕地耕層質量指沿土壤剖面農作物80%~90%根系活動層及其下層的土壤質量特性、垂直組合狀況及其坡面立地條件,耕層質量與土壤質量內涵有重合之處;而從農學角度土壤質量被定義為土壤生產力,包括土壤供作物生長內在能力以及受土地利用類型和土壤管理措施影響的土壤質量動態2個方面,土壤生產力和適宜性是土壤質量主要內容[15]。由此可見,耕層質量指沿土壤剖面農作物根系活動層及其下層的土壤質量特性、垂直組合狀況及其坡面立地條件,坡耕地耕層剖面構型指土壤質地、容重、孔隙度、機械阻力在土壤垂直層次分布特征,對于特定耕層構型而言,耕層厚度、土壤容重、土壤有機質、土壤有效厚度等土壤屬性參數的垂直分布及組合特征是影響耕層質量、水分庫、養分庫容量的關鍵因素。

1.2 坡耕地耕層生態過程

水蝕區坡耕地耕層生產能力是在自然因素和人為因素綜合作用下形成,根據生產力形成要素來源,分為自然因素(降雨、光熱、母質)和人為因素(種植制度、耕作活動、土壤管理);根據調控程度,分為可調控管理因素(種植制度、土壤管理等)和不可調控自然因素(降雨、光熱、母質等),在地塊尺度,各種自然因素和管理因素對坡耕地“農作物—土壤”系統的作用表現如圖2。由圖可見,在水蝕區土壤侵蝕對坡耕地地塊具有off-site和on-site 2種效應,前者表現為坡耕地土壤侵蝕量、徑流損失和面源污染現象由地塊-集水區-小流域逐級匯流現象,對周邊生態環境安全造成潛在威脅;而后者則表現為耕層土壤侵蝕性退化和土地生產力下降現象,直接影響農作物產量、品質及區域糧食安全。坡耕地農業耕作活動具有周期性特點,根據典型種植制度農作物生長過程,采用耕作機械對地塊土壤進行播種、中耕、除草、施肥、收獲等農業活動,對土壤擾動深度在5~30 cm不等[3];同時農作物收獲會使得坡耕地地面覆蓋度發生急劇變化,在侵蝕性次降雨條件下,則是中、強度土壤侵蝕發生的潛在危險期,因此構建坡耕地合理耕層,應著重從加深耕層恢復地力、蓄水保墑防止徑流和保護土壤提高產量角度進行調控[16]。

圖2 地塊尺度農業活動對坡耕地耕層生態的影響過程

根據圖2對水蝕區坡耕地在年內(農業周期內)自然因素和人為因素作用過程綜合分析可知,坡耕地耕層生態過程具有具有以下特征:

1)坡耕地耕層生態過程發生在農作物-土壤下墊面及耕層土體內部,由地塊尺度農作物-耕層耦合效應決定土壤生產能力、坡耕地水土流失特征及耕層侵蝕性退化方向及程度。農作物-土壤下墊面表層生態過程主要有次降雨引起的自然干濕交替過程、地表覆蓋快速變化過程以及地表徑流沖刷過程,耕層土體內部生態過程主要有成土過程、根系生長過程及固土抗蝕過程,上述坡耕地生態過程的自然影響因素有降雨量、微地形(坡度、坡長、坡向、坡型)、土壤抗侵蝕性能,人為因素有坡面水系分布、地塊破碎化程度、耕作活動方式等,而對三峽庫區紫色土坡地而言,人類耕作措施不當和種植制度不合理是其坡耕地土壤退化主要驅動力[17]。

2)坡耕地耕層生態過程具有時空尺度特征。坡耕地耕層厚度及其土壤屬性變化由降雨侵蝕、耕作過程、成土過程綜合作用的生態過程決定,耕作活動時間尺度為農作物種植周期,空間尺度為地塊;水蝕過程的時間尺度為次降雨,在空間尺度上存在由地塊—集水區逐級匯流匯沙現象;坡耕地耕層質量變化具有明顯的水蝕對耕作擾動的累積效應南方坡耕地水土保持以“保土排水”原理布置工程措施、耕作措施,而北方坡耕地以“保土保水”原理布置各項水土保持措施。

3)從坡耕地水土流失阻控角度,一年多熟制的坡耕地農業生產可分為侵蝕期和非侵蝕期2個階段,侵蝕期耕層調控目標兼顧土壤抗侵蝕性能和土壤生產性能,非侵蝕期耕層調控目標以土壤生產性能為主導。在坡耕地水土資源承載力前提下,調整坡耕地一元種植模式為糧經二元種植模式,增加多年生農作物種植比例,主動選擇可避開降雨侵蝕力集中分布期的典型種植制度,均是水土保持效應明顯的坡耕地持續利用模式。

4)在地塊尺度,農戶(農場)水土保持行為對坡耕地耕層生態過程影響很大。單位土壤侵蝕厚度引起的土壤生產力下降水平,是引導農民實施土壤管理措施的主要驅動力[3],可調控的人為因素有耕作措施、土壤管理措施,坡面徑流調控工程,農作物產量、品質和市場價格將決定農戶采取水土保持措施種類及水平,進而對坡耕地耕層質量保持年限和水平造成影響。

2 土壤侵蝕對坡耕地耕層質量退化驅動作用及評價

坡耕地耕層質量涉及耕層結構及功能2個方面,前者指耕層土壤理化性質、剖面構型與土壤質量指數關系,后者指土壤理化性質與作物產量及土壤生產力指數關系。國內外對坡耕地侵蝕土壤退化類型及過程、土壤生產力與侵蝕土壤理化性質關系都進行了大量研究,土壤侵蝕對土壤性質及土壤質量劣化作用最為深入,而土壤侵蝕對土壤性質與土壤生產力衰退作用也有大量工作。

