999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

多策略人工蜂群算法在梯級水電站優化調度中的應用

2019-06-24 02:36:04謝海華孫輝龔文引
南水北調與水利科技 2019年2期

謝海華 孫輝 龔文引

摘要:梯級水電站優化調度問題的準確、快速求解,是水利學科領域需解決的基本問題。針對該問題,提出了一種新的多策略人工蜂群算法。為更好地平衡算法的全局搜索與局部搜索能力,新算法在兩個具有代表性的解搜索策略基礎上,對其融合構成新的搜索策略,同時保留了原有的兩個解搜索策略。新算法的三個候選解搜索策略,增強了對各類優化問題求解的適應性。為驗證新算法的適應性及可行性,不僅在經典的基準測試函數中對其進行測試,并且將其應用于梯級水電站優化調度問題。實驗結果表明,新算法具有適應性強、收斂速度快等優點。

關鍵詞:梯級水電站;優化調度;人工蜂群算法;收斂速度;多策略

中圖分類號:TV11文獻標志碼:A

Abstract:To accurately and quickly solve the optimal operation problem of cascade hydro-power stations is a challenge in the field of water conservancy.A new multi-strategy artificial bee colony algorithm was proposed in this study.In order to better balance the global search and local search capabilities of the algorithms,two representative solution search strategies were used in this new algorithm,and they were combined to form a new search strategy while retaining the original two solution search strategies.Therefore,the new algorithm contained three candidate solution search strategies in the process of searching new solutions,which was convenient to strengthen the adaptability to various optimization problems.The adaptability and feasibility of the new algorithm were tested in the classic benchmark function and applied to the optimal operation of cascade hydro-power stations.Experimental results showed that the new algorithm had the advantages of stronger adaptability and faster convergence speed.

Key words:cascade hydro-power stations;optimal dispatch;artificial bee colony algorithm;rate of convergence;multi-strategy

梯級水電站的優化調度,是一個高維、多約束、非線性問題。解決該問題的核心是建立準確反應實際優化調度問題的模型和采用適當的求解方法[1]。目前,優化調度的數學模型相對成熟,但對于多約束條件下,快速及準確求解是該問題的難點所在。傳統方法和群智能方法是解決優化調度問題的主要方法[2-3],其中傳統方法包括:線性規劃(Linear Programming,LP)[4]、非線性規劃(Nonlinear Programming,NLP)[5]、動態規劃(Dynamic Programming,DP)[6]和大系統法(Large-scale System,LS)[7];群智能方法包括:人工蜂群(Artificial Bee Colony,ABC)算法[8]、蟻群算法(Ant Colony Optimization,ACO)[9]、遺傳算法(Genetic Algorithm,GA)[10]、粒子群算法(Particle Swarm Optimization,PSO)[11]等。傳統方法能有效解決單庫水電站調度問題,但對于梯級水電站的優化調度問題,不僅方法復雜且存在“維數災”、易陷入局部最優等缺點。相比傳統方法,群智能算法具有實現簡單、求解速度快等優點[12]。

2005年,土耳其學者karaboga為解決多變量函數問題,提出了ABC算法,其具有收斂速度快、參數少、魯棒性強等優點,并廣泛應用至各行業,如機器人路徑優化[13-14]和圖像處理[15]等。相比其他群智能算法,ABC算法對維度不敏感(問題維度的高低不影響ABC算法性能)是它的一個顯著特點。故本文采用ABC算法求解高維的梯級水庫優化調度問題。遵循著“算法沒有最好”的理念,ABC算法亦存在缺點,如全局搜索與局部搜索之間的平衡性較差。針對該問題,眾多的研究者提出了許多改進方案。較經典的有Zhu[16]等人提出的GABC、Gao[17]等人提出的MABC、Kiran[18]等人提出的ABCVSS,其中,Zhu等人針對ABC算法局部搜索能力弱的缺點,將全局最優引入到解搜索策略中;Gao等人針對ABC算法全局搜索與局部搜索能力平衡性差的缺點,通過引入控制參數,以達到目的;Kiran等人為豐富解搜索策略,構成了解搜索策略池,以適應多種類型優化問題。

目前的研究表明,更好地平衡ABC算法的全局搜索與局部搜索能力,可有效改善算法的總體性能。為此本文提出了一種新的多策略人工蜂群算法(Multi-strategy Artificial bee colony,MsABC)算法。

[6] YOUNG G K.Finding reservoir operating rules[J].Journal of the Hydraulics Division,1967,93(6):297-322.

