劉志民,孟彩茹,李 冰,韓 雷,潘 越
?
煤巷聚焦多點電源探測電場超前掃描控制策略
劉志民,孟彩茹,李 冰,韓 雷,潘 越
(河北工程大學機械與裝備工程學院,河北 邯鄲 050638)
為實現煤巷聚焦多點電源有效探測電場聚焦深度掃描和偏轉角度掃描,準確把握有效探測電場的變化規律,根據超前掃描探測機理,利用高斯定理,采用兩種不同的方法對積分過程進行求解,推導單根有限長均勻帶電直線電極的電場線方程。利用電場線空間分布的對稱性,歸納推理共面多電極電場線方程。改變聚焦屏流比系數,計算有效探測電場線邊界線方程,分析平均電流密度及空間立體角變化規律;同時改變聚焦屏流比系數和偏轉屏流比系數,分析電場邊界線下邊界角及偏轉角變化規律,確定出超前掃描探測主電極與約束電極發射電流取值范圍。此研究為野外開展聚焦多點電源電法勘探提供技術指導,對完善聚焦電法勘探機理,推動該技術理論發展具有重要意義。
聚焦多點電源;電場線;聚焦效應;偏轉效應;超前掃描探測控制策略
礦井直流電法超前探測技術是一種全空間電法勘探技術,理論成熟、工序簡單、方法靈活、探測距離大、對含導水地質構造敏感強等優點,在礦井水文地質預報預測中得到了廣泛應用[1]。礦井直流電法探測其發射電極沿坑道豎直向下布置,受電場全空間效應影響,電流分布具有分散性,呈輻射狀向四周傳播,且常受坑道后方及旁側浮塵、軌道、機電設備、淺部低阻疏松層屏蔽效應等電磁干擾影響,造成探測結果與實際工程地質工況存在一定的偏差[2-3]。為使電流沿掘進斷面前方集中傳播,減小電場全空間效應及干擾因素影響,國內外眾多學者提出聚焦多點電源勘探技術。20世紀70年代,印度學者A. Roy等[4]提出直流聚焦激電法勘探理論,并開展了物理模型實驗模擬;R. N. Gupta等[5]從理論和試驗方面對比分析了直流聚焦電阻率法和雙極裝置的優缺點;C. Panissod等[6]采用直流聚焦電阻率法在考古學領域進行了試驗模擬測試。國內學者[7-9]針對直流聚焦電阻率法探測機理、試驗模擬及資料解譯方法等方面開展大量研究。2004年德國GET(Geo Exploration Technologies)公司研制了BEAM(Bore-Tunnelling Electrical Ahead Monitoring)法隧道超前預報技術(聚焦變頻激電法),在國內物探領域已取得了較好的應用效果[10-11]。文獻[12-13]在直流聚焦激電法、直流聚焦電阻率法和聚焦變頻激電法等探測方法研究基礎上,將聚焦電法理論與雙頻激電法[14]理論相互融合,充分利用兩種探測方法的優點,提出一種多參量(視電阻率、視幅頻率、視相頻率)綜合檢測與評判的坑道超前勘探方法——聚焦雙頻激電法探測技術,并針對儀器研制及模型試驗等方面開展研究。
上述聚焦電法勘探技術均根據同性多點電源相互排斥原理,使主電極和約束電極同時發射同性不等強度的電流場,利用約束電極對主電極的約束作用,在掘進斷面前方形成集中穩定的半空間探測電場。為實現掘進前方不同方位和距離異常地質構造的準確探測,勢必對探測電場的傳播方向和傳播距離進行靈活有效地控制。為此,筆者在文獻[12-13]基礎上,通過推導聚焦多點電源電場線方程,分析探測電場空間分布特征,提出聚焦與偏轉掃描探測控制策略,合理地確定出主電極與約束電極發射電流取值范圍。本研究對完善聚焦多點電源電法勘探理論,提高資料反演解譯及模型正演模擬的準確性和有效性,推動電法勘探理論的發展具有重要意義。


圖1 電極布置方式

圖2 超前掃描探測
Fig.2 Advanced scanning detection
為準確把握煤巷多點電源超前掃描探測聚焦與偏轉效應變化規律,可用空間電場線從幾何上由定性到定量直觀形象地刻畫。電場線是法拉第為描繪靜電場的形狀和空間分布特征而引入的一系列假想曲線,曲線上每個點的切線方向(d)與該點的電場強度方向()相一致[15-16]。推導多點電源電場線方程,其實質是計算多根有限長均勻帶電直線電極的電場線方程。若按電場線定義計算,微分方程d×=0求解過程較為復雜,而利用高斯定理[17]進行計算,其過程簡潔直觀。