2.1 土壤侵蝕對坡耕地土壤質量劣化作用

水蝕區土壤侵蝕是造成坡耕地耕層質量退化的主要驅動因素,由于自然侵蝕條件不可控性及坡耕地農業生產長周期性特點,鏟土侵蝕模擬法廣泛地應用于坡耕地土壤性質及土壤質量與土地生產力衰退作用中。國內外土壤侵蝕與土壤質量相關研究主要集中在:1)土壤侵蝕對坡耕地退化影響直接表現在坡面耕層變薄、土壤物理、化學及生物性質惡化和土地產力下降等,而土壤物理性質和結構性質變化與侵蝕程度最為密切。土壤物理性質退化增加了其水蝕敏感性,對水蝕抗性較高土壤集中表現為較低土壤滲透阻力、體積密度、砂粒含量以及較高抗剪強度、液壓電導率、滲透率、有機質含量和黏粒含量等[18];而加拿大、中國和德國對比研究表明,土壤團聚體結構、大小是直觀診斷可靠指標,土壤物理性質與產量和土壤團聚體診斷值高度相關但有明顯區域性差異,不利土壤結構表現為較高土壤干容重、土壤強度及較低入滲率[19]。2)侵蝕土壤退化形式與類型,楊艷生認為[20]退化形式表現為土壤環境劣化、土壤剖面形態毀損、各肥力要素間調節功能減弱并最終造成生產力下降或自然肥力消失過程;何毓蓉認為[21]四川盆地紫色土退化類型分為土壤物理性退化、土壤構造性退化和土壤營養性退化,退化紫色土具有粗骨性、易蝕性、易旱性特征;土壤侵蝕退化機理可分為土壤薄層化過程、土壤養分循環失衡、土壤性質劣化和貧瘠化、土壤砂質化和礫質化4個方面[22]。3)侵蝕土壤退化驅動力及調控,史志華等認為[23]土地利用方式及管理措施是影響紅壤土壤質量演變方向和強度的關鍵因素,有效土層厚度、耕層土壤質地、土壤剖面構型等可用于表征鄂南紅壤土壤質量變化;施用生物炭可增加紫色土坡耕地耕層土壤有效持水量、提高土壤導水率,有利于作物抗旱和水分入滲,減少地表徑流和侵蝕發生[24];添加1%生物炭對黃綿土耕層土壤可產生減流減沙作用,提高土壤入滲能力和持水性能,改善土壤可蝕性[25];在以色列對2種易蝕性土壤的生物炭試驗表明,生物炭通過降低土壤容重、增加持水能力和土壤滲透率而減少徑流和土壤侵蝕,是土壤保持有效途徑[26]。

2.2 土壤侵蝕對坡耕地土地生產力衰退作用

坡耕地土地生產力多采用農作物產量高低表示,也有采用土壤生產力指數表示,前者側重侵蝕條件下農作物產量與影響因素關系,后者側重坡耕地地塊對農作物根系生長適宜程度;目前坡耕地土壤侵蝕與土地生產力研究中,多側重在不同侵蝕程度和恢復措施下農作物減產速率、產量變化趨勢以及定量分析不同因素對產量變化貢獻率,集中在:

1)對于農作物產量衰退試驗研究表明,土壤侵蝕可使土壤水分有效性下降而導致農作物產量降低且當降雨量低于平均水平年時,對重度侵蝕水平土地生產力影響較大[27];Francis等[28]在加拿大采取鏟土0、5、10、15、20 cm以及施N+P肥、覆蓋表土等恢復措施的侵蝕模擬法定量研究了土壤侵蝕對土壤質量、土壤生產力的影響,Oyedele等[29]在尼日利亞采取人為鏟土0~20 cm方法模擬在不同侵蝕程度條件下,侵蝕土壤理化性質對作物產量影響的貢獻率。中國則采用鏟土侵蝕模擬小區或侵蝕模擬盆栽法,在不同區域開展了土壤侵蝕對作物產量影響定量研究,如陳奇伯等[30]采用侵蝕模擬小區法對比研究了黃土高原區和干熱河谷區土壤侵蝕對坡耕地土地生產力衰退影響;王志強等[31]在黑土區研究了模擬侵蝕0、10、20、30、40、50、60、70 cm小區條件下,坡耕地在施肥、不施肥條件下土壤侵蝕對土地生產力影響;Zhao等[32]采用侵蝕模擬小區和盆栽試驗,發現紫色丘陵區農作物產量下降速率與鏟土厚度(侵蝕程度)關系;劉慧等[33]基于人為剝離表土模擬不同侵蝕程度的耕層土壤的盆栽試驗,分析土壤侵蝕厚度對土壤理化性質、大豆生物性狀和水分利用效率等的影響。

2)在土壤生產力衰退模型研究方面,土壤侵蝕與土地生產力模型(EPIC)基于作物生理參數和USLE模型表征土壤侵蝕與作物產量復雜關系,但在應用時需要大量前期資料,否則準確性較差[34];Pierce等[35]采用PI模型重點分析土壤持水量、容重與pH值等土壤指標對作物根系生長適應性,在世界各地土壤生產力評價[36]、侵蝕對土壤脆弱性及土壤生產力影響評價[37-38]方面廣泛應用,也有基于人工剝離熟土層模擬不同侵蝕程度的盆栽試驗結果,采用 PI模型對比了施肥、表土覆蓋對侵蝕土壤生產力恢復水平[39]。

3)對于水蝕-農作物-土壤生境系統分析,土壤脆弱性對作物生長及環境影響極為重要,土壤侵蝕通過影響土壤性質和土壤厚度而造成土壤生產力下降,PI可作為土壤允許流失量標準,與土壤侵蝕風險指數(erosion risk index,ERI)共同用于土壤保護;而基于土壤生產力或基于環境保護,可辨識出隨耕作、肥料、水分管理而變化的敏感指標集,為防止土壤質量惡化提供預警;ImpelERO可用于評價土壤侵蝕脆弱性(敏感性)并分析流失土層厚度對作物產量影響[40-42]。紫色土坡耕地作物產量隨侵蝕土壤厚度(侵蝕程度)呈指數增加且單位侵蝕厚度(10 cm)作物產量下降率最大可達10.5%,60 cm土層厚度可作為紫色土坡地生產力臨界土層厚度[43];紫色土坡耕地農作物與耕層適宜性存在協調發展類和失調衰退類兩種狀態和同步型、滯后型、損益型、共損型4種表現;在同樣地力條件下,農作物產量較坡耕地耕層質量更為敏感,衰退表現更加明顯[44]。綜合以上分析可知,土壤厚度、土壤黏粒含量和有機質臨界水平是引起坡耕地土壤生產力變化的關鍵因素,土壤滲透性與土壤侵蝕敏感性直接關系到坡耕地生產力持續、穩定。

