999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

融合社交網(wǎng)絡(luò)和圖像內(nèi)容的興趣點(diǎn)推薦

2019-08-01 01:48:57邵長(zhǎng)城陳平華
計(jì)算機(jī)應(yīng)用 2019年5期

邵長(zhǎng)城 陳平華

摘 要:基于位置的社交網(wǎng)絡(luò)(LBSN)蓬勃發(fā)展,帶來(lái)了大量的興趣點(diǎn)(POI)數(shù)據(jù),加速了興趣點(diǎn)推薦的研究。針對(duì)用戶(hù)興趣點(diǎn)矩陣極端稀疏造成的推薦精度低和興趣點(diǎn)特征缺失問(wèn)題,通過(guò)融合興趣點(diǎn)的標(biāo)簽、地理、社交、評(píng)分以及圖像等信息,提出了一種融合社交網(wǎng)絡(luò)和圖像內(nèi)容的興趣點(diǎn)推薦方法(SVPOI)。首先分析興趣點(diǎn)數(shù)據(jù)集,針對(duì)地理信息,利用冪律概率分布構(gòu)造距離因子;針對(duì)標(biāo)簽信息,利用檢索詞頻率構(gòu)造標(biāo)簽因子;融合已有的歷史評(píng)分?jǐn)?shù)據(jù),構(gòu)造新的用戶(hù)興趣點(diǎn)評(píng)分矩陣。其次利用VGG16深度卷積神經(jīng)網(wǎng)絡(luò)模型(DCNN)識(shí)別興趣點(diǎn)圖像內(nèi)容,構(gòu)造興趣點(diǎn)圖像內(nèi)容矩陣。然后根據(jù)興趣點(diǎn)數(shù)據(jù)的社交網(wǎng)絡(luò)信息,構(gòu)造用戶(hù)社交矩陣。最后,利用概率矩陣分解(PMF)模型,融合用戶(hù)興趣點(diǎn)評(píng)分矩陣、圖像內(nèi)容矩陣、用戶(hù)社交矩陣,構(gòu)成SVPOI興趣點(diǎn)推薦模型,生成興趣點(diǎn)推薦列表。大量的真實(shí)數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,與PMF、SoRec、TrustMF、TrustSVD推薦算法相比,SVPOI推薦的準(zhǔn)確度均有較大提升,其平均絕對(duì)誤差(MAE)和均方根誤差(RMSE)兩項(xiàng)指標(biāo)比最優(yōu)的TrustMF算法分別降低了5.5%和7.82%,表明SVPOI具有更好的推薦效果。

關(guān)鍵詞:興趣點(diǎn)推薦;基于位置的社交網(wǎng)絡(luò);圖像內(nèi)容;深度卷積神經(jīng)網(wǎng)絡(luò);概率矩陣分解模型

中圖分類(lèi)號(hào):TP18

文獻(xiàn)標(biāo)志碼:A

Abstract: The rapid growth of LocationBased Social Networks (LBSN) provides a vast amount of PointofInterest (POI) data, which facilitates the research of POI recommendation. To solve the low recommendation accuracy caused by the extreme sparseness of userPOI matrix and the lack of POI features, by integrating information such as tags, geography, socialization, score, and image information of POI, a POI recommendation method integrating social networks and image contents called SVPOI was proposed. Firstly, with the analysis of POI dataset, a distance factor was constructed based on power law distribution and a tag factor was constructed based on term frequency, and the existing historical score data was merged to construct a new userPOI matrix. Secondly, VGG16 Deep Convolutional Neural Network (DCNN) was used to process the images of POI to construct the POI image content matrix. Thirdly, the user social matrix was constructed according to the social network information of POI data. Finally, with the use of Probabilistic Matrix Factorization (PMF) model, the POI recommendation list was obtained with the integration of userPOI matrix, image content matrix and user social matrix. On realworld datasets, the accuracy of SVPOI is improved significantly compared to PMF, SoRec (Social Recommendation using probabilistic matrix factorization), TrustMF (Social Collaborative Filtering by Trust) and TrustSVD (Social Collaborative Filtering by Trust with SVD) while Mean Absolute Error (MAE) and RootMeanSquare Error (RMSE) of SVPOI are decreased by 5.5% and 7.82% respectively compared to those of TrustMF which was the best of the comparison methods. The experimental results demonstrate the recommendation effectiveness of the proposed method.