對上兩式求積分,得


同理可得



圖3 單電極電流源空間電場
Fig.3 Spatial electric field of single electrode current source







則共面多電極電場線方程為

自主研制的超前探測儀發送機可同時發送5路電流幅值在10~100 mA范圍內連續可調的雙頻調制方波[13],設主電極發射電流0=30 mA,約束電極電流1=330 mA,即聚焦屏流比系數1=3==1。煤礦井下巷道有效掘進斷面面積通常為5 m×5 m,設電極空間坐標2.5 m,計算此時電場線微分方程,得到沿掘進方向(面軸正向)聚焦效應電場線分布情況如圖4所示。從電場線分布情況可以看出,有效探測電場在約束電場作用下,沿斷面正前方集中傳播,形成了較好的聚焦效應。


圖4 聚焦效應電場線分布




圖5 邊界角與偏轉角定義

圖6 平均電流密度變化規律
保持主電極發射電流0不變,考慮探測儀器發射電流上限不超過100 mA,使聚焦屏流比系數1=3在0.95~5范圍內變化,得到聚焦掃描探測電場邊界線如圖7所示,其有效探測電場空間立體角隨聚焦屏流比系數的變化曲線如圖8所示。隨聚焦屏流比系數的增大,聚焦效應逐漸增強,空間立體角逐漸減小,當>3.5時,減小程度趨于平緩,即此時聚焦效應變化已不明顯。因此,采用聚焦效應特性進行深度掃描探測,聚焦屏流比系數宜選擇在3.0≤≤3.5,主電極發射電流控制在28 mA≤ I≤33 mA范圍內,此時可獲得最佳的聚焦效應探測效果。

圖7 聚焦掃描探測電場邊界線

圖8 空間立體角變化規律


圖9 偏轉角變化規律

圖10 電場邊界線下邊界角變化規律
a.共面多電極電場線方程等于空間任意點到各電極兩端點距離之差與聚焦屏流比系數乘積的代數和,且為某一常量,即僅與各電極空間坐標位置以及聚焦屏流比系數和偏轉屏流比系數有關,而與主電極發射電流無關。