2.3 侵蝕條件下坡耕地土壤質量評價

土壤質量評價多以土壤功能維護與保持為目標篩選評價指標,在耕地質量評價中多以作物產量或作物適宜性為目標,采用主成分分析、加權和法、加權綜合法等數學方法篩選關鍵指標并構建土壤質量指數。集中在:1)由土壤功能導向的土壤質量評價指標選擇,冷疏影[45]提出采用包含土壤質地、酸堿度、氮、磷、鉀、有機質含量、侵蝕狀況、鹽漬化程度在內的土壤有效系數反映農地土壤農業生產潛力;國外研究表明,與侵蝕最為相關的土壤物理指標有土壤滲透、水力傳導、切變強度和團聚體穩定性[46];土壤肥力低、碎石含量高、有效土層淺是尼日利亞耕地主要限制因素[47];基于土壤根系發育、蓄水和養分供應3個功能的土壤質量評價可很好指導巴西向日葵種植[48],土壤貫入阻力、土壤容重、土壤透氣性及最小水分限制范圍對作物生長很重要,可據此確定蘇格蘭耕作適宜性下限范圍[49];土壤有機碳、粉粒+黏粒含量、pH、土壤陽離子交換量(cation exchange content,CEC)、土壤厚度和坡度作為德國農地土壤恢復性指標[50]。2)在侵蝕土壤質量評價方面,史德明等[5]提出采用土壤屬性評估法可很好地反映南方侵蝕土壤退化現狀、過程及其對土地生產力影響,退化指標必須準確地反映土壤剖面被剝蝕厚度或殘留厚度;在黃土高原,許明祥等[51-52]認為土壤有機質、土壤抗沖性8項指標可很好反映侵蝕土壤質量,加權綜合法可敏感地反映出土地利用變化對侵蝕土壤質量影響;鄭粉莉等[53]采用土壤有機碳、毛管孔隙度、物理性黏粒等8個指標定量評價子午嶺近100 a來侵蝕環境下農地土壤質量退化過程;基于“壓力—狀態—響應(pressure-status-response,PSR)”模式,在地塊和小流域尺度建立了針對土壤侵蝕退化的土地質量評價指標體系[54];因子分析法和判別分析可以識別對土壤侵蝕和土地利用最為敏感的土壤質量指標[55]。3)土壤質量評價最小數據集提出,可解決由于土壤理化性質時空變異性大所致的土壤指標指示作用穩定性變差、數據獲取成本高的問題,Mohammad等[56]以愛爾蘭耕地和草場樣地進行對比,分析土壤結構對總體土壤質量的貢獻率,采用主成分分析確定土壤質量評價最小數據集minimum dataset,MDS);李桂林等[57]利用多元方差分析、主成分定量評價了土地利用方式和種植年限對土壤質量影響程度,確定了城市周邊2種土壤類型的MDS。Bram等[58]基于長期耕作、殘茬和輪作管理評價建立了墨西哥土壤質量評價最小數據集,物理指標有團聚體穩定性、永久萎蔫點、土壤滲透性等,化學指標有土壤有機質、N、P等,認為優良土壤質量代表高持續性生產力和無明顯土壤或環境退化現象;而1個包括土壤主要功能作用(土壤水分入滲、儲存和供應能力,養分儲存、供應和循環能力,持續生物活性)的最小指標集可為土地管理提供有價值土壤質量信息[59]。

侵蝕土壤質量評價多采用土壤屬性評價法、土壤生產力評價、農作物-土壤耦合度評價,評價尺度有地塊、小流域和區域尺度,指標篩選手段也由定性邏輯分析到定量數理化取舍。診斷指標最小數據集是土壤質量特征評價、措施調控的科學方法。從坡耕地水土流失阻控及坡耕地農業生產過程來看,坡耕地坡度、土壤層厚度、土壤有機質可作為侵蝕條件下耕層質量診斷的關鍵指標,土壤容重、土壤飽和導水率可作為診斷輔助指標;土壤層厚度可分為流失厚度、耕層厚度、有效土層厚度3個指標,分別反映了坡耕地土壤侵蝕程度、農作物水分庫、養分庫容量特征。根據坡耕地耕層質量相關研究[3,20,31,33,36,43,50,52,60-65],建立了坡耕地耕層質量診斷指標中耕層厚度、有效土層厚度、有機質的侵蝕、生產性能對應表(表1)。

表1 侵蝕條件下坡耕地耕層質量診斷指標分級

注:流失厚度指標按土壤容重1.35 g·cm-3計算。侵蝕程度分級參考文獻[60]。

Note: Erosion thickness is calculated based on soil bulk density of 1.35 g·cm-3. Degree of erosion is classified base on reference[60].

3 趨勢展望

目前在土壤侵蝕對坡面理化性質及土地生產力影響、耕地土壤質量評價方面已有完善評價體系,但集合土壤侵蝕視角和土壤生產維持功能視角的量化評價仍需探索。坡耕地既是山區丘陵區主要農業生產單元,也是嚴重水土流失單元;因此從坡耕地水土流失有效防治目標看[3,5,11,14,36,42,61,66-67],坡耕地耕層質量評價應密切關注耕層土壤抗侵蝕性能和土壤生產性能2個功能,從“土壤侵蝕-質量退化-改善恢復”系統性角度及坡耕地農業生產關鍵生態過程(圖2),未來水蝕區坡耕地耕層質量可在以下3個方面加強和突破(圖3)。

注:MDS為最小數據集。

1)坡耕地耕層質量診斷指標最小數據集:針對不同水蝕區坡耕地典型耕作制度,整合或建立現有坡耕地侵蝕序列定位及模擬研究中耕層土壤理化性質變化為基本數據源,深入分析表征坡耕地耕層侵蝕性能與生產性能指標的生態過程/驅動機制,揭示侵蝕條件下坡耕地耕層質量主控過程、退化機理;基于坡耕地侵蝕控制和生產功能雙重目標,篩選耕層土壤理化性質與剖面特征參數,確定能夠科學反映土壤生產力形成和侵蝕風險控制的坡耕地耕層質量診斷最小數據集是坡耕地合理耕層指標體系建立的重要方向。

