999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于Skyline計(jì)算的社交網(wǎng)絡(luò)關(guān)系數(shù)據(jù)隱私保護(hù)

2019-08-01 01:48:57張書(shū)旋康海燕閆涵
計(jì)算機(jī)應(yīng)用 2019年5期
關(guān)鍵詞:用戶(hù)信息

張書(shū)旋 康海燕 閆涵

摘 要:隨著社交軟件的流行,越來(lái)越多的人加入社交網(wǎng)絡(luò)產(chǎn)生了大量有價(jià)值的信息,其中也包含了許多敏感隱私信息。不同的用戶(hù)有不同的隱私需求,因此需要不同級(jí)別的隱私保護(hù)。社交網(wǎng)絡(luò)中用戶(hù)隱私泄露等級(jí)受社交網(wǎng)絡(luò)圖結(jié)構(gòu)和用戶(hù)自身威脅等級(jí)等諸多因素的影響。針對(duì)社交網(wǎng)絡(luò)數(shù)據(jù)的個(gè)性化隱私保護(hù)問(wèn)題及用戶(hù)隱私泄露等級(jí)評(píng)價(jià)問(wèn)題,提出基于Skyline計(jì)算的個(gè)性化差分隱私保護(hù)策略(PDPS)用以發(fā)布社交網(wǎng)絡(luò)關(guān)系數(shù)據(jù)。首先構(gòu)建用戶(hù)的屬性向量; 接著采用基于Skyline計(jì)算的方法評(píng)定用戶(hù)的隱私泄露等級(jí),并根據(jù)該等級(jí)對(duì)用戶(hù)數(shù)據(jù)集進(jìn)行分割;然后應(yīng)用采樣機(jī)制來(lái)實(shí)現(xiàn)個(gè)性化差分隱私,并對(duì)整合后的數(shù)據(jù)添加噪聲;最后對(duì)處理后數(shù)據(jù)進(jìn)行安全性和實(shí)用性的分析并發(fā)布數(shù)據(jù)。在真實(shí)數(shù)據(jù)集上與傳統(tǒng)的個(gè)性化差分隱私方法(PDP)對(duì)比,驗(yàn)證了PDPS算法的隱私保護(hù)質(zhì)量和數(shù)據(jù)的可用性都優(yōu)于PDP算法。

關(guān)鍵詞:社交網(wǎng)絡(luò);隱私保護(hù);Skyline計(jì)算;個(gè)性化差分隱私;基于Skyline計(jì)算的個(gè)性化差分隱私保護(hù)算法

中圖分類(lèi)號(hào):TP309

文獻(xiàn)標(biāo)志碼:A

Abstract: With the popularity and development of social software, more and more people join the social network, which produces a lot of valuable information, including sensitive private information. Different users have different private requirements and therefore require different levels of privacy protection. The level of user privacy leak in social network is affected by many factors, such as the structure of social network graph and the threat level of the user himself. Aiming at the personalized differential privacy preserving problem and user privacy leak level problem, a Personalized Differential Privacy based on Skyline (PDPS) algorithm was proposed to publish social network relational data. Firstly, users attribute vector was built. Secondly, the user privacy leak level was calculated by Skyline computation method and the user dataset was segmented according to this level. Thirdly, with the sampling mechanism, the users with different privacy requirements were protected at different levels to realize personalized differential privacy and noise was added to the integreted data. Finally, the processed data were analyzed for security and availability and published. The experimental results demonstrate that compared with the traditional Personalized Differential Privacy (PDP) method on the real data set, PDPS algorithm has better privacy protection quality and data availability.

英文關(guān)鍵詞Key words: social network; privacy preserving; Skyline query; personalized differential privacy; Personalized Differential Privacy based on Skyline (PDPS) algorithm

0 引言

社交網(wǎng)絡(luò)隱私信息可以分為兩種:一種隱私是用戶(hù)敏感信息隱私,比如用戶(hù)的手機(jī)號(hào)碼、家庭住址、疾病、收入等;另一種隱私是社交網(wǎng)絡(luò)關(guān)系隱私,即社交網(wǎng)絡(luò)中人與人之間的連接關(guān)系信息,如親屬關(guān)系、同學(xué)關(guān)系。在社交網(wǎng)絡(luò)中無(wú)論是哪種類(lèi)型隱私信息的披露都可能會(huì)使個(gè)人的隱私受到威脅, 因此,隱私信息的識(shí)別和分類(lèi)是非常必要的,需結(jié)合具體的信息類(lèi)別來(lái)采取相應(yīng)有效的保護(hù)策略。本文主要研究社交網(wǎng)絡(luò)關(guān)系型數(shù)據(jù)的隱私保護(hù)與發(fā)布。

