郭 交,劉 健,寧紀鋒,韓文霆
基于Sentinel多源數據的農田地表土壤水分反演模型構建與驗證
郭 交1,2,劉 健1,2,寧紀鋒3,韓文霆4
(1.西北農林科技大學機械與電子工程學院,楊凌 712100;2. 陜西省農業信息感知與智能服務重點實驗室,楊凌 712100;3. 西北農林科技大學信息工程學院,楊凌 712100;4. 西北農林科技大學水土保持研究所,楊凌 712100)
土壤水分是影響水文、生態和氣候等環境過程的重要參數,而微波遙感是農田地表土壤水分測量的重要手段之一。針對微波遙感反演農田地表土壤水分受植被覆蓋影響較大的問題,該文基于Sentinel-1和Sentinel-2多源遙感數據,利用Oh模型、支持向量回歸(support vector regression,SVR)和廣義神經網絡(generalized regression neural Network,GRNN)模型對土壤水分進行定量反演,以減小植被影響,提高反演精度。結果表明:通過水云模型去除植被影響后的Oh模型反演精度有所提高。加入不同植被指數的SVR和GRNN模型的反演效果總體優于Oh模型,基于SVR模型的多特征參數組合(雙極化雷達后向散射系數、海拔高度、局部入射角、修改型土壤調整植被指數)反演效果最優,其測試集相關系數和均方根誤差分別達到了0.903和0.015 cm3/cm3,為利用多源遙感數據反演農田地表土壤水分提供了參考。
土壤水分;模型;遙感;反演;多源數據;Sentinel
土壤水分是地球生態系統中非常重要的組成部分,在全球水循環中發揮著積極作用[1],其直接影響著地表和大氣界面的水分和能量交換,在全球氣候變化和水循環的研究中扮演著重要的角色[2-3]。在農業應用中,土壤水分監測在農作物長勢監測、作物估產和變量灌溉等應用中具有重要意義[4-5]。
在現有土壤水分監測方法中,合成孔徑雷達(synthetic aperture radar,SAR)遙感是一種常用方式,其具有全天時、全天候工作的優勢,適合定量反演農田地表土壤水分。為了反演土壤水分,需要建立雷達后向散射系數與介電常數之間的關系,而土壤的介電常數與土壤水分之間存在密切的聯系[6-9]。何連等[10]利用多時相Sentinel-1雷達數據,實現了農田地表土壤水分的反演,驗證結果表明土壤水分反演結果精度較好。尹楠等[11]基于RADARSAT-2全極化數據,通過修正Oh模型對研究區的土壤水分進行反演,驗證表明預測結果較好。雖然利用雷達數據可以有效地反演裸土水分,但農田中土壤表層常有植被覆蓋,所以在實際中單純利用雷達數據有著極大的局限性。為克服這一缺點,張鈞泳等[12]以Sentinel-1雷達數據和Landsat-8光學數據為數據源,利用水云模型去除植被影響后反演了土壤表層水分以及地下水埋深;蔡慶空等[13]利用RADARSAT-2雷達數據和Landsat-8光學數據基于水云模型去除植被影響后反演了農田土壤水分,為大面積反演土壤水分提供了研究思路。
雖然理論上利用水云模型可去除植被影響,但對不同植被類型,該模型參數需重新計算,模型的普適性不足。所以有學者直接通過植被指數來考慮植被覆蓋影響,如Holtgrave等[14]利用Landsat-8數據計算歸一化植被指數NDVI補償植被對SAR的反向散射影響,基于SVR模型反演洪澇區的土壤水分,取得了較好的結果。雖然NDVI可以有效減小植被覆蓋影響,但缺乏與其它植被指數的對比分析。另外,Landsat-8衛星的空間分辨率為30 m,重訪周期為16天[15],其分辨率和重訪周期無法滿足及時準確的監測需求。而Sentinel-2的空間分辨率為10 m,重訪周期為5天,且Sentinel-1與Sentinel-2同屬于歐空局的Sentinel系列衛星(以下簡稱S1、S2),在空間、時間和數據配準方面,更適合監測土壤水分。
本文基于S1和S2多源遙感數據,以陜西省楊凌示范區周邊農田區域為研究區,針對Oh模型利用S1雷達數據反演土壤水分受植被覆蓋影響較大的問題,通過S2光學遙感數據計算植被指數,分別利用傳統的水云模型、SVR和GRNN模型減小植被覆蓋對土壤水分反演精度的影響,并在此基礎上分析了不同特征參數組合下SVR和GRNN模型反演土壤水分的精度,為應用雷達和光學多源數據反演土壤水分提供研究思路,本文具體技術路線如圖1所示。