2)坡耕地合理耕層閾值分析/適宜值:坡耕地合理耕層診斷宜在地塊尺度、耕作制度種植年、以耕層土壤指標及其立地條件為原則;以坡耕地中產穩產的產量為依據,從坡耕地典型耕作制度在侵蝕條件下土壤生產力形成主要限制因素及其臨界水平,定量確定紫色土坡耕地合理耕層標準、閾值;建立坡耕地侵蝕等級和地力等級對應關系,以侵蝕控制和農作物根系適宜土層深度劃分合理耕層等級;根據降雨侵蝕危險期和農作物生長周期性,坡耕地耕層質量最小數據集診斷指標閾值/適宜值應充分考慮其時間響應特征。

3)基于MDS的坡耕地水土流失阻控標準擬定:在坡耕地“壓力(土壤侵蝕)—狀態(耕層質量)—響應(土壤管理)”框架下,分析坡耕地耕層質量主控過程、障礙因素及恢復機制,揭示水蝕和土壤管理措施對坡耕地耕層質量的交互作用、調控機制和優先序;在坡耕地水土流失防治的土壤流失量、徑流系數、土壤允許流失量指標基礎上,增加坡耕地耕層質量診斷MDS指標(如土壤有機質、土壤入滲性、土壤黏粒含量),為坡耕地區域性治理標準擬訂提供量化預警監測,實現水蝕區坡耕地水土資源高效利用、糧食安全及生態安全。

4 結 論

1)坡耕地耕層生態過程發生在農作物-土壤下墊面及耕層土體剖面,耕層生態過程具有時空尺度特征;坡耕地耕層厚度及其土壤屬性變化由降雨侵蝕、耕作過程、成土過程綜合作用的生態過程決定,由地塊尺度農作物-耕層耦合效應決定土壤生產能力、坡耕地水土流失特征及耕層侵蝕性退化方向及程度。

2)耕層質量指沿土壤剖面農作物根系活動層及其下層的土壤質量特性、垂直組合狀況及其坡面立地條件,坡耕地耕層剖面構型指土壤質地、容重、孔隙度、機械阻力在土壤垂直層次分布特征,坡耕地耕層質量變化具有明顯的水蝕對耕作擾動的累積效應。

3)土壤侵蝕對坡耕地退化影響直接表現在坡面耕層變薄、土壤物理化性質及生物性質惡化和土地產力下降等,而土壤物理性質和結構性質變化與侵蝕程度關系最為密切;土壤厚度、土壤黏粒含量和有機質臨界水平是引起坡耕地土壤生產力變化的關鍵因素,土壤滲透性與土壤侵蝕敏感性直接關系到坡耕地生產力持續、穩定。

4)在中國主要水蝕區,應針對典型坡耕地土壤類型及耕作制度,建立統一的坡耕地耕層質量評價最小數據集;從坡耕地水土流失有效阻控及坡耕地農業生產持續穩定來看,坡耕地坡度、土壤層厚度、土壤有機質可作為侵蝕條件下耕層質量診斷的關鍵指標,土壤容重、土壤飽和導水率可作為診斷輔助指標。

[1] 謝俊齊,唐程杰,李憲文,等. 中國坡耕地[M]. 北京:中國大地出版社,2005.

[2] 陳恩風. 農業土壤的成因、熟化、耕翻深度與層次發育[J].中國農業科學,1961(12):1-6.

Chen Enfeng. Causes of maturation and development of tilling depth and gradation of agricultural soil[J]. Scientia Agricultura Sinica, 1961(12): 1-6. (in Chinese with English abstract)

[3] 史東梅,蔣光毅,蔣平,等. 土壤侵蝕因素對紫色丘陵區坡耕地耕層質量影響[J]. 農業工程學報,2017,33(13):270-279.

Shi Dongmei, Jiang Guangyi, Jiang Ping, et al. Effects of soil erosion factors on cultivated-layer quality of slope farmland in purple hilly area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 270-279. (in Chinese with English abstract)

[4] National Soil Erosion-Soil Productivity Research Planning Committee. Soil erosion effects on soil productivity: A research perspective[J]. Journal of Soil and Water Conservation, 1981, 36(2): 82-90.

[5] 史德明,韋啟潘,梁音,等. 中國南方侵蝕土壤退化指標體系研究[J]. 水土保持學報,2000,14(3):1-9.

Shi Deming, Wei Qipan, Liang Yin, et al. Study on degradation index system of eroded soils in Southern China[J]. Journal of Soil and Water Conservation, 2000, 14(3): 1-9. (in Chinese with English abstract)

[6] 史衍璽. 人為開墾加速侵蝕下土壤質量演變及其機理研究[D]. 楊凌:中國科學院西北水土保持研究所,1998.

[7] Lal R, Ahmandi M, Bajracharya R M. Erosional impacts on soil properties and corn yield on alfisols in central Ohio[J]. Land Degradation & development, 2000, 11: 575-585.

[8] Williams J R, Renard K G, Dyke P T. EPIC: A new method for assessing erosion effects on soil productivity[J]. Journal of Soil and Water Conservation,1983, 38(5): 381-383.

[9] 李軍,邵明安,張興昌,等. 黃土高原地區EPIC模型數據庫組建[J]. 西北農林科技大學學報:自然科學版,2004,32(8):21-26.

Li Jun, Shao Ming'an, Zhang Xingchang, et al. Database construction for the EPIC model on the Loess Plateau region[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2004, 32(8): 21-26. (in Chinese with English abstract)

[10] Neill L L. An Evaluation of Soil Productivity Based on Root Growth and Water Depletion[D]. Columbia:University of Missouri, 1979.

[11] Ddela R, Moreno J A, Mayol F, et al. Assessment of soil erosion vulnerability in western Europe and potential impact on crop productivity due to loss of soil depth using the ImpelERO model[J]. Agriculture Ecosystems & Environment, 2000, 81(3): 179-190.