英文關(guān)鍵詞Key words: pointofinterest recommendation; LocationBased Social Network (LBSN); image content; Deep Convolutional Neural Network (DCNN); Probabilistic Matrix Factorization (PMF) model

可見(jiàn)基于矩陣分解的推薦模型可以靈活擴(kuò)展,成為研究人員構(gòu)造個(gè)性化推薦模型的重要模型, 所以,對(duì)于興趣點(diǎn)的推薦,依然可以沿用這一基礎(chǔ)模型進(jìn)行不斷擴(kuò)展。興趣點(diǎn)不同于物品推薦,因?yàn)榕d趣點(diǎn)不僅僅是地理上的點(diǎn),更具有很多抽象的意義。用戶(hù)對(duì)于興趣點(diǎn)的選擇,受到距離因素、社交因素、興趣點(diǎn)自身特征因素等的影響, 所以,興趣點(diǎn)推薦任務(wù)比物品推薦更加復(fù)雜,需要更加豐富的特征維度來(lái)描述興趣點(diǎn)特征。

興趣點(diǎn)推薦也被稱(chēng)為地理位置推薦,在推薦系統(tǒng)中受到越來(lái)越多的關(guān)注。最近,關(guān)于POI推薦的許多研究通常從數(shù)據(jù)的4個(gè)方面進(jìn)行著手,即地理影響分析、社會(huì)相關(guān)性分析、時(shí)間匹配分析以及文本內(nèi)容分析[11]。Lian等[12]提出一種結(jié)合地理影響的加權(quán)矩陣分解方法;Ye等[13]在LBSN中引入了POI推薦,并研究了POI推薦的地理影響和社會(huì)影響;Li等[14]通過(guò)融合地理位置和社交信息,將用戶(hù)好友分為社交好友以及地理位置好友,在進(jìn)行POI推薦時(shí),達(dá)到了對(duì)用戶(hù)簽到數(shù)據(jù)進(jìn)行擴(kuò)展的效果;Yuan等[15]將時(shí)間周期信息和地理信息納入時(shí)間感知進(jìn)行POI推薦;Cheng等[16]用矩陣分解方法介紹了在LBSN中連續(xù)個(gè)性化POI推薦的任務(wù);Liu等[17]用聚合的線(xiàn)性判別分析(Linear Discriminant Analysis, LDA)模型研究了POI相關(guān)標(biāo)簽的效果。因?yàn)橛脩?hù)的簽到行為具有高稀疏性,為興趣點(diǎn)推薦帶來(lái)很大的挑戰(zhàn),所以越來(lái)越多的研究結(jié)合地理影響、時(shí)間效應(yīng)、社會(huì)相關(guān)性、內(nèi)容信息和流行度影響等因素提高興趣點(diǎn)推薦的性能。另外,最新的興趣點(diǎn)推薦開(kāi)始應(yīng)用多媒體數(shù)據(jù)[18]:Jiang等[19]利用旅游指南和社區(qū)提供的照片以及與這些照片相關(guān)的異構(gòu)元數(shù)據(jù)(如標(biāo)簽、地理位置和日期),提出一種個(gè)性化旅行序列興趣點(diǎn)推薦;Wang等[20]通過(guò)單純挖掘用戶(hù)圖譜信息和地點(diǎn)圖片信息,提出了在概率矩陣分解模型基礎(chǔ)上增加視覺(jué)內(nèi)容興趣點(diǎn)(VPOI)推薦模型,優(yōu)化興趣點(diǎn)推薦結(jié)果, 該模型利用卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)對(duì)圖片內(nèi)容進(jìn)行高維度抽取,并將該圖片矩陣分別融合到用戶(hù)隱含矩陣和興趣點(diǎn)隱含矩陣,在Instagram數(shù)據(jù)集上進(jìn)行實(shí)驗(yàn),取得不錯(cuò)的實(shí)驗(yàn)結(jié)果。文中僅僅利用了評(píng)分和圖像信息,并沒(méi)有利用社交網(wǎng)絡(luò)、物理地點(diǎn)等輔助信息,最后也提出了可以利用其他輔助信息的想法。本文重點(diǎn)在結(jié)合社交網(wǎng)絡(luò)信息和圖像信息,提出新的推薦模型。

1.2 圖像內(nèi)容挖掘

大家都聽(tīng)說(shuō)過(guò)“眼見(jiàn)為實(shí)”這句話(huà),這也暗含著圖像對(duì)于用戶(hù)決策的重要性,對(duì)于LBSN中的興趣點(diǎn)推薦也是如此,好的圖片總能吸引更多的用戶(hù),所以,在推薦系統(tǒng)中,圖片也應(yīng)該是數(shù)據(jù)挖掘的對(duì)象。最近,許多基于圖像內(nèi)容挖掘的推薦系統(tǒng)方法不斷提出:McAuley等[21]提出了利用已有衣物穿搭圖片進(jìn)行衣服搭配的推薦方法;Wang等[22]根據(jù)圖像內(nèi)容進(jìn)行情感的挖掘;Li等[23]利用bagofwords圖像內(nèi)容模型來(lái)判斷圖片中的興趣點(diǎn)。這些利用POI圖片信息進(jìn)行推薦的研究工作,充分說(shuō)明了圖片與POI有強(qiáng)關(guān)聯(lián)關(guān)系,圖片包含著POI的一些特征信息,影響著用戶(hù)的決策過(guò)程。

