999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SOME PROBLEMS IN RADIATION TRANSPORT FLUID MECHANICS AND QUANTUM FLUID MECHANICS?

2019-09-05 07:58:46BolingGuo
Annals of Applied Mathematics 2019年2期

Boling Guo

(Institute of Applied Physics and Computational Math.,Beijing 100088,PR China)

Jun Wu?

(The Graduate School of China Academy of Engineering Physics,Beijing 100088,PR China)

Abstract We introduce the radiation transport equations,the radiation fluid mechanics equations and the fluid mechanics equations with quantum effects.We obtain the unique global weak solution for the radiation transport fluid mechanics equations under certain initial and boundary values.In addition,we also obtain the periodic region problem of the compressible N-S equation with quantum effect has weak solutions under some conditions.

Keywords radiation transport equation;radiation fluid mechanics equations;fluid mechanics equations with quantum effects

1 Radiation Transport Equation and Radiation Fluid Mechanics Equations

A radiation transport equation is as follows

where I(υ,?)=I(x,t,υ,?)is the radiation intensity,S(υ)is the production rate of photons,σa(υ)is the absorption rate,σs(υ)is the scattering rate.In generally,σa=O(ραθ?β),α >0,β >0,where ρ is the density of matter,θ is the temperature of matter,and the radiation intensity of scattering out is

the radiation intensity of scattering in is

where Sn?1is the unit sphere in Rn?1.

Define the absorption coefficient and compton scattering nucleus

where γ =c4υ,ξ= ?·?′,ci(i=1,···,4)are positive constants,υ0is the frequency.We now define the radiation energy density,radiation flux and radiation pressure as follows,respectively

The radiation transport fluid mechanics equations are

where ρ,u,Pm=Pm(ρ,θ),Em=Em(ρ,θ)and θare the density,speed,pressure,internal energy and temperature of fluid,respectively.k=k(ρ,θ)is the thermal conductivity of fluid,S is the viscous tensor

where λ and μ are viscous coefficients with 2λ+μ>0.

The radiant transport equation through the absorption of photons and after scattering interaction is

From S=σaB,σ=,then we can get

(1.3)with(1.4)form the system of radiation transport fluid mechanics by(1.2),where,h is the plank constant,B is the plank function,κis the Boltzmann constant.

Diffusion approximation

can be integrated as

Multiply(1.5)by ? and integrate it,then

Put the expressions of(1.5)and I0,I1into(1.4),multiply it by?to integrate,we can omit c?1?tI1and assume the scattering kernel is diagonal,then we obtain

Put(1.5)into(1.4),which can be integrated with respect to ? and with the Fick law,there is

We call(1.6)as diffusion approximation of(1.4).

By balanced diffusion approximation,we can set I0(x,t,υ) ~ I0(υ),then(1.6)can be represented by approximate radiation field

and obtain

where σ?~ aθmρ?mis Rossel and average.

Consider the boundary condition

where we denote the known function of arguments,one point of surface and normal vector of this point as Γ,xs,n.For the vacuum conditions of free surfaces of(1.8),

2 Some Related Results

(1)Consider the systems

and the transport equation

with boundary conditions

where

Theorem2.1Under the initial condition

suppose that e,p,k satisfy some growth conditions,then there exists a unique global weak solution

where QT=?×(0,T).

The weak solution is

x∈ ?,t>0,and for any test function ? ∈ L2([0,T],H1(?)),?t∈ L1([0,T],L2(?)),?(·,T)=0,which satisfy

also for any test function ψ ∈ L2([0,T],H1(? ×O)),ψt∈ L1([0,T],L2(? ×O)),?(·,T,·,·)=0,then we obtain

For the system

Theorem2.2Assume that the initialvalues of system(2.9)satisfy the condition as follows

under the boundary value conditions

and the initial condition

then this system exists a unique global weak solution.

Theorem2.3Under the above conditions,the solution of equation(2.9)tends to a constant solution at t→ ∞ (η∞,v∞=0,θ∞,I∞=0).We can get the estimation

where Γ>0,t≥ t∞.

(2)We consider the following radiation transport fluid mechanic equation

where I(υ,?)=I(x,t,υ,?),SN?1is the unit ball of SN,S(υ)=S(x,t,υ)is the energy production rate.Consider

with Em=cυρθ,Pm=Rρθ ≡ cυ(r ? 1)ρθ.

We can rewrite(2.14),(2.15)as

where σ(υ)= σa(υ)+ σs(υ),with

then we obtain

We now consider the cauchy initial value of(2.16),(2.17)

Theorem 2.4Assume that s>+1,and

Remark(A1),(A2)can be satisfied,

where γ =c4υ, ξ= ? ·?′,ci(i=1,···,4)are positive constants, υ0is a fixed frequency.Consider equations

with the initial value

Symmetric matrix A(υ)=A0Bj(υ),Bj(υ)=(bmn)5×5,bij=uj,b1,j+1= ρ,bj+1,1=,bj+1,5=R,b5,j+1=,j=1,2,3,the others are zeros,

Set

Denote

Theorem 2.5(finite speed of propagation)Suppose β≥1 and(2.20)holds.If the solution of(2.19)satisfies(V,I)∈C1,then(V,I)≡()∈E.

Theorem 2.6(blow up)Suppose(2.20)holds,and there exists a solution of(2.19)satisfying(ρ,u,θ,I) ∈ C1,0 ≤ t≤ T,where T is the maximum existence interval.If

3 Plasma Two-fluid with Quantum Effect Equations

(1)Plasma two-fluid with quantum effect equations

where ne,ni,uei,,ε0,P=P(ne)are electron number density,ion number density,electron ion fluid velocity,Planck constant,vacuum constant and electronic pressure,respectively.