[12] James R Pease, Robert E Coughlin. Land Evaluation and Site Assessment: A guidebook for Rating Agricultural Lands, Second Edition[M]. Ankeny, Iowa: Soil and Water Conservation Society, 2000.

[13] 全國農業技術推廣服務中心. 耕地地力評價指南[M]. 北京:中國農業科學技術出版社,2006:14-18

[14] 韓曉增,鄒文秀,陸欣春,等. 旱作土壤耕層及其肥力培育途徑[J]. 土壤與作物,2015,4(4):145-150.

Han Xiaozeng, Zou Wenxiu, Lu Xinchun, et al. The soil cultivated layer in dryland and technical patterns in cultivating soil fertility[J]. Soil and Crop, 2015, 4(4): 145-150. (in Chinese with English abstract)

[15] 劉世梁,傅伯杰,劉國華,等. 我國土壤質量及其評價研究的進展[J]. 土壤通報,2006,37(1):137-143.

Liu Shiliang, Fu Bojie, Liu Guohua, et al. Research review of quantitative evaluation of soil quality in China[J]. Chinese Journal of Soil Science, 2006, 37(1): 137-143. (in Chinese with English abstract)

[16] 鄭洪兵,齊華,劉武仁,等. 玉米農田耕層現狀、存在問題及合理耕層構建探討[J]. 耕作與栽培,2014,52(5):39-42.

Zheng Hongbing, Qi Hua, Liu Wuren, et al. Present and problem of tillage layer of maize cropland and discussion of optimum tillage layer[J]. Tillage and Cultivation, 2014, 52(5): 39-42. (in Chinese with English abstract)

[17] 董杰,段藝芳,許玉鳳,等. 三峽庫區紫色土坡地土壤退化程度評價及驅動機制[J]. 水土保持通報,2009,29(4):51-56.

Dong Jie, Duan Yifang, Xu Yufeng, et al. Evaluation and driving mechanism of land degradation in a sloping field of Purple soil in Three Gorges reservoir area[J]. Bulletin of Soil and Water Conservation, 2009, 29(4): 51-56. (in Chinese with English abstract)

[18] Ilan Stavi, Rattan Lal. Variability of soil physical quality and erodibility in a water-eroded cropland[J]. Catena, 2011, 84: 148-155.

[19] Lothar Mueller, Bev D Kay, Chunsheng Huc, et al. Visual assessment of soil structure: Evaluation of methodologies on sites in Canada, China and Germany Part I: Comparing visual methods and linking them with soil physical data and grain yield of cereals[J]. Soil & Tillage Research, 2009, 103: 178-187.

[20] 楊艷生. 第四紀紅粘土區侵蝕土壤退化機理研究[J]. 水土保持研究,1997,4(1):100-108.

Yang Yansheng. Research on soil degradation mechanism in the quaternary red clay area[J]. Research of Soil and Water Conservation | Res Soil Water Conserv, 1997, 4(1): 100-108. (in Chinese with English abstract)

[21] 何毓蓉.中國紫色土:II[M]. 北京:科學出版社,2003:2-11,43-45,398-404.

[22] 程冬兵,蔡崇法,左長清. 土壤侵蝕退化研究[J]. 水土保護研究,2006,13(5):252-254.

Cheng Dongbing, Cai Chongfa, Zuo Changqing, et al. Advances in research of soil degradation by erosion[J]. Soil and Water Conservation Research, 2006, 13(5): 252-254. (in Chinese with English abstract)

[23] 史志華,蔡崇法,王天巍,等. 紅壤丘陵區土地利用變化對土壤質量影響[J]. 長江流域資源與環境,2001,10(6):537-543.

Shi Zhihua, Cai Chongfa, Wang Tianwei, et al. In flueece of land use changes on soil quality in hilly region of red soil[J]. Resourceses and Environment in the Yangtze Basin, 2001, 10(6): 537-543. (in Chinese with English abstract)

[24] 王紅蘭,唐翔宇,張維,等. 施用生物炭對紫色土坡耕地耕層土壤水力學性質的影響[J]. 農業工程學報,2015,31(4):107-112.

Wang Honglan, Tang Xiangyu, Zhang Wei, et al. Effects of biochar application on tilth soil hydraulic properties of slope cropland of purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 107-112. (in Chinese with English abstract)

[25] 吳媛媛,楊明義,張風寶,等. 添加生物炭對黃綿土耕層土壤可蝕性的影響[J]. 土壤學報,2016,53(1):77-88.

Wu Yuanyuan, Yang Mingyi, Zhang Fengbao, et al. Effect of biochar addition on erodibility of loess soil[J]. Acta Pedologica Sinica, 2016, 53(1): 77-88. (in Chinese with English abstract)

[26] Vikas Abrol, Meni Ben-Hur, Frank G A. Verheijen, et al. Biochar effects on soil water infiltration and erosion under seal formation conditions: Rainfall simulation experiment[J]. J Soils Sediments, 2016, 16: 2709-2719.

[27] Arriaga F J, Lowery B. Corn production on an eroded soil: Effects of total rainfall and soil water storage[J]. Soil & Tillage Research, 2003, 71: 87-93.

[28] Francis J Larney, Henry H Janzen,Barry M Olson,et al. Soil quality and productivity responses to simulated erosion and restorative amendments[J].Canadian Journal of Soil Science, 2000, 80: 515-522.

[29] Oyedele D J, Aina P O. Response of soil properties and maize yield to simulated erosion by artificial topsoil removal[J]. Plant and Soil, 2006, 284: 375-384.

[30] 陳奇伯,王克勤,齊實,等. 不同生態脆弱區土壤侵蝕對土地生產力影響對比研究[J]. 水土保持通報,2005,25(3):29-32.

Chen Qibo, Wang Keqin, Qi Shi, et al. Soil erosion and its relations to slope field productivity in hilly gully area of loess plateau and dry-hot valley of Jinshajiang river[J]. Bulletin of Soil and Water Conservation, 2005, 25(3): 29-32. (in Chinese with English abstract)

[31] 王志強,劉寶元,王旭艷,等. 東北黑土區土壤侵蝕對土地生產力影響試驗研究[J]. 中國科學D輯:地球科學,2009,39(10):1397-1412.