圖1 技術路線圖
研究區為陜西省楊凌示范區周邊,該區域土壤肥沃,位于107°55′20″E-108°15′40″E,34°15′15″N-34°50′28″N,地勢相對比較平坦,北部較南部略高,海拔高度介于560~790 m之間,屬于東亞暖溫帶半濕潤半干旱氣候,具有春暖多風,夏熱多雨、冬寒干燥等明顯的大陸性季風氣候特征,年均氣溫約12 ℃,無霜期211天,年均日照時數約2163 h,年均降水量635 mm。研究區主要作物為冬小麥,數據采集時小麥處于生長初期。
研究區面積為20 km×20 km,地面數據采集時間為2018年3月12日,S1衛星當天從研究區過境,S2衛星于2018年3月10日過境,以保證實測時間與衛星過境時間盡量一致。在研究區選取45個點作為采樣點,實地采集土壤水分值、土壤粗糙度、經緯度坐標等地面參數,采樣點分布如圖2a所示。土壤水分利用TDR300型土壤水分計進行測量,測量時采用的探針長度為7.5 cm,用于獲取表層土壤的體積含水量。在以采樣點為中心半徑5 m的范圍內布置5個測量點,測量點呈“+”字形分布,每個測量點測5次。每個采樣點的土壤水分是5個測量點的平均值。土壤粗糙度采用針式粗糙度儀進行測量,剖面板長度為1 m,相鄰探針間隔1 cm,測量時沿同一方向連續測量5次,構成5 m的剖面用于求取粗糙度。采樣點的經緯度坐標通過雙頻GPS(global positioning system)接收機進行定位測量,測量精度為厘米級,遠小于遙感影像分辨率。



圖2 遙感影像及采樣點分布




式中為入射角,rad;m為土壤體積含水量,cm3/cm3;為均方根高度,cm;為自由空間波數(=2p/,為頻率,為波速),cm-1。盡管理論上Oh模型的適用范圍較寬,但實際上,對粗糙或干燥的土壤,Oh模型的適用性并不好[11]。
對本文研究區地表參數的實測數據分析發現,土壤體積含水量實測值分布在0.081~0.284 cm3/cm3,平均值為0.182 cm3/cm3;均方根高度的實測值為0.452~1.453 cm,平均值為0.862 cm,均處于模型適用范圍。因此,Oh模型適用于本研究區。
Oh模型適用于反演裸土水分,但在實際應用中,通過雷達圖像提取的后向散射系數中包含土壤表層植被的影響,直接利用Oh模型反演精度較低,故有學者通過水云模型分離植被的后向散射系數,以提高反演精度[20-22]。水云模型如式(4)-(6)所示



本研究區的植被類型主要為冬小麥,根據文獻[23],式(5)、(6)中和分別取0.0018和0.138。植被含水量VWC是水云模型的重要輸入參數,本文利用與S1過境時間相近的S2光學數據來計算NDVI。根據NDVI和VWC的關系[24-25],VWC可表示如下:



SVR就是支持向量機(support vector machine,SVM)在函數擬合上的應用,其基于VC維的統計理論和最小化結構風險理論,可以利用有限的樣本數量選擇合適的核函數實現高維空間的線性回歸,根據泛函數的相關理論,當核函數(x,)滿足Mercer定理時,對應的預測函數為[26]。


在本文的土壤水分反演中,利用SVR構建模型主要步驟如下:(1)構建數據集,輸入特征參數包括雙極化雷達后向散射系數、海拔高度和局部入射角以及3種植被指數(NDVI、MSAVI、DVI);(2)劃分訓練集和測試集,本文選擇36個樣本作為模型的訓練集,9個樣本作為模型的測試集;(3)SVR模型的核函數選擇高斯徑向基函數,通過網格參數尋優法確定懲罰因子和參數;(4)模型預測效果通過測試集的均方根誤差和相關系數來評價。
廣義神經網絡(GRNN)是一種以徑向基函數為核函數的一種局部逼近網絡,研究表明該網絡對小樣本預測有一定優勢[27]。該網絡由輸入層、模式層、求和層和輸出層構成,網絡輸入為各特征參數,網絡輸出為土壤水分預測值。GRNN的基本原理是非線性回歸分析[28],其預測函數可表示為:

式中為訓練樣本數,為光滑因子,()是所有樣本觀測值的加權平均值,每個觀測值y的權重因子通過對應樣本x和網絡輸入的歐氏距離平方確定。在土壤水分反演過程中,GRNN構建模型時通過交叉驗證法確定光滑因子,其它步驟和SVR模型構建過程相同。
利用水云模型去除植被影響前后Oh模型的反演結果驗證如圖3所示。從圖3a和3b中可以看出,去除植被影響前測試集相關系數R和均方根誤差RMSE分別為0.628和0.028 cm3/cm3,利用水云模型去除植被影響后測試集2和RMSE分別為0.650和0.025 cm3/cm3。利用水云模型去除植被影響后,2提高了0.022,RMSE減小了0.003 cm3/cm3,可知去除植被影響后反演的效果更好。

圖3 去除植被影響前后Oh模型反演結果驗證
對比4a、4d、4g,4b、4e、4h,4c、4f、4i這3組結果可以看出,基于3種植被指數NDVI、MSAVI和DVI的反演結果中MSAVI和NDVI的2均大于DVI,RMSE均小于DVI。由此可知,SVR模型反演土壤水分時,3種植被指數中DVI與土壤水分的相關性最弱。

圖4 基于不同特征參數組合的SVR模型土壤水分反演結果驗證
對比5a、5d、5g,5b、5e、5h,5c、5f、5i這3組結果可以看出,基于3種植被指數NDVI、MSAVI和DVI的反演結果中MSAVI和NDVI的2均大于DVI,RMSE均小于DVI。由此可知,GRNN模型反演土壤水分時,3種植被指數中DVI與土壤水分的相關性最弱。

圖5 基于不同特征參數組合的GRNN模型土壤水分反演結果驗證

利用前文所構建的SVR最優模型和3個時相的數據對整個試驗區進行土壤水分反演,結果如圖6所示。2月28日土壤水分反演結果整體較高,試驗區土壤水分均值為0.307 cm3/cm3,這是由于在衛星過境前兩日試驗區有持續降雨,所以土壤比較濕潤。3月12日反演的試驗區土壤水分均值為0.245 cm3/cm3,衛星過境前試驗區域僅有少量降雨,故土壤水分值相比于2月28日略有降低。3月24日反演的土壤水分值最低,均值為0.186 cm3/cm3,這是因為前一周天氣晴朗無降雨過程。由此可知,3個時間的土壤水分反演結果與降雨情況比較吻合,該模型在試驗區具有較強的適用性。