2 社交網(wǎng)絡(luò)和圖像內(nèi)容融合的興趣點(diǎn)推薦

2.1 問(wèn)題定義

本節(jié)定義數(shù)據(jù)結(jié)構(gòu),闡述研究的問(wèn)題與展示算法模型框圖。從LBSN的豐富信息中提取數(shù)據(jù)信息,包括POI上的用戶(hù)歷史評(píng)分?jǐn)?shù)據(jù),包括POI的地理信息、POI上的標(biāo)簽信息、用戶(hù)之間的社會(huì)關(guān)系、POI上的圖片信息。為了便于說(shuō)明,表1列出本文的關(guān)鍵符號(hào)。

4 結(jié)語(yǔ)

本文提出了一個(gè)社交網(wǎng)絡(luò)和圖像內(nèi)容融合的興趣點(diǎn)推薦模型——SVPOI,基于位置的社交網(wǎng)絡(luò)中用戶(hù)的簽到行為,有效地結(jié)合了用戶(hù)評(píng)分信息、地理位置信息、標(biāo)簽分類(lèi)信息、用戶(hù)社交關(guān)系信息和興趣點(diǎn)圖像信息,有效地解決了數(shù)據(jù)稀疏以及興趣點(diǎn)特征缺失的問(wèn)題。為了證明SVPOI模型的適用性,本文在真實(shí)的大規(guī)模數(shù)據(jù)集上進(jìn)行了大量的實(shí)驗(yàn),在推薦精度方面對(duì)SVPOI進(jìn)行了評(píng)估,結(jié)果表明SVPOI的推薦精度與其他推薦算法相比有明顯提升。未來(lái)將進(jìn)一步挖掘圖像內(nèi)容,融合其他推薦模型作進(jìn)一步的嘗試,從而提高興趣點(diǎn)推薦的性能。

參考文獻(xiàn) (References)

[1] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]// Proceedings of the 20th International Conference on Neural Information Processing Systems. New York: ACM, 2008: 1257-1264.

[2] MA H, YANG H, LYU M R, et al. SoRec: social recommendation using probabilistic matrix factorization[C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM, 2008: 931-940.

[3] YANG B, LEI Y, LIU J, et al. Social collaborative filtering by trust[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1633-1647.

[4] GUO G, ZHANG J, YORKESMITH N. TrustSVD: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2015: 123-125.

[5] BAO J, ZHENG Y, WILKIE D, et al. Recommendations in locationbased social networks: a survey[J]. GeoInformatica, 2015, 19(3): 525-565.

[6] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8): 30-37.

[7] SHI Y, LARSON M, HANJALIC A. Collaborative filtering beyond the useritem matrix: a survey of the state of the art and future challenges[J]. ACM Computing Surveys, 2014, 47(1): Article No. 3.

[8] MARSDEN P V, FRIEDKIN N E. Network studies of social influence[J]. Sociological Methods & Research, 1993, 22(1): 127-151.

[9] KOREN Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 426-434.

[10] 劉華鋒,景麗萍,于劍.融合社交信息的矩陣分解推薦方法研究綜述[J].軟件學(xué)報(bào),2018,29(2):340-362.(LIU H F, JING L P, YU J. Survey of matrix factorization based recommendation methods by integrating social information[J]. Journal of Software, 2018,29(2):340-362.)

[11] GAO H, LIU H. Mining human mobility in locationbased social networks[J]. Synthesis Lectures on Data Mining and Knowledge Discovery, 2015, 7(2): 1-115.

[12] LIAN D, ZHAO C, XIE X, et al. GeoMF: joint geographical modeling and matrix factorization for pointofinterest recommendation[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 831-840.

[13] YE M, YIN P, LEE W C. Location recommendation for locationbased social networks[C]// Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010: 458-461.

[14] LI H, GE Y, HONG R, et al. Pointofinterest recommendations: Learning potential checkins from friends[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 975-984.

[15] YUAN Q, CONG G, MA Z, et al. Timeaware pointofinterest recommendation[C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2013: 363-372.

[16] CHENG C, YANG H, LYU M R, et al. Where you like to go next: successive pointofinterest recommendation[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2013: 2605-2611.

[17] LIU B, XIONG H. Pointofinterest recommendation in location based social networks with topic and location awareness[EB/OL].[2018-06-20].https://binbenliu.github.io/papers/poi_sdm13.pdf.

[18] 任星怡,宋美娜,宋俊德.基于用戶(hù)簽到行為的興趣點(diǎn)推薦[J].計(jì)算機(jī)學(xué)報(bào),2017,40(1):28-51.(REN X Y, SONG M N, SONG J D. Pointofinterest recommendation based on the user checkin behavior[J]. Chinese Journal of Computers, 2017,40(1):28-51.)