Wang Zhiqiang, Liu Baoyuan, Wang Xuyan, et al. Erosion effect on the productivity of black soil in Northeast China[J]. Sci China Ser D-Earth Sci, 2009, 39(10): 1397-1412. (in Chinese with English abstract)

[32] Zhao Li, Jin Jie, Du Shuhan, et al. A quantification of the effects of erosion on the productivity of purple soils[J]. Journal of Mountain Science, 2012, 9: 96-104.

[33] 劉慧,魏永霞. 黑土區土壤侵蝕厚度對土地生產力的影響及其評價[J]. 農業工程學報,2014,30(20):288-296..

Liu Hui, Wei Yongxia. Influence of soil erosion thickness on soil productivity of black soil and its evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 288-296. (in Chinese with English abstract)

[34] Lothar Mueller, Bev D Kay, Bill Deen, et al. Visual assessment of soil structure: Part II. Implications of tillage, rotation and traffic on sites in Canada, China and Germany[J]. Soil & Tillage Research, 2009, 103(1): 188-196.

[35] Pierce F C, Larson W E, Dowdy R H, et al. Graham. 1983. Productivity of soils: Assessing long-term changes due to erosion[J]. Journal of Soil and Water Conservation. 1983, 38: 39-44.

[36] 孫振寧,謝云,段興武. 生產力指數模型PI在北方土壤生產力評價中的應用[J]. 自然資源學報,2009,24(4):708-718.

Sun Zhenning, Xie Yun, Duan Xingwu. Applied productivity index model(PI) in soil productivity assessment of northern China[J]. Journal of Natural Resources, 2009, 24(4): 708-718. (in Chinese with English abstract)

[37] Martha M. Bakker, Gerard Goversb, Mark D A. Rounsevella. The crop productivity-erosion relationship: An analysis based on experimental work[J]. Catena, 2004, 57: 55-76.

[38] Duan Xingwu, Xie Yun, Ou Tinghai, et al. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China[J]. Catena, 2011, 87: 268-275.

[39] 成婧,吳光艷,云峰,等. 渭北旱塬侵蝕退化土壤生產力的恢復與評價[J]. 中國水土保持科學,2013,11(3):6-11.

Cheng Xie, Wu Guangyan, Yun Feng, et al. Soil productivity restoration and evaluation of erosion degradation in Weibei dry highland[J]. Science of Soil and Water Conservation, 2013, 11(3): 6-11. (in Chinese with English abstract)

[40] Deyanira Lobo,Zenaida Lozano,Fernando Delgado. Water erosion risk assessment and impact on productivity of a Venezuelan soil[J]. Catena, 2005, 64: 297-306.

[41] Debarati Bhaduri, Purakayastha T J. Long-term tillage, water and nutrient management in rice-wheat cropping system: Assessment and response of soil quality[J]. Soil & Tillage Research, 2014, 144(12): 83-95.

[42] de la Rosa D, Moreno J A, Mayol F, et al. Assessment of soil erosion vulnerability in western Europe and potential impact on crop productivity due to loss of soil depth using the ImpelERO model[J]. Agriculture, Ecosystems and Environment, 2000, 81: 179-190.

[43] 朱波,況福虹,高美榮,等. 土層厚度對紫色土坡地生產力的影響[J]. 山地學報,2009,27(6):735-739.

Zhu Bo, Kuan Fuhong, Gao Meirong, et al. Effects of soil thicknesson productivity of sloping cropland of purple soil[J]. Journal of Mountain Science, 2009, 27(6): 735-739. (in Chinese with English abstract)

[44] 婁義寶,史東梅,金慧芳,等. 西南紫色土坡耕地農作物-耕層質量適宜性的耦合度診斷[J]. 中國農業科學,2019,52(4):661-675.

Lou Yibao, Shi Dongmei, Jin Huifang, et al. Coupling degree diagnosis on suitability evaluation of cultivated-layer quality for slope farmland in purple hilly region of south-western China[J]. Scientia Agricultura Sinica, 2019, 52(4): 661-675. (in Chinese with English abstract)

[45] 冷疏影. 地理信息系統支持下的中國農業生產潛力研究[J]. 自然資源學報,1992,7(1):71-79.

Leng Shuying. Research on the potential agricultural productivity of China with the help of GIS[J]. Journal of Natural Resources, 1992, 7(1): 71-79. (in Chinese with English abstract)

[46] Karlen D L, Eash N S, Unger P W. Soil and crop management effects on soil quality indicators[J]. American Journal of Alternative Agriculture, 1992, 7(7): 48-55.

[47] Oluwatosin G A, Adeyolanu O D, Ogunkunle A O, et al. From land capability classification to soil quality: An assessment[J]. Tropical and Subtropical Agroecosystems, 2006, 6: 49-55.

[48] Jairo Costa Fernandes, Carlos Antonio Gamero, Jose′ Guilherme Lanca Rodrigues, et al. Determination of the quality index of a Paleudult under sunflower culture and different management systems[J]. Soil & Tillage Research, 2011, 112: 167-174.

[49] Rachel Muylaert Locks Guimara, Bruce C Ball, Cassio Antonio Tormena, et al. Relating visual evaluation of soil structure to other physical properties in soils of contrasting texture and management[J]. Soil & Tillage Research, 2013, 127: 92-99.

[50] Jasmin Schiefera, Georg J Laira, Winfried E H. Blum. Indicators for the definition of land quality as a basis for the sustainable intensification of agricultural production[J]. International Soil and Water Conservation Research, 2015, 3: 42-49.

[51] 許明祥,劉國彬,趙允格.黃土丘陵區侵蝕土壤質量評價[J].植物營養與肥料學報,2005,11(3):285-293.

Xu Mingxiang, Liu Guobin, Zhao Yunge. Quality assessment of erosion soil on hilly Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2005, 11(3): 285-293. (in Chinese with English abstract)

[52] Xu M, Qiang L, Wilson G. Degradation of soil physicochemical quality by ephemeral gully erosion on sloping cropland of the hilly Loess Plateau, China[J]. Soil & Tillage Research, 2016, 155: 9-18.