差分隱私[1]被公認(rèn)是一個(gè)強(qiáng)大的隱私保護(hù)模型,能夠?yàn)閿?shù)據(jù)提供強(qiáng)大的隱私保證,但是該模型局限于為所有個(gè)人提供相同級(jí)別的隱私保護(hù); 然而并非所有用戶(hù)都需要相同的隱私級(jí)別,為避免對(duì)那些不需要太高隱私級(jí)別的用戶(hù)提供過(guò)多的隱私保護(hù),需要實(shí)現(xiàn)個(gè)性化的隱私保護(hù)。本文采用采樣方法實(shí)現(xiàn)個(gè)性化差分隱私保護(hù),引入非均勻的不確定性。

采樣機(jī)制以前為其他目的已經(jīng)與差分隱私結(jié)合過(guò)。Li等[2]提出了一種滿(mǎn)足差分隱私的擾動(dòng)方法,利用采樣的隨機(jī)性降低隱私成本,證明了均勻隨機(jī)采樣提高了差分隱私保護(hù)效果。Kellaris等 [3]提出了GS預(yù)處理方法(preprocesses by Grouping and Smoothing, GS),利用抽樣機(jī)制對(duì)發(fā)布數(shù)據(jù)進(jìn)行分組,降低拉普拉斯噪聲注入并實(shí)現(xiàn)差分隱私。Spiessl等[4]設(shè)計(jì)了一個(gè)根據(jù)靈敏度采樣的采樣器,能自動(dòng)實(shí)現(xiàn)(ε,δ,γ)隨機(jī)差分隱私。

Skyline計(jì)算的研究分兩方面:一是對(duì)Skyline計(jì)算算法的優(yōu)化,二是將Skyline計(jì)算算法應(yīng)用于相關(guān)研究領(lǐng)域。目前, 數(shù)據(jù)的海量性和高維性以及數(shù)據(jù)環(huán)境的多樣性和動(dòng)態(tài)性都使 Skyline計(jì)算面臨著愈加嚴(yán)峻的挑戰(zhàn)。各國(guó)學(xué)者針對(duì)這個(gè)問(wèn)題進(jìn)行了不少研究, 主要得出以下幾種Skyline計(jì)算算法:塊嵌套算法[5]、最近鄰算法[6]、分支界限算法[7]等。Skyline算法在多標(biāo)準(zhǔn)決策系統(tǒng)、城市導(dǎo)航系統(tǒng)、數(shù)據(jù)庫(kù)可視化、用戶(hù)偏好查詢(xún)等多個(gè)研究領(lǐng)域都有著廣泛應(yīng)用, 例如: 在傳感器網(wǎng)絡(luò)應(yīng)用中,信俊昌等[8]提出了基于過(guò)濾的Skyline節(jié)點(diǎn)連續(xù)查詢(xún)算法(FIlterbased Skyline node moniToring algorithm, FIST),F(xiàn)IST算法能有效減少Skyline節(jié)點(diǎn)連續(xù)查詢(xún)過(guò)程中傳感器節(jié)點(diǎn)的通信代價(jià),進(jìn)而降低傳感器網(wǎng)絡(luò)的能量消耗; 多維向量查詢(xún)方面,雷婷等[9]在云環(huán)境下提出一種基于超球面投影分區(qū)的 Skyline算法,通過(guò)將空間坐標(biāo)投影到超球面上轉(zhuǎn)化為超球面投影坐標(biāo),然后使用超球面投影坐標(biāo)進(jìn)行分區(qū),有效提高分區(qū)內(nèi)數(shù)據(jù)點(diǎn)的平均減枝力度,降低 Skyline 的計(jì)算代價(jià); 在用戶(hù)偏好查詢(xún)方面,Zhang等[10]提出了一種使用Skyline查詢(xún)的算法,通過(guò)用戶(hù)的搜索和查詢(xún),以確定哪種云服務(wù)最能滿(mǎn)足用戶(hù)的需求。本文利用Skyline計(jì)算方法給用戶(hù)評(píng)定隱私泄露等級(jí),然后根據(jù)用戶(hù)隱私泄露等級(jí)進(jìn)行采樣處理,最后添加噪聲實(shí)現(xiàn)個(gè)性化的差分隱私保護(hù)。