[7] ARVANITIDIS N V,ROSING J.Optimal operation of multireservoir systems using a composite representation[J].IEEE Transactions on Power Apparatus & Systems,1970,PAS-89(2):327 -335.

[8] KARABOGA D.An idea based on honey bee swarm for numerical optimization,Technical Report-TR06[M].Erciyes University:Kayseri,Turkey,2005.

[9] DORIGO M,CARO G D.Ant colony optimization:a new meta-heuristic[J].Proceedings of the Congress on Evolutionary Computation,1999,2(4):1470-1477.

[10] GOLDBERG D E.Genetic algorithm in search[Z].Addison-Wesley,Reading,1989.

[11] KENNEDY J,EBERHART R.Particle swarm optimization[C].IEEE International Conference on Neural Networks,1995.Proceedings.IEEE,2002,4:1942-1948.

[12] 焦鈺,王建群,賈洋洋.基于狼群算法的水電站優化調度模型參數優選[J].南水北調與水利科技,2017,15(2):58-64.(JIAO Y,WANG J Q,JIA Y Y.Parameter analysis of wolf pack search algorithm applied to optimal operation of hydropower station[J].South-to-North Water Transfers and Water Science & Technology,2017,15(2):58-64.(in Chinese)) DOI:10.13476/j.cnki.nsbdqk 2017.02.009.

[13] 黎竹娟.人工蜂群算法在移動機器人路徑規劃中的應用[J].計算機仿真,2012,29(12):247-250.(LI Z J.Application of artificial bee colony algorithm in path planning of mobile robot[J].Computer Simulation,2012,29(12):247-250.(in Chinese))

[14] 譚玉新,楊維,徐子睿.面向煤礦井下局部復雜空間的機器人三維路徑規劃方法[J].煤炭學報,2017,42(6):1634-1642.(TAN Y X,YANG W,XU Z R.Three-dimensional path planning method for robot in underground local complex space[J].Journal of China Coal Society,2017,42(6):1634-1642.(in Chinese)) DOI:10.13225/j.cnki.jccs.2016.1047

[15] 肖永豪.蜂群算法及在圖像處理中的應用研究[D].廣州:華南理工大學,2011.(XIAO Y H.Study on artificial bee colony algorithm and its application in image processing[D].Guangzhou:South China University of Technology,2011.(in Chinese))

[16] ZHU G,KWONG S.Gbest-guided artificial bee colony algorithm for numerical function optimization[J].Applied Mathematics & Computation,2010,217(7):3166-3173.

[17] GAO W,LIU S.A modified artificial bee colony algorithm[J].Computers & Operations Research,2012,39(3):687-697.

[18] KIRAN M S,HAKLI H,GUNDUZ M,et al.Artificial bee colony algorithm with variable search strategy for continuous optimization[J].Information Sciences,2015,300:140-157.DOI:10.1016/j.ins.2014.12.043.

[19] GAO W,LIU S,HUANG L.A novel artificial bee colony algorithm based on modified search equation and orthogonal learning[J].IEEE Transactions on Cybernetics,2013,43(3):1011.

[20] CUI L,ZHANG K,LI G.et al.Modified Gbest-guided artificial bee colony algorithm with new probability model[J].Soft Compute.2018(22):2217-2243.DOI:10.1109/TSMCB.2012.2222373.

