999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于MT-BCS的可分離DOA估計(jì)算法

2019-04-04 03:17:40萬連城黑蕾王迎斌
現(xiàn)代電子技術(shù) 2019年6期

萬連城 黑蕾 王迎斌

關(guān)鍵詞: 二維DOA估計(jì); 壓縮感知; 貝葉斯; 多任務(wù)貝葉斯壓縮感知; 分辨率; 算法復(fù)雜度

中圖分類號: TN951?34 ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)06?0010?04

Abstract: The constant development of the compressed sensing theory provides a new idea for the problem of 2?D direction of arrival (DOA) estimation. The traditional 2?D DOA estimation method is only the extension of the 1?D DOA estimation, and the modeling method of the 2?D DOA estimation is the same as that of the 1?D DOA estimation, which leads to problems of high computation complexity and low resolution in solving. The multitask Bayesian compressive sensing (MT?BCS) theory is applied to the 2?D DOA estimation problem by remodeling of the 2?D DOA model, so as to propose a separable 2?D DOA estimation algorithm based on MT?BCS. A comparative experiment was carried out. The results demonstrate that the proposed algorithm has the advantages of high resolution and low complexity.

Keywords: 2?D DOA estimation; compressed sensing; Bayesian; MT?BCS; resolution; algorithm complexity

基于稀疏表示[1?3]的二維DOA(Direction of Arrival)估計(jì)算法大多是基于一維DOA估計(jì)的擴(kuò)展,算法建模時(shí)也是將二維矩陣展開為向量,仿照一維DOA估計(jì)的建模方法進(jìn)行建模。這類算法主要有:基于[lp]范數(shù)的POCUSS算法[2?4],經(jīng)典的高分辨[lp?SVD]算法[5],MP[6],OMP[7?8]等貪婪算法和基于貝葉斯壓縮感知的DOA估計(jì)算法[9]。

然而,這類仿照一維DOA的二維DOA建模方法導(dǎo)致稀疏基矩陣的維度過大,求解時(shí)算法的時(shí)間復(fù)雜度過高,難以滿足實(shí)時(shí)性的要求。為了降低算法的時(shí)間復(fù)雜度,本文提出了可分離的二維DOA建模新方法,并使用MT?BCS(Multitask Bayesian Compressive Sensing)算法[10]進(jìn)行求解,成功解決了二維DOA估計(jì)算法時(shí)間復(fù)雜度高、分辨率低的缺點(diǎn)。

由表1可知,由于本文所提出的方法將矩陣[A∈CML×PQ] 分離為俯仰維導(dǎo)向矢量基矩陣[Ψ∈CM×L]和方位維[Ψ]導(dǎo)向矢量基矩陣[Θ∈CP×Q],從而有效地減少了算法的時(shí)間復(fù)雜度,使算法更適合工業(yè)應(yīng)用。

4 ?結(jié) ?語

對于傳統(tǒng)二維DOA估計(jì)分辨率低、精度低、算法復(fù)雜度高等問題,本文提出基于MT?BCS算法的可分離二維DOA估計(jì)算法。該算法巧妙地將陣列流形矩陣A分解為俯仰維和方位維兩個(gè)獨(dú)立的低維導(dǎo)向矢量基矩陣,從而大大降低了算法的時(shí)間復(fù)雜度。而且算法對俯仰維、方位維進(jìn)行獨(dú)立估計(jì)大大提高了二維DOA估計(jì)的分辨率。由于不涉及對噪聲方差的估計(jì),算法的魯棒性也很高。在后續(xù)工作中將進(jìn)一步提高算法的分辨率,并降低其時(shí)間復(fù)雜度。

參考文獻(xiàn)

[1] GORODNITSKY I F, GEORGE J S, RAO B D. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm [J]. Electroencephalography and clinical neurophysiology, 2015, 95(4): 231?251.

[2] GORODNITSKY I F, RAO B D. Sparse signal reconstruction from limited data using FOCUSS: a re?weighted minimum norm algorithm [J]. IEEE transactions on signal processing, 1997, 45(3): 600?616.

[3] GORODNITSKY I F, RAO B D, GEORGE J. Source localization in magnetoencephalography using an iterative weighted minimum norm algorithm [C]// Proceedings of the 26th Asilomar Conference on Signals, Systems & Computers. Pacific grove: IEEE, 1992: 167?171.

[4] COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE transactions on signal processing, 2005, 53(7): 2477?2488.