[19] JIANG S, QIAN X, MEI T, et al. Personalized travel sequence recommendation on multisource big social media[J]. IEEE Transactions on Big Data, 2016, 2(1): 43-56.

[20] WANG S, WANG Y, TANG J, et al. What your images reveal: Exploiting visual contents for pointofinterest recommendation[C]// Proceedings of the 26th International Conference on World Wide Web. Geneva: International World Wide Web Conferences Steering Committee, 2017: 391-400.

[21] McAULEY J, TARGETT C, SHI Q, et al. Imagebased recommendations on styles and substitutes[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2015: 43-52.

[22] WANG Y, WANG S, TANG J, et al. Unsupervised sentiment analysis for social media images[EB/OL].[2018-06-20]. https://ijcai.org/Proceedings/15/Papers/336.pdf.

[23] LI X, PHAM T A N, CONG G, et al. Where you instagram?: Associating your instagram photos with points of interest[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2015: 1231-1240.

[24] ZHOU D, HOFMANN T, SCH?LKOPF B. Semisupervised learning on directed graphs[EB/OL].[2018-06-20].http://papers.nips.cc/paper/2718semisupervisedlearningondirectedgraphs.pdf.

[25] LI H, HONG R, ZHU S, et al. Pointofinterest recommender systems: a separatespace perspective[C]// Proceedings of the 2015 IEEE International Conference on Data Mining. Piscataway, NJ: IEEE, 2015: 231-240.

[26] WANG S, TANG J, WANG Y, et al. Exploring implicit hierarchical structures for recommender systems[C]// Proceedings of the 24th International Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2015: 1813-1819.

[27] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for largescale image recognition[J/OL]. arXiv Preprint, 2014, 2014: arXiv:1409.1556 (2014-09-04)[2015-04-10]. https://arxiv.org/abs/1409.1556.

主站蜘蛛池模板: 高清无码手机在线观看 | 国产精品亚洲五月天高清| 露脸一二三区国语对白| 色老二精品视频在线观看| 久久永久免费人妻精品| 国产精品美女在线| 国产成人综合网在线观看| 日本一区二区三区精品视频| 好久久免费视频高清| 一区二区日韩国产精久久| 91在线日韩在线播放| 中国精品久久| 熟女日韩精品2区| 好吊色妇女免费视频免费| 韩国v欧美v亚洲v日本v| 国产夜色视频| 欧美日韩专区| 亚洲最猛黑人xxxx黑人猛交 | 午夜一级做a爰片久久毛片| 亚洲成人在线免费观看| 日韩欧美国产综合| 国产在线观看精品| 欧美日韩免费在线视频| 亚洲一区波多野结衣二区三区| 精品无码一区二区在线观看| av午夜福利一片免费看| 亚洲精品欧美重口| 欧美.成人.综合在线| 亚洲免费人成影院| 久久这里只精品国产99热8| 日日噜噜夜夜狠狠视频| 亚洲色成人www在线观看| 亚欧美国产综合| 国产成人综合在线观看| 毛片在线播放网址| 草草影院国产第一页| 午夜视频www| 中文无码精品A∨在线观看不卡| 91精品情国产情侣高潮对白蜜| 青青青视频蜜桃一区二区| 广东一级毛片| 国产又粗又猛又爽| 国产精品香蕉在线| 91麻豆精品视频| 国产精品欧美日本韩免费一区二区三区不卡| 亚洲男人的天堂在线观看| 手机精品福利在线观看| 国产农村1级毛片| 亚洲中文制服丝袜欧美精品| 国产精品yjizz视频网一二区| 毛片免费视频| 不卡无码h在线观看| 欧美特黄一免在线观看| www.精品视频| 免费高清自慰一区二区三区| 欧美天堂在线| 国产69囗曝护士吞精在线视频| 黄色网页在线观看| 天天色天天综合| 午夜视频日本| 嫩草国产在线| 91福利免费| 日韩最新中文字幕| 国产噜噜在线视频观看| 2019年国产精品自拍不卡| 伊在人亚洲香蕉精品播放 | 日韩高清成人| 大香网伊人久久综合网2020| 日韩午夜片| 91探花国产综合在线精品| 中文字幕永久在线看| 国产精品流白浆在线观看| 国产电话自拍伊人| 国产日韩欧美成人| 国产成人啪视频一区二区三区| 亚洲日韩久久综合中文字幕| 999国产精品永久免费视频精品久久| 国产95在线 | 亚洲国产午夜精华无码福利| 国产精品jizz在线观看软件| 中文字幕亚洲乱码熟女1区2区| 成人免费网站久久久|