(2)Quantum Kdv equation

Expand this equation according to equilibrium

If H<2,

If H>2,

(3)Quantum electromagnetic fluid mechanics equations

withρ=e(ni?ne),J=e(niui?neue).

Using

and the dimensionless quantity method,we can simplify the model as follows

(4)One-dimensional and three-dimensional quantum Zakharov equations

One-dimensional quantum Zakharov equations are

One-dimensional quantum nonlinear Schr¨o dinger equation is

Three-dimensional quantum Zakharov equation is

where

Consider two-dimensional and three-dimensional QVNLLS

Two-dimensional variational solution is

Three-dimensional variational solution is

4 Some Results

(1)Consider the periodic region problem of the compressible N-S equation with the following quantum effects

where u?u is the matrix of component uiuj,D(u)=(?u+(?u)T),d≤ 3,p(n)=nγ,γ≥1,υ>0.

From(4.1)1and(4.1)2,we obtain

Formally for f=0,

In order to solve the compactness of,we introduce

then we can rewrite(4.1)as

where ω0=u0+υ?log n0,= ε2? υ2.Ifε> υ,f=0,then

Theorem 4.1Assume that d≤ 3,T>0,ε0,υ >0,p(n)=nγ,γ >3(d=3),γ ≥ 1(d=2),f ∈ L∞(0,T;L∞(Td))such that n0≥ 0,Eε0(n0,ω0)is finite,then there exists a weak solution of(4.5)

which satisfies point for point in smooth experimental function ? of(4.5)with ?(·,t)=0 satisfying

Corollary 4.1Assume that d≤ 3,T>0,ε,υ>0,ε> υ,p(n)=nγ,γ>3(d=3),γ ≥ 1(d=2),f ∈ L∞(0,T;L∞(Td))such that n0>0,Eε(n0,u0+υ?log n0)<∞,then according to Theorem 4.1 there exists a solution of(4.1)

and for the experimental function ?,?(·,t)=0 satisfies

(2)Consider the periodic initial value problem of the N-S equation with the following quantum effects

where P(n)=nγ,n ≥ 1,μ(n)=αn,or μ(n)= α.

From(4.9)1and(4.9)2,we can get

where H(n)=nγ/(γ?1);H(n)=n(log n?1),γ=1.If?V=0,then

We introduce w=u+α?log log n,

where ω0=u0+α?log n0,ε0= ε2?12α2.Ifε2>12α2and ?v=0,then

Using the inequality

Theorem 4.2Assume that d≤3,α>0,p(n)=nγ,γ>3(d=3),γ>1(d=2),?V ∈C∞(0,∞;L∞(Td))such that m0≥0,Eq(n0,u0+α?log n0)<∞,then there exists a weak solution of(4.5)and

主站蜘蛛池模板: 久久成人免费| 无码一区中文字幕| 国产成人艳妇AA视频在线| 色综合日本| 国产浮力第一页永久地址 | 伊人久久精品亚洲午夜| 国产色图在线观看| 亚洲欧洲日产国产无码AV| 国产一级特黄aa级特黄裸毛片| 国产中文在线亚洲精品官网| 日韩在线欧美在线| 国产精品网址在线观看你懂的| 亚洲黄色成人| 日韩欧美成人高清在线观看| 亚洲国产日韩一区| 东京热av无码电影一区二区| 婷婷开心中文字幕| 国产成人综合亚洲欧洲色就色| 欧美成在线视频| 99久久99视频| 福利姬国产精品一区在线| 久久久精品国产SM调教网站| 美女视频黄频a免费高清不卡| 欧美成人手机在线观看网址| 色窝窝免费一区二区三区| 国产亚洲精品无码专| 久久99国产精品成人欧美| 极品国产一区二区三区| 亚洲第一区欧美国产综合| 视频国产精品丝袜第一页| 国产精品福利导航| 国产高清在线观看91精品| 亚洲男人的天堂视频| 2021国产精品自产拍在线| 青青青亚洲精品国产| 久久不卡精品| 国产日产欧美精品| 久久久久无码国产精品不卡| 亚洲天堂久久新| 亚洲天堂日本| 天堂中文在线资源| 日本在线国产| 操美女免费网站| 国产免费黄| 91免费在线看| 欧美在线中文字幕| 欧美成人免费午夜全| 国产中文一区a级毛片视频| 亚洲αv毛片| 亚洲精品第五页| 亚洲国产综合第一精品小说| 午夜无码一区二区三区| 日韩一级二级三级| 日本亚洲欧美在线| 国产精品视频第一专区| 亚洲色欲色欲www网| 99视频在线免费| 国产网站在线看| 国产国拍精品视频免费看| 91精品国产91久久久久久三级| 美女国产在线| 国产色偷丝袜婷婷无码麻豆制服| 欧美人与动牲交a欧美精品| 999福利激情视频| 国产一在线观看| 国产丰满大乳无码免费播放| 久久精品国产精品一区二区| 中国黄色一级视频| 久久情精品国产品免费| 激情爆乳一区二区| 91久久偷偷做嫩草影院电| 色综合久久无码网| 五月婷婷综合在线视频| 国产在线精品人成导航| 久久精品人人做人人| 青青青草国产| 久久99国产综合精品1| 中文字幕调教一区二区视频| 日韩视频免费| 性色在线视频精品| 久久久久无码国产精品不卡 | 日韩美毛片|