[5] MALIOUTOV D, ?ETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays [J]. IEEE transactions on signal processing, 2005, 53(8): 3010?3022.

[6] MALLAT S G, ZHANG Z. Matching pursuit with time?frequency dictionaries [J]. IEEE transactions on signal processing, 2013, 41(12): 3397?3415.

[7] DAVIS G, MALLAT S G, ZHANG Z. Adaptive time?frequency decompositions [J]. Optical engineering, 1994, 33(7): 2183?2191.

[8] PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition [C]// Proceedings of the 26th Asilomar Conference on Signals, Systems & Computers. Pacific grove: IEEE, 1993: 40?44.

[9] JI S, DUNSON D, CARIN L. Multitask compressive sensing [J]. IEEE transactions on signal processing, 2009, 57(1): 92?106.

[10] CARLIN M, ROCCA P, OLIVERI G, et al. Directions?of?arrival estimation through Bayesian compressive sensing strategies [J]. IEEE transactions on antennas & propagation, 2013, 61(7): 3828?3838.

[11] 劉自成.基于稀疏表示的雷達(dá)目標(biāo)角度與距離估計(jì)[D].西安:西安電子科技大學(xué),2014.

LIU Zicheng. Estimation of target′s angle and range in radar based on sparse representation [D]. Xian: Xidian University, 2014.

[12] Candès E J. Compressive sampling [C]// Proceedings of the International Congress of Mathematics. Madrid: European Mathematical Society, 2006: 1433?1452.

[13] 馬文潔.貝葉斯壓縮感知在DOA估計(jì)中的應(yīng)用研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2014.

MA Wenjie. DOA estimation through Bayesian compressive sensing algorithm [D]. Harbin: Harbin Institute of Technology, 2014.

主站蜘蛛池模板: 婷婷五月在线| 亚洲中文字幕日产无码2021| 91无码人妻精品一区| 国产色网站| 国产精品久久久久久久久kt| 亚洲经典在线中文字幕| 丁香五月激情图片| 911亚洲精品| 亚欧美国产综合| 国产区在线观看视频| 国产屁屁影院| 五月婷婷丁香综合| 九九热精品在线视频| 国产在线小视频| 亚洲第一成年网| 精品国产自在在线在线观看| 久热re国产手机在线观看| 国产成人综合亚洲欧洲色就色| 欧美日本不卡| 久久青草精品一区二区三区| av一区二区无码在线| 91九色视频网| 日本高清有码人妻| 日本欧美午夜| 亚洲欧美日本国产专区一区| 91亚瑟视频| 青青操视频免费观看| 中文成人在线视频| 在线免费a视频| 亚洲国产精品日韩av专区| 啊嗯不日本网站| 精品一区国产精品| 亚洲三级a| 亚洲欧美另类日本| 国产亚洲欧美在线中文bt天堂| 欧美精品影院| 日本免费a视频| 熟妇无码人妻| 国产毛片片精品天天看视频| 91久久偷偷做嫩草影院精品| 国产成人成人一区二区| 久久窝窝国产精品午夜看片| 国产青青草视频| 欧美在线精品怡红院| 55夜色66夜色国产精品视频| 91成人在线观看视频| 九色综合伊人久久富二代| 国产嫖妓91东北老熟女久久一| 国产迷奸在线看| 亚洲欧美一级一级a| 亚洲免费人成影院| 中文字幕自拍偷拍| 永久毛片在线播| 国产在线高清一级毛片| 一级毛片在线播放免费| 国产乱子伦视频在线播放| 欧美成人影院亚洲综合图| 日韩中文精品亚洲第三区| 一级在线毛片| 久久国产精品嫖妓| 免费观看欧美性一级| 黄色网页在线播放| 亚洲一道AV无码午夜福利| 狠狠v日韩v欧美v| 亚洲精品国产成人7777| 亚州AV秘 一区二区三区| 19国产精品麻豆免费观看| 女人天堂av免费| 国产精品片在线观看手机版| 亚洲黄色视频在线观看一区| 91在线日韩在线播放| 国产理论精品| 免费高清自慰一区二区三区| 激情爆乳一区二区| 精品视频第一页| 久久婷婷综合色一区二区| av一区二区三区在线观看| 精品成人免费自拍视频| 亚洲成人免费在线| 久久夜色精品国产嚕嚕亚洲av| 色偷偷男人的天堂亚洲av| 色婷婷成人网|