[53] 鄭粉莉,張鋒,王彬. 近100年植被破壞侵蝕環境下土壤質量退化過程的定量評價[J]. 生態學報,2010,30(22):6044-6051.

Zheng Fenli, Zhang Feng, Wang Bin. Quantifying soil quality degradation over 100 years after deforestation under erosional environments[J]. Acta Ecologica Sinica, 2010, 30(22): 6044-6051. (in Chinese with English abstract)

[54] 郭旭東,邱揚,連綱,等. 基于PSR框架,針對土壤侵蝕小流域的土地質量評價[J]. 生態學報,2004,24(9):1884-1894.

Guo Xudong, Qiu Yang, Liang Gang, et al. Land quality indictors based on “Press-State-Response” framework at catchment for soil degradation by water erosion[J]. Acta Ecologica Sinica, 2004, 24(9): 1884-1894. (in Chinese with English abstract)

[55] Kazem Nosrati. Assessing soil quality indicator under different land use and soil erosion using multivariate statistical techniques[J]. Environmental Monitoring & Assessment, 2013, 185(4): 2895-2907.

[56] Mohammad Sadegh Askari, Junfang Cui, Sharon M O’Rourke, et al. Evaluation of soil structural quality using VIS-NIR spectra[J]. Soil & Tillage Research, 2015, 146: 108-117.

[57] 李桂林,陳杰,檀滿枝,等. 基于土地利用變化建立土壤質量評價最小數據集[J]. 土壤學報,2008,45(1):16-25.

Li Guilin, Chen Jie, Tan Manzhi, et al. Establishment of a minimum dataset for soil quality assessment based on land use change[J]. Acta Pedologica Sinica, 2008, 45(1): 16-25. (in Chinese with English abstract)

[58] Bram Govaerts, Ken D Sayre, Jozef Deckers. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico[J]. Soil & Tillage Research, 2006, 87: 163-174.

[59] Lima A C R, Brussaard L, Totolac M R, et al. A functional evaluation of three indicator sets for assessing soil quality[J]. Applied Soil Ecology, 2013, 64: 194-200.

[60] 中華人民共和國水利部. 土壤侵蝕分類分級標準:SL 190-2007[S]. 北京:中國標準出版社,2008.

[61] 蘇正安,張建輝,聶小軍. 紫色土坡耕地土壤物理性質空間變異對土壤侵蝕的響應[J]. 農業工程學報,2009,25(5):54-60.

Su Zheng'an, Zhang Jianhui, Nie Xiaojun. Response of spatial variability of soil physical properties to soil erosion in purple soil slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 54-60. (in Chinese with English abstract)

[62] Munkholm L J. Soil friability: A review of the concept, assessment and effects of soil properties and management[J]. Geoderma, 2011, 167/168(8): 236-246.

[63] Adélia N Nunes, António C de Almeida, Celeste O A Coelho. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal[J]. Applied Geography, 2011, 31: 687-699.

[64] 金慧芳,史東梅,陳正發,等. 基于聚類及PCA分析的紅壤坡耕地耕層土壤質量評價指標[J]. 農業工程學報,2018,34(7):155-164.

Jin Huifang, Shi Dongmei, Chen Zhengfa, et al. Evaluation indicators of cultivated layer soil quality for red soil slope farmland based on cluster and PCA analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 155-164. (in Chinese with English abstract)

[65] 馬芊紅,張光輝,耿韌,等我國水蝕區坡耕地土壤肥力現狀分析[J]. 水土保持學報,2018,34(7):155-164.

Ma Qianhong, Zhang Guanghui, Gen Ren, et al. Present condition analysis of sloping farmland and soil fertility in the water erosion zone of China[J]. Journal of Soil and Water Conservation, 2018, 34(7): 155-164. (in Chinese with English abstract)

[66] Liu Gangcai, Li Lan, Wu Laosheng. Determination of Soil loss tolerance of an entisol in Southwest China[J/OL]. Soil Science Society of America Journal, 2009,73(2):412. DOI: 10.2136/sssaj2008.015

[67] Duan Xingguo, Shi Xiaoning, Li Yanbo, et al. A new method to calculate soil loss tolerance for sustainable soil productivity in farmland[J]. Agronomy for Sustainable Development, 2017, 37(1): 2.DOI: 10.1007/s13593-016-0409-3

Degradation effect of soil erosion on tillage-layer quality of slope farmland and its evaluation trend

Shi Dongmei1, Jin Huifang1, Jiang Guangyi2

(1.,,400715; 2.,401147,)