[21] 王坤.改進人工蜂群算法在梯級水庫群優化調度中的應用[D].南昌:南昌工程學院,2017.(WANG K.The application of artificial bee colony algorithm in optimal operation of cascade reservoirs is improved[D].Nanchang:Nanchang Institute of Technology,2017.(in Chinese))

[22] KARABOGA D,GORKEMLI B.A quick artificial bee colony (qABC) algorithm and its performance on optimization problems[J].Applied Soft Computing,2014,23(5):227-238.DOI:10.1016/j.asoc.2014.06.035.

[23] 成鵬飛,方國華,黃顯峰.基于改進人工蜂群算法的水電站水庫優化調度研究[J].中國農村水利水電,2013(4):109-112.(CHENG P F,FANG G H,HUANG X F.Optimal operation of hydropower station reservoir based on improved bee colony algorithm[J].China Rural Water and Hydropower,2013(4):109-112.(in Chinese))

[24] 李文莉,李郁俠,任平安.基于云變異人工蜂群算法的梯級水庫群優化調度[J].水力發電學報,2014,33(1):37-42.(LI W L,LI Y X,REN P A.Optimal operation of cascade reservoirs based on cloud variation-artificial bee colony algorithm[J].Journal of Hydroelectric Engineering,2014,33(1):37-42.(in Chinese))

主站蜘蛛池模板: 国产精品所毛片视频| 国产福利不卡视频| 國產尤物AV尤物在線觀看| 伊人91视频| 国产一级妓女av网站| 国产精品久线在线观看| 又黄又湿又爽的视频| 久久国产精品无码hdav| 精品少妇人妻无码久久| 亚洲中文无码h在线观看| 在线观看国产网址你懂的| 日韩无码白| 亚洲中文字幕无码mv| 色窝窝免费一区二区三区| 农村乱人伦一区二区| 国产91精品最新在线播放| 国产女人爽到高潮的免费视频| 日本成人在线不卡视频| 国产在线专区| 高清不卡毛片| 欧美日韩免费| 欧美不卡视频一区发布| 四虎国产精品永久一区| 久久婷婷综合色一区二区| 欧美激情视频在线观看一区| 欧美日韩国产在线观看一区二区三区| 婷婷五月在线| 久久久久人妻一区精品| 久久99精品久久久久久不卡| 日本午夜三级| 国产精品久久久久久久久| 国产精品毛片在线直播完整版| 久久国产亚洲欧美日韩精品| 亚洲午夜国产片在线观看| 日韩免费成人| 99热这里只有精品免费国产| 日本福利视频网站| 日韩欧美中文字幕一本| 久久人人妻人人爽人人卡片av| 香蕉国产精品视频| 伊人天堂网| 欧美激情福利| 欧美成一级| 亚洲天堂网在线观看视频| 欧美成人午夜视频| 91原创视频在线| 中文字幕人成乱码熟女免费| 国产无码精品在线| 曰AV在线无码| 伊人久久大香线蕉aⅴ色| 欧美亚洲国产精品第一页| 国产亚洲欧美在线中文bt天堂| www.亚洲国产| 久久99国产综合精品1| 色天天综合久久久久综合片| 伊人久久精品亚洲午夜| 3p叠罗汉国产精品久久| 99这里只有精品免费视频| 免费无码又爽又黄又刺激网站 | 国产xx在线观看| 精品国产一区二区三区在线观看| 色呦呦手机在线精品| 国产一区二区三区在线无码| 成年人视频一区二区| 毛片网站在线播放| 国产乱子伦精品视频| 精品成人一区二区| 91娇喘视频| 日韩 欧美 国产 精品 综合| 欧美日本不卡| 免费一级毛片完整版在线看| AV在线麻免费观看网站| 最近最新中文字幕在线第一页| 欧美一级夜夜爽www| 日日拍夜夜操| 日本欧美成人免费| 丰满人妻久久中文字幕| 欧美激情视频在线观看一区| 国产不卡网| 成人年鲁鲁在线观看视频| 新SSS无码手机在线观看| 日韩东京热无码人妻|