圖6 試驗區不同時期地表土壤水分反演結果

圖7 特征參數等效出現次數

本文利用S1和S2多源遙感數據作為數據源進行土壤水分定量反演,通過水云模型去除植被影響,利用Oh模型、SVR和GRNN模型反演土壤水分,探討了雷達后向散射系數、海拔高度、局部入射角、3種植被指數等參數對土壤水分反演精度的影響,主要結論包括:
1)對于Oh模型而言,通過水云模型去除植被影響后其反演效果更好;對于SVR和GRNN模型而言,植被指數為MSAVI和NDVI時反演效果優于Oh模型?;赟VR模型的最佳組合測試集2和RMSE分別為0.903和0.015 cm3/cm3,相比于GRNN最優組合,SVR最優組合的2提高了0.026,RMSE減小了0.008 cm3/cm3,相比于去除植被影響后Oh模型的反演結果,SVR最優組合的2提高了0.253,RMSE減小了0.010 cm3/cm3。
2)通過分析各特征參數對土壤水分反演結果的影響,驗證了雷達后向散射系數、海拔高度、局部入射角、植被指數對農田地表土壤水分反演的重要影響,同時發現3種植被指數對土壤水分的相關性由大到小為:MSAVI、NDVI、DVI。
本研究區的植被類型主要為冬小麥,后續的研究中將進一步探討模型在其它農田地表類型的適用性。S1雷達與S2光學衛星同屬歐空局的Sentinel系列衛星,在多源影像配準和融合方面具有較大優勢,在農田土壤水分反演等應用中具有巨大潛力。
[1] Anagnostopoulos V, Petropoulos G P, Ireland G, et al. A modernized version of a 1D soil vegetation atmosphere transfer model for improving its future use in land surface interactions studies[J]. Environmental Modelling and Software, 2017, 90: 147-156.
[2] Leng Pei, Song Xiaoning, Duan Sibo, et al. A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 52: 338-348.
[3] Rahimzadeh-Bajgiran P, Berg A A, Champagne C, et al. Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83(3): 94-103.
[4] Wang Hongquan, Magagi R, Goita K. Potential of a two-component polarimetric decomposition at C-band for soil moisture retrieval over agricultural fields[J]. Remote Sensing of Environment, 2018, 217: 38-51.
[5] Stamenkovic J, Guerriero L, Ferrazzoli P, et al. Soil moisture estimation by SAR in alpine fields using Gaussian Process Regressor trained by model simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 4899-4912.
[6] Nelson D G A, Shariati M, Glena R, et al. Application of the Dubois-model using experimental synthetic aperture radar data for the determination of soil moisture and surface roughness[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(4): 273-278.
[7] Hosseini M, Mcnairn H. Using multi-polarization C- and L-band synthetic aperture radar to estimate biomass and soil moisture of wheat fields[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 58: 50-64.
[8] Xu Xiaoyong, Tolson B A, Li J, et al. Comparison of X-band and L-Band soil moisture retrievals for land data assimilation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9): 3850-3860.
[9] Pasolli L, Notarnicola C, Bruzzone L. Estimating soil moisture with the Support Vector Regression technique[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1080-1084.
[10] 何連,秦其明,任華忠,等. 利用多時相Sentinel-1 SAR數據反演農田地表土壤水分[J]. 農業工程學報,2016,32(3):142-148.
He Lian, Qin Qiming, Ren Huazhong, et al. Soil moisture retrieval using multi-temporal Sentinel-1 SAR data in agricultural areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 142-148. (in Chinese with English abstract)
[11] 尹楠,姜琦剛,孟治國,等. 基于RADARSAT-2全極化數據反演周期性地表土壤濕度[J]. 農業工程學報,2013,29(17):72-79.
Yin Nan, Jiang Qigang, Meng Zhiguo, et al. Use of fully polarimetric RADARSAT-2 data to retrieve soil moisture of periodic surfaces[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 72-79. (in Chinese with English abstract)
[12] 張鈞泳,丁建麗,譚嬌. 基于SVM 的綠洲荒漠交錯帶土壤水分與淺層地下水埋深反演[J]. 農業機械學報,2019,50(3):221-230.
Zhang Junyong, Ding Jianli, Tan Jiao. Quatitative estimation of soil moisture and shallow groundwater level using SVM in arid oasis-desert[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 221-230. (in Chinese with English abstract)
[13] 蔡慶空,李二俊,陶亮亮,等. PROSAIL 模型和水云模型耦合反演農田土壤水分[J]. 農業工程學報,2018,34(20):117-123.
Cai Qingkong, Li Erjun, Tao Liangliang, et al. Farmland soil moisture retrieval using PROSAIL and water cloud model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 117-123. (in Chinese with English abstract)
[14] Holtgrave A K, Foerster M, Greifeneder F, et al. Estimation of soil moisture in vegetation-covered floodplains with Sentinel-1 SAR data using Support Vector Regression[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018, 86(2): 85-101.
[15] Bao Yansong, Lin Libin, Wu Shanyu, et al. Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 72: 76-85.
[16] Lee J S, Grunes M R, Grandi G De. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2363-2373
[17] Oh Y, Sarabandi K, Ulaby F T. An empirical model and an inversion technique for radar scattering from bare soil surface[J]. IEEE Transaction on Geoscience and Remote Sensing, 1992, 30(2): 370-381.
[18] Oh Y, Sarabandi K, Ulaby F T. Semi-empirical model of the ensemble averaged differential Mueller matrix for microwave backscattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1348-1355.
[19] Oh Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 596-601.
[20] Emilie B, FranOis W, FranOis C, et al. Maize leaf area index retrieval from synthetic quad Pol SAR time series using the water cloud model[J]. Remote Sensing, 2015, 7(12): 16204-16225.
[21] Kumar K, Suryanarayana Rao H P, Arora M K. Study of water cloud model vegetation descriptors in estimating soil moisture in Solani catchment[J]. Hydrological Processes, 2015, 29(9): 2137-2148.
[22] Liu Chenzhou, Shi Jiancheng. Estimation of vegetation parameters of water cloud model for global soil moisture retrieval using time-series L-band aquarius observations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12): 5621-5633.
[23] Bindlish R, Barros A P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation[J]. Remote Sensing of Environment, 2001, 76(1): 130-137.
[24] Jackson T J, Vine D M L, Hsu A Y, et al. Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2136-2151.