Soil erosion is the key driving force that causes tillage-layer quality degradation gradually and soil productivity variation precariously in sloping farmland. According to 2 functions of tillage-layer, erosion control and soil productivity, in this paper, we firstly focused on the ecological processes occurring in tillage-layer of farmland under the comprehensive interactions among soil erosion, soil and water conservation practices and agricultural activities at plot scale, and further summarized its influencing roads of soil erosion on tillage-layer qualityResults showed that: 1) Tillage-layer quality of sloping farmland was determined by the 2 ecological interaction process, rainfall erosion and tillage activities, and the temporal and spatial scales of these interaction on tillage-layer quality were very different. Soil properties functions indicating tillage-layer quality of slope farmland could be divided into such 4 types as water conservation, soil conservation, fertilizer conservation and production potential during a total agricultural production process. Crop-tillage coupling coordination could determine such characteristics of slope farmland as soil productivity, soil and water loss and the degradation direction & degree of tillage-layer caused by water erosion. 2) Tillage-layer quality was the characteristics of soil quality, its vertical combination along the active layer of crop root-system and underlying layer along the soil profile and the site conditions of sloping farmland. Tillage profile configuration of sloping farmland was the vertical distribution characteristics of soil texture, soil bulk density, soil porosity and soil mechanical resistance, so did its combination characteristics. The changes of tillage-layer quality of sloping farmland had obvious cumulative effects of water erosion on tillage disturbance. Degradation effects by water erosion on tillage-layer quality of sloping farmland were manifested in 3 aspects: deterioration of soil properties, deterioration of soil quality and decline of land productivity. The variation degree of soil physical properties was greater than that of chemical properties, and the decline of land productivity caused by runoff was greater than that caused by soil erosion. The change of crop yield had a significant hysteresis effect compared with soil quality degradation, meanwhile, soil permeability and soil erosion sensitivity had a direct correlation to the sustainable and stable productivity of sloping farmland. 3) In primary water erosion areas of China, an unified minimum data set of tillage-layer quality evaluation of sloping farmland should be set up aimed at the typical soil types and farming systems, which paid more close attention to the 2 functions of tillage-layer on erosion reduction and yield increase simultaneously. Such soil parameters as effective soil layer thickness, tillage layer thickness, soil bulk density, soil shear strength, soil organic matter and soil permeability could be included into the minimum data set for rational tillage-layer evaluation at plot scale. The time response characteristics of the minimum data set of tillage-layer quality should be fully taken into account in determining the threshold/suitable value. Rational tillage suitability of sloping farmland was divided into 5 grades, which were connected with soil erosion classification and cultivated land fertility classification. 4) Tillage-layer evaluation of slope farmland should focus on 3 aspects in the future, minimum data set of diagnosis index for tillage-layer quality, classification criteria of rational tillage threshold/suitable value and criterion of soil erosion control on sloping farmland. Accompanied by such normal indicators as soil erosion modulus, runoff coefficient and soil loss tolerance for protection of sloping farmland, the minimum data set index for diagnosing tillage-layer quality, as soil organic matter, soil infiltration, soil clay content could provide quantitatively a regional early-warning standards, which would benefit to more efficient soil and water loss control and realize sustainable utilization of sloping farmland These viewpoints were helpful in understanding the mechanism of degradation process caused by erosion of sloping farmland, and identifying quantitatively regulation approaches for rational cultivated-layer of sloping farmland, and also could provide some technical parameters for constructing rational tillage layer of slope farmland in water erosion area.

soils; erosion; organic matter;sloping farmland; tillage-layer quality; degradation effect; rational tillage-layer; diagnostic indicator

史東梅,金慧芳,蔣光毅. 土壤侵蝕對坡耕地耕層質量退化作用及其評價趨勢展望[J]. 農業工程學報,2019,35(18):118-126.doi:10.11975/j.issn.1002-6819.2019.18.015 http://www.tcsae.org

Shi Dongmei, Jin Huifang, Jiang Guangyi. Degradation effect of soil erosion on tillage-layer quality of slope farmland and its evaluation trend[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 118-126. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.18.015 http://www.tcsae.org

2019-07-19

2019-08-10

國家自然科學基金(41771310);公益性行業(農業)科研專項(201503119-01-01)

史東梅,博士,教授,博士生導師,主要從事水土生態工程、土壤侵蝕與水土保持研究。Email:shidm_1970@126.com

10.11975/j.issn.1002-6819.2019.18.015

S157.1

A

1002-6819(2019)-18-0118-09

猜你喜歡
評價質量
“質量”知識鞏固
SBR改性瀝青的穩定性評價
石油瀝青(2021年4期)2021-10-14 08:50:44
中藥治療室性早搏系統評價再評價
質量守恒定律考什么
做夢導致睡眠質量差嗎
關于質量的快速Q&A
質量投訴超六成
汽車觀察(2016年3期)2016-02-28 13:16:26
基于Moodle的學習評價
關于項目后評價中“專項”后評價的探討
石器時代與質量的最初萌芽
主站蜘蛛池模板: AV熟女乱| 亚洲综合一区国产精品| 国产成人精品一区二区三在线观看| 国产精品自在拍首页视频8| 国产第三区| 伊人丁香五月天久久综合| 婷婷六月综合网| 无码中文字幕乱码免费2| 亚洲制服中文字幕一区二区| 国产偷国产偷在线高清| 国产一级在线观看www色| 亚洲精品无码久久毛片波多野吉| 亚洲aaa视频| 一本大道香蕉高清久久| 国产jizzjizz视频| 国产精品高清国产三级囯产AV| 伦伦影院精品一区| 国产成人精品一区二区| 亚洲一区色| 日韩福利在线视频| 婷婷六月激情综合一区| 久久免费精品琪琪| 天天躁夜夜躁狠狠躁图片| 亚洲视频一区在线| 亚洲经典在线中文字幕| 国产成人禁片在线观看| 色国产视频| 伊在人亞洲香蕉精品區| 日韩一级二级三级| 亚洲av无码成人专区| 亚洲成a人在线观看| 精品自拍视频在线观看| 国产丝袜一区二区三区视频免下载| 激情综合婷婷丁香五月尤物| 国产精品一区二区久久精品无码| 免费观看欧美性一级| 欧美一级专区免费大片| 国产午夜看片| 国产美女久久久久不卡| 亚洲妓女综合网995久久| 任我操在线视频| 精品三级网站| 国产精品微拍| 欧美yw精品日本国产精品| 日本影院一区| 国产视频你懂得| 国产精品私拍在线爆乳| 成人久久精品一区二区三区| 爱爱影院18禁免费| 国产一区亚洲一区| 国产91色| 亚洲国产成人无码AV在线影院L| 54pao国产成人免费视频| 国产菊爆视频在线观看| 99色亚洲国产精品11p| 亚洲高清无在码在线无弹窗| 日本免费a视频| 亚洲欧洲自拍拍偷午夜色无码| 亚洲侵犯无码网址在线观看| 亚洲精品777| 538精品在线观看| 亚洲第一页在线观看| 日本人妻丰满熟妇区| 亚洲成a人片在线观看88| 亚洲精品麻豆| 国产香蕉97碰碰视频VA碰碰看| 91久久青青草原精品国产| 亚洲综合香蕉| 成人欧美在线观看| 婷婷久久综合九色综合88| 亚洲狼网站狼狼鲁亚洲下载| 亚洲国产日韩在线成人蜜芽| 精品91自产拍在线| 国产超碰一区二区三区| 青草午夜精品视频在线观看| 中国毛片网| 大陆精大陆国产国语精品1024| 国产精品网曝门免费视频| 国产xxxxx免费视频| 国产日韩欧美中文| 国产精品深爱在线| 国产男人天堂|