本文的主要貢獻(xiàn)包括:1)利用采樣方法實(shí)現(xiàn)個(gè)性化差分隱私,引入非均勻的不確定性; 2)構(gòu)建了用戶(hù)屬性向量,利用Skyline計(jì)算方法給用戶(hù)評(píng)定隱私泄露等級(jí); 3)提出了基于基于Skyline計(jì)算的個(gè)性化差分隱私保護(hù)(Personalized Differential Privacy based on Skyline, PDPS)算法發(fā)布機(jī)制的總體流程, 對(duì)數(shù)據(jù)采集、數(shù)據(jù)處理、數(shù)據(jù)分析和數(shù)據(jù)發(fā)布各個(gè)流程進(jìn)行了闡述說(shuō)明; 4)在真實(shí)數(shù)據(jù)集上與傳統(tǒng)個(gè)性化差分隱私(Personalized Differential Privacy, PDP)算法進(jìn)行對(duì)比,驗(yàn)證了發(fā)布數(shù)據(jù)安全性和可用性的提升。

4 結(jié)語(yǔ)

本文針對(duì)社交網(wǎng)絡(luò)用戶(hù)隱私泄露等級(jí)評(píng)定和差分隱私保護(hù)的個(gè)性化這兩個(gè)問(wèn)題,提出PDPS算法用來(lái)發(fā)布社交網(wǎng)絡(luò)關(guān)系數(shù)據(jù)。將Skyline計(jì)算用于用戶(hù)隱私泄露等級(jí)的評(píng)定,并用采樣機(jī)制來(lái)實(shí)現(xiàn)了個(gè)性化的差分隱私保護(hù)。在真實(shí)數(shù)據(jù)集上對(duì)該算法的隱私保護(hù)效果和數(shù)據(jù)的效用進(jìn)行了驗(yàn)證,證明了PDPS算法能夠提升社交網(wǎng)絡(luò)數(shù)據(jù)發(fā)布的安全性和可用性。今后可對(duì)分割和采樣系數(shù)的選取規(guī)則、帶權(quán)重的社交網(wǎng)絡(luò)圖的發(fā)布算法等方向進(jìn)行下一步研究。

參考文獻(xiàn) (References)

[1] 王豪,徐正全.面向軌跡聚類(lèi)的差分隱私保護(hù)方法[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 46(1):32-36. (WANG H, XU Z Q. Differential privacy preserving method for trajectory clustering[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2018, 46(1):32-36.)

[2] LI N, QARDAJI W, DONG S. On sampling, anonymization, and differential privacy or, kanonymization meets differential privacy[C]// Proceedings of the 2012 ACM Symposium on Information, Computer and Communications Security. New York: ACM, 2012:32-33.

[3] KELLARIS G, PAPADOPOULOS S. Practical differential privacy via grouping and smoothing[J]. Proceedings of the VLDB Endowment, 2013, 6(5):301-312.

[4] SPIESSL S M, BECKER D A. Sensitivity analysis of a final repository model with quasidiscrete behaviour using quasirandom sampling and a metamodel approach in comparison to other variancebased techniques[J]. Reliability Engineering & System Safety, 2015, 134:287-296.

[5] SARMA A D, LALL A, NANONGKAI D, et al. Randomized multipass streaming Skyline algorithms[J]. Proceedings of the VLDB Endowment, 2009, 2(1):85-96.

[6] KANJ S, ABDALLAH F, DENEUX T, et al. Editing training data for multilabel classification with the knearest neighbor rule[J]. Pattern Analysis & Applications, 2016, 19(1):145-161.

[7] ZHENG J, CHEN J, WANG H. Efficient geometric pruning strategies for continuous Skyline queries[J]. ISPRS International Journal of GeoInformation, 2017, 6(3):91.

[8] 信俊昌, 王國(guó)仁. 無(wú)線(xiàn)傳感器網(wǎng)絡(luò)中Skyline節(jié)點(diǎn)連續(xù)查詢(xún)算法[J]. 計(jì)算機(jī)學(xué)報(bào), 2012, 35(11): 2415-2430.(XIN J C, WANG G R. Continuous Skyline nodes query processing over wireless sensor networks[J].Chinese Journal of Computers, 2012, 35(11):2415-2430.)

[9] 雷婷,王濤,曲武,等.云環(huán)境下基于超球面投影分區(qū)的Skyline計(jì)算[J].計(jì)算機(jī)科學(xué),2013,40(6):164-171. (LEI T, WANG T, QU W, et al. Distributed Skyline processing based on hypersphere projection partitioning on cloud environments[J]. Computer Science, 2013, 40(6): 164-171.)