[1] 韓德品,李丹,程久龍,等. 超前探測災害性含導水地質構造的直流電法[J]. 煤炭學報,2010,35(4):635–639. HAN Depin,LI Dan,CHENG Jiulong,et al. DC method of advanced detecting disastrous water-conducting or water-bearing geological structures along same layer[J]. Journal of China Coal Society,2010,35(4):635–639.
[2] 程久龍,李飛,彭蘇萍,等.礦井巷道地球物理方法超前探測研究進展與展望[J]. 煤炭學報,2014,39(8):1742–1750. CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742–1750.
[3] 魯晶津,吳小平. 巷道直流電阻率法超前探測三維數值模擬[J]. 煤田地質與勘探,2013,41(6):83–86. LU Jingjin,WU Xiaoping. 3D numerical modeling of tunnel DC resistivity for in-advance detection[J]. Coal Geology & Exploration,2013,41(6):83–86.
[4] ROY A,APPARO A. Depth of investigation in direct current methods[J]. Geophysics,1971,36(5):943–959.
[5] GUPTA R N,HATTACHARYA P K. Unipole method of electrical profiling[J]. Geophysics,1963,28(4):608–616.
[6] PANISSOD C,LAJARTHE M,TABBAGH A. Potential focusing:A new multi-electrode array concept,simulation study and field tests in archaeological prospecting[J]. Journal of Applied Geophysics,1997,38(1):1–23.
[7] 阮百堯,鄧小康,劉海飛,等.坑道直流電阻率超前聚焦探測的影響因素及最佳觀測方式[J].地球物理學進展,2010,25(4):1380–1386. RUAN Baiyao,DENG Xiaokang,LIU Haifei,et al. Influential factors and optimum survey method of advanced focus detection with DC resistivity in tunnels[J].Progress in Geophysics,2010,25(4):1380–1386.
[8] 張力,阮百堯,呂玉增,等. 坑道全空間直流聚焦超前探測模擬研究[J]. 地球物理學報,2011,54(4):1130–1139. ZHANG Li,RUAN Baiyao,LYU Yuzeng,et al. Study of full-space numerical modeling of advanced exploration in tunnel with DC focus resistivity method[J]. Chinese Journal of Geophysics,2011,54(4):1130–1139.
[9] DENG Xiaokang,LIU Jianxin,LIU Haifei,et al. 3D finite element numerical simulation of advanced detection in roadway for DC focus method[J]. Transactions of Nonferrous Metals Society of China,2013,23(7):2187–2193.
[10] GEOHYDRAULIK Data. Beam presentation[Z/OL]. Kirchvers:Geohydraulik Data Corp.,2004. http://www.geoexploration technologies.de/.
[11] 高振宅. BEAM地質超前預報系統在錦屏引水隧洞TBM施工中的應用[J]. 鐵道建筑技術,2009(11):65–67. GAO Zhenzhai. The application of the BEAM geological advance prediction system for the TBM construction of the Jinping diversion tunnel[J]. Railway Construction Technology,2009(11):65–67.
[12] 劉志民,劉希高,張金濤,等. 交流聚焦激電法煤巷超前探測阻容試驗模擬[J]. 煤炭學報,2015,40(9):2144–2151. LIU Zhimin,LIU Xigao,ZHANG Jintao,et al. Experimental simulation of resistance-capacitance model for advanced detection in coal roadway based on alternating current focusing induced polarization method[J]. Journal of China Coal Society,2015,40(9):2144–2151.
[13] 張金濤,呂一鳴,劉志民,等. 聚焦雙頻激電法超前探水激勵信號發送系統設計[J]. 煤炭科學技術,2015,43(8):107–111. ZHANG Jintao,LYU Yiming,LIU Zhimin,et al. Design on advanced water detection excitation signal transmission system of focusing double frequency induced polarization method[J]. Coal Science and Technology,2015,43(8):107–111.
[14] 湯井田,戴前偉,柳建新,等. 何繼善教授從事地球物理工作60周年學術成就回顧[J]. 中國有色金屬學報,2013,23(9):2323–2339. TANG Jingtian,DAI Qianwei,LIU Jianxin,et al. Academic achievements of Professor HE Jishan dedicated to geophysics for six decades[J]. The Chinese Journal of Nonferrous Metals,2013,23(9):2323–2339.
[15] 王愛霞,高國棉,周九茹. 有限長均勻帶電直線電場的對稱性分析與計算[J]. 大學物理,2015,34(10):17–19. WANG Aixia,GAO Guomian,ZHOU Jiuru. Calculation and symmetrical analysis of electric field of a finite line with even charge[J]. College Physics,2015,34(10):17–19.
[16] 劉志民,韓雷,張偉杰,等. 煤巷多點電流源雙頻激電法超前掃描探測技術[J]. 煤田地質與勘探,2017,45(4):149–156. LIU Zhimin,HAN Lei,ZHANG Weijie,et al. Study on advanced scanning detection technology of dual-frequency induced polarization method with multi-point current sources in coal mine roadway[J]. Coal Geology & Exploration,2017,45(4):149–156.
[17] 廖仁忻,徐志和. 用高斯定理求解電力線方程[J]. 大學物理,1993,12(7):14–15. LIAO Renxin,XU Zhihe. Solving the power line equation with Gauss theorem[J]. College Physics,1993,12(7):14–15.
Detection electric field control strategy for advanced scanning detection of focusing multipoint current sources in coal mine roadway
LIU Zhimin, MENG Cairu, LI Bing, HAN Lei, PAN Yue
(College of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China)
In order to realize the effective detection of electric field focusing depth and deflection angle scanning of focusing multipoint current sources in coal mine roadway, and accurately grasp its variation, according to the advanced scanning detection mechanism, Gauss theorem and two different methods were used to solve the integration process and derive the electric field line equation of a uniformly charged linear electrode with finite length. The electric field line equation of coplanar multi-electrode layout is induced and deduced through using its spatial distribution symmetry. By changing focusing shielding current ratio coefficient, this paper calculates the boundary line equation of effective detection electric field lines and analyzed the variation of average current density and spatial angle. The lower boundary angle and the deflection angle variations of the electric field boundary line were analyzed through changing simultaneously focusing and deflection shielding current ratio coefficients. The range of emission current intensity of the main electrode and the constrained electrode for advanced scanning detection was determined. This research will provide a technical guidance for the electric survey of focusing multipoint current sources in the field, and is of great significance for improving the exploration mechanism of focusing electric method and promoting the development of geophysical theory.
focusing multipoint current sources; electric field lines; focusing effect; deflection effect; control strategy for advanced scanning detection
Natural Science Foundation of Hebei Province,China(D2017402158)
劉志民,1975年生,男,河北承德人,博士,副教授,從事電法超前探測理論與應用研究. E-mail:liuzhiminhd@126.com
孟彩茹,1980年生,女,河北石家莊人,博士,副教授,從事煤礦機電一體化技術研究. E-mail:mengcairu1980@163.com
劉志民,孟彩茹,李冰,等. 煤巷聚焦多點電源探測電場超前掃描控制策略[J]. 煤田地質與勘探,2019,47(3):195–200.
LIU Zhimin,MENG Cairu,LI Bing,et al. Detection electric field control strategy for advanced scanning detection of focusing multipoint current sources in coal mine roadway[J]. Coal Geology & Exploration,2019,47(3):195–200.
1001-1986(2019)03-0195-06
P631;TD82
A
10.3969/j.issn.1001-1986.2019.03.030
2018-02-07
河北省自然科學基金項目(D2017402158)
(責任編輯 聶愛蘭)