[25] Kong Jinling, Yang Jing, Zhen Peipei, et al. A coupling model for soil moisture retrieval in sparse vegetation covered areas based on microwave and optical remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7162-7173.
[26] Brereton R G, Lloyd G R. Support Vector Machines for classification and regression[J]. Analyst, 2010, 135(2): 230-267.
[27] Li Weide, Yang Xuan, Li Hao, et al. Hybrid forecasting approach based on GRNN neural network and SVR machine for electricity demand forecasting[J]. Energies, 2017, 10: 44.
[28] Naguib R N G, Hamdy F C. A general regression neural network analysis of prognostic markers in prostate cancer[J]. Neurocomputing, 1998, 19: 145-150.
Construction and validation of soil moisture retrieval model in farmland based on Sentinel multi-source data
Guo Jiao1,2, Liu Jian1,2, Ning Jifeng3, Han Wenting4
(1.712100; 2.712100,;3.712100,4.712100,)
As an important component of the earth ecosystem, soil moisture is of great significance in the fields of crop growth monitoring, crop yield estimation, variable irrigation and other related agricultural applications. With the rapid development of the technology and theory of microwave remote sensing, soil moisture retrieval with remote sensing data has been widely used at home and abroad.The multi-source remote sensing data used in this study was acquired from Sentinel-1 radar and Sentinel-2 optical satellites which belong to ESA's Sentinel series and there are great advantages in space, time and data registration in monitoring soil moisture. The study area is located in Yangling Demonstration Zone, Shanxi Province and 45 sampling sites were selected and measured to validate the soil moisture retrieval model. Firstly, to deal with the problem that soil moisture retrieval was greatly affected by surface vegetation covers, this study applied Oh model to retrieve soil moisture after removing the influence of vegetation by water cloud model. Secondly, taking the great advantages of machine learning algorithms into account, the study selected support vector regression (SVR) and generalized regression neural network (GRNN) models to retrieve soil moisture, and the models were constructed with different combinations of characteristic parameters including VH polarization radar backward scattering coefficient and VV polarization radar backward scattering coefficient altitude (0), local incident angle (LIA) which were calculated out with Sentinel-1 radar remote sensing data and vegetation indexes (normalized difference vegetation index, NDVI; modified soil adjusted vegetation index, MSAVI and difference vegetation index, DVI) which were calculated out with Sentinel-2 optical remote sensing data. Finally, this study defined the equivalent number of occurrences to evaluate the quantitative influence of each characteristic parameter because different parameters had different effect on farmland soil moisture retrieval. The results showed that the soil moisture retrieval accuracy of Oh model was increased after removing vegetation influence by water cloud model. The retrieval accuracies of SVR and GRNN models with MSAVI and NDVI were higher than that of Oh model. The optimal input combination of SVR model composed of five characteristic parameters, including VH polarization radar backward scattering coefficient, VV polarization radar backward scattering coefficient,0, LIA, and MSAVI had the best retrieval accuracy with correlation coefficient of 0.903 and root mean square error of 0.014cm3/cm3respectively. The optimal SVR model was used to retrieve the soil moisture in study area and the results were consistent with local rainfall events. The equivalent numbers of occurrences of characteristic parameters from high to low were VH polarization radar backward scattering coefficient,0, VV polarization radar backward scattering coefficient, LIA, MSAVI, NDVI, DVI. For radar backward scattering coefficients from different polarized channel, VH polarization radar backward scattering coefficient is more sensitive to soil moisture than VV polarization radar backward scattering coefficient. Among the three vegetation indexes, the counting results indicated MSAVI had the strongest correlation with soil moisture content, followed by NDVI and DVI was the weakest. The experimental results showed that the fusion of radar and optical data had great potential in soil moisture retrieval in farmlands. The performances of the constructed model in other farmland types would be further investigated in the future.
soil moisture; models; remote sensing; retrieval; multi-source data; Sentinel
2019-01-23
2019-06-30
國家自然科學基金資助項目(41301450)、“十三五”國家重點研發計劃課題(2017YFC0403203)、楊凌示范區產學研用協同創新重大項目(2018CXY-23)和中央高?;究蒲袠I務費專項資金資助項目(2452019180)
郭 交,副教授,博士,研究方向為農業遙感和精準農業。Email:jiao.g@163.com
10.11975/j.issn.1002-6819.2019.14.009
S24
A
1002-6819(2019)-14-0071-08
郭 交,劉 健,寧紀鋒,韓文霆. 基于Sentinel多源數據的農田地表土壤水分反演模型構建與驗證[J]. 農業工程學報,2019,35(14):71-78. doi:10.11975/j.issn.1002-6819.2019.14.009 http://www.tcsae.org
Guo Jiao, Liu Jian, Ning Jifeng, Han Wenting. Construction and validation of soil moisture retrieval model in farmland based on Sentinel multi-source data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 71-78. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.14.009 http://www.tcsae.org