[10] ZHANG B, ZHOU S, GUAN J. Adapting Skyline computation to the MapReduce framework: algorithms and experiments[C]// Proceedings of the 16th International Conference on Database Systems for Advanced Applications. Berlin: SpringerVerlag, 2011:403-414.

[11] GULZAR Y, ALWAN A A, SALLEH N, et al. A model for Skyline query processing in a partially complete database[J]. Advanced Science Letters, 2018, 24(2):400-407.

[12] 康海燕, 馬躍雷. 差分隱私保護(hù)在數(shù)據(jù)挖掘中應(yīng)用綜述[J]. 山東大學(xué)學(xué)報(bào)(理學(xué)版), 2017, 52(3):16-23.(KANG H Y, MA Y L. Survey on application of data mining via differential privacy[J]. Journal of Shandong University (Natural Science), 2017, 52(3):16-23.)

[13] JORGENSEN Z, YU T, CORMODE G. Conservative or liberal? Personalized differential privacy[C]// Proceedings of the 2015 IEEE 31st International Conference on Data Engineering. Piscataway, NJ: IEEE, 2015:1023-1034.

[14] WANG Y, ZHENG B. Preserving privacy in social networks against connection fingerprint attacks[C]// Proceedings of the 2015 IEEE 31st International Conference on Data Engineering. Piscataway, NJ: IEEE, 2015:54-65.

猜你喜歡
用戶(hù)信息
訂閱信息
中華手工(2017年2期)2017-06-06 23:00:31
關(guān)注用戶(hù)
關(guān)注用戶(hù)
關(guān)注用戶(hù)
Camera360:拍出5億用戶(hù)
100萬(wàn)用戶(hù)
如何獲取一億海外用戶(hù)
展會(huì)信息
信息
健康信息
祝您健康(1987年3期)1987-12-30 09:52:32
主站蜘蛛池模板: 国产一在线| 欧美yw精品日本国产精品| a毛片在线播放| 国产97视频在线观看| 天天操天天噜| 日韩资源站| 久久伊人久久亚洲综合| 日本a∨在线观看| 不卡无码网| 午夜毛片免费观看视频 | 波多野结衣国产精品| 亚洲无码电影| 伊人久久福利中文字幕| 永久免费无码日韩视频| 色天堂无毒不卡| 91亚洲精选| 九九热精品在线视频| av一区二区三区高清久久| 5388国产亚洲欧美在线观看| 亚洲综合极品香蕉久久网| 97视频免费看| 亚洲香蕉在线| 亚洲AⅤ波多系列中文字幕| yjizz视频最新网站在线| 国产三级a| 久久天天躁夜夜躁狠狠| 日韩高清无码免费| 久青草免费在线视频| 日韩黄色精品| yjizz国产在线视频网| 欧美在线综合视频| 九九视频在线免费观看| 精品国产aⅴ一区二区三区| 亚洲无码精品在线播放 | 欧美在线国产| 亚洲国产中文综合专区在| 国产成人精品免费av| 少妇露出福利视频| 思思热在线视频精品| 无码视频国产精品一区二区| 国产精品网址在线观看你懂的| 在线观看免费黄色网址| 91精品人妻一区二区| 亚洲精品第五页| 素人激情视频福利| 亚洲国内精品自在自线官| 欧美日韩午夜| 国外欧美一区另类中文字幕| 国产亚洲精品自在线| 少妇人妻无码首页| 国产丝袜无码一区二区视频| 国产成人精品日本亚洲| 久久亚洲天堂| www亚洲精品| 青草视频久久| 国产主播在线观看| 2021国产v亚洲v天堂无码| 中文成人在线视频| 三级国产在线观看| 国产成人你懂的在线观看| 91精品视频在线播放| 亚洲视频一区| 中文字幕第1页在线播| 亚洲综合久久成人AV| 久久久久久久久亚洲精品| 一区二区欧美日韩高清免费| 美女无遮挡拍拍拍免费视频| 青青操视频在线| 亚洲资源在线视频| 乱系列中文字幕在线视频| 国产成人精品免费av| 国产欧美自拍视频| 老司机aⅴ在线精品导航| 特级欧美视频aaaaaa| 91 九色视频丝袜| 色天天综合| 狠狠色成人综合首页| 国产无码网站在线观看| 国产大片喷水在线在线视频| 99福利视频导航| 亚洲精品午夜天堂网页| 熟女视频91|