999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

NEW BOUNDS ON EIGENVUALUES OF LAPLACIAN?

2019-05-31 03:38:52ZhengchaoJI紀正超

Zhengchao JI(紀正超)

Center of Mathematical Scienses,Zhejiang University,Hangzhou 310027,China E-mail:jizhengchao@zju.edu.cn

Abstract In this paper,we investigate non-zero positive eigenvalues of the Laplacian with Dirichlet boundary condition in an n-dimentional Euclidean space Rn,then we obtain an new upper bound of the(k+1)-th eigenvalue λk+1,which improve the previous estimate which was obtained by Cheng and Yang,see(1.8).

Key words eigenvalues;Laplacian;Euclidean space;recursion formula

1 Introduction

The eigenvalue problem of Dirichlet Laplacian on a bounded domain ? with smooth boundary?? in an n-dimensional Euclidean space Rnis

where the△is the Laplacian in Rn.This problem has a real and purely discrete spectrum

where each λihas finite multiplicity which is repeated according to its multiplicity.Recently,there are a lot of interesting results in this topic,see[1–5].

Because of the importance of the eigenvalue problem(1.1),many mathematicians focused on it and obtained a lot of great results.It is well known that Hilbert conjectured the research of the asymptotic behavior of the eigenvalue λkof the eigenvalue problem(1.1)would yield results of the utmost importance in the early part of twentieth century.In 1911,Weyl proved that

where ωnis the volume of the unit ball in Rn.Further,Pólya conjectured the eigenvalue λkshould satisfy

for k=1,2,···(see[5]).On the conjecture of Pólya,Li and Yau[5]attacked it and obtained

for k=1,2,···.

On the other side,Stewartson and Waechter[6]put forward an inverse question:let ψ be the set of all increasing sequences of positive numbers which tend to in finity,can one identify those sequence in ψ which correspond to spectra of the eigenvalue problem(1.1)for some domain?The research on the universal inequalities plays an important role to this problem.

When Mnis a bounded domain of an n-dimensional Euclidean space Rn,Payne,Pólya and Weinberger[6,7]obtained

By extending the universal inequality of Payne,Pólya and Weinberger in di ff erential background,there are two main contributions due to Hile and Protter[8]and Yang[9].In 1980,Hile and Protter proved

In 2007,by making use of a celebrated recursion formula,Cheng and Yang[10]obtained a sharp upper bound of the(k+1)-th eigenvalue

Furthermore,Yang[9]obtained a very sharp universal inequality

The purpose of this paper is to study the eigenvalues of the Dirichlet Laplacian.By introducing a new parameter we got a shaper recursion formula of Cheng and Yang[10].Here are our main results.

Theorem 1.1Let λ1≤ λ2≤ ···≤ λk+1be any positive real numbers satisfying

Then,we have

Corollary 1.2Let ??Rnbe a bounded domain with smooth boundary.Then the eigenvalues of Dirichlet Laplacian satisfy

Remark 1.3When b=1,this upper bound is the same as(1.8).

2 Some Recursion Formulas

In this section,we shall prove some new recursion formulas,and use them to proof our main theorem.First let’s give this lemma,which will be used later.

Lemma 2.1For any n≥1,k≥1 andwe have

provided

ProofPut

It’s easy to check that f(1)=0.We rewrite f(b)as

where F is a constant independent of b.Since n≥1,k≥1,we have

Thus when b≤1 and the coefficients of b2and b satisfy

we have f(b)≤0.And(2.3)is equal to

Now we prove our recursion formula which is the key to prove our main theorem.

Theorem 2.2Let λ1≤ λ2≤ ···≤ λk+1be any positive real numbers satisfying(1.9).For b>0,de fine

If

then

where

ProofPut

Since

we have

Hence we get

From(1.7)and(2.4),we have

By the de finition of Pk+1,(2.4)and(2.8),one infer

Since

we get our general recursion formula,

where

Now we give the proof of our main result by the given recursion formula.

By making use of formula(2.5)in Theorem 2.2,we have

From(1.7),we have

Thus we drive

which completes the proof of Theorem 1.1.

AcknowledgementsThe author would like to thank Professor Kefeng Liu and Professor Hongwei Xu for their continued support,advice and encouragement.Thanks also to Professor En-Tao Zhao for helpful discussions.

主站蜘蛛池模板: 国产成人欧美| 亚洲伊人久久精品影院| 久996视频精品免费观看| 偷拍久久网| 日韩精品一区二区三区视频免费看| 亚瑟天堂久久一区二区影院| 国产高清在线精品一区二区三区 | 久久人人妻人人爽人人卡片av| 午夜福利在线观看入口| 久久久久国产精品嫩草影院| 在线观看国产网址你懂的| 国产免费网址| 久久精品丝袜高跟鞋| 婷婷成人综合| 成人午夜亚洲影视在线观看| 亚洲午夜片| 欧美精品1区| 亚洲天堂777| 久久久亚洲国产美女国产盗摄| 日韩天堂在线观看| 99999久久久久久亚洲| 久久99精品久久久久久不卡| 国产欧美日韩精品第二区| jizz在线免费播放| 午夜激情婷婷| 中文字幕在线播放不卡| 国产色图在线观看| 国产精品成人啪精品视频| 2019年国产精品自拍不卡| 青草国产在线视频| 国产一级毛片网站| 大香伊人久久| 毛片三级在线观看| 爽爽影院十八禁在线观看| 思思热精品在线8| 日韩欧美综合在线制服| 久久熟女AV| 日韩欧美视频第一区在线观看| 丰满人妻被猛烈进入无码| 亚洲精品自在线拍| 欧美第九页| 91精品国产91久久久久久三级| av大片在线无码免费| 久久女人网| 四虎永久免费地址| 97久久超碰极品视觉盛宴| 国产97色在线| 国产成人综合亚洲欧美在| 丁香五月婷婷激情基地| 国产精品女熟高潮视频| 国产成人免费观看在线视频| 午夜国产精品视频黄 | 青青青国产免费线在| AV无码一区二区三区四区| 日韩毛片免费视频| 3p叠罗汉国产精品久久| 九九热免费在线视频| 久久窝窝国产精品午夜看片| 欧美中文一区| 青青久久91| 国产免费久久精品99re不卡| 精品欧美日韩国产日漫一区不卡| 小说区 亚洲 自拍 另类| 精品無碼一區在線觀看 | 伊人无码视屏| 国产一区在线视频观看| 国产亚洲精| 91在线一9|永久视频在线| 国产激爽大片高清在线观看| 亚洲欧美成aⅴ人在线观看| 成人在线观看一区| 国产成人高清在线精品| 欧美一级黄色影院| 国产成人高清在线精品| 三级毛片在线播放| 国产 日韩 欧美 第二页| 国产三级成人| 伊人色在线视频| 永久免费av网站可以直接看的| 综合网天天| 国产精品女同一区三区五区| 成人看片欧美一区二区|