999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

STABILITY OF SUBHARMONIC SOLUTIONS OF FIRST-ORDER HAMILTONIAN SYSTEMS WITH ANISOTROPIC GROWTH?

2019-03-25 06:36:08ChungenLIU

Chungen LIU

School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China

E-mail:liucg@nankai.edu.cn

Xiaofei ZHANG

School of Mathematics,Nankai University,Tianjin 300071,China

E-mail:835858094@qq.com

Abstract Using the dual Morse index theory,we study the stability of subharmonic solutions of fi rst-order autonomous Hamiltonian systems with anisotropic growth,that is,we obtain a sequence of elliptic subharmonic solutions(that is,all its Floquet multipliers lying on the unit circle on the complex plane C).

Key words Hamiltonian system;the dual Morse index;subharmonic solution;stability

1 Introduction

In this paper,we consider the stability of subharmonic solutions of the following autonomous Hamiltonian system

Now we state the main results as follows.

Theorem 1.1Suppose that H satis fi es(H1)–(H6),then for every j ∈ N,system(1.1)possesses a 2jτ-periodic solution z2jwhich are elliptic.

From[15],we see the subharmonic solutions sequence{z2j}has a geometrically distinct in fi nite subsequence.

Using the truncation method as in[2,15]and proceeding as Theorem 1.1(see[10,15]),we have the following two similar conclusions.

Corollary 1.2Suppose that H satis fi es(H1),(H2),(H4)–(H6)and

(H3)′There exist constants ξi, ηi>0 with ξi+ ηi=1(i=1,2, ···,n)such that

then we have the same result as in Theorem 1.1.

Corollary 1.3The conclusion of Theorem 1.1 still holds if H satis fi es

(C1) H∈C2(R2n,R)and H(z)>0 for z 6=0.

(C2) There exist constants 0< θ<1 and R,?i,ψi>0 with ?i+ψi=1(i=1,2,···,n)such that

The above conditions(C1)–(C4)are similar to those of[2]with minor di ff erence.

As[10]points out,tackling the stability of subharmonic solutions of Hamiltonian systems is helpful to studying the global dynamic behaviours in depth,which concerns the Floquet multipliers lying on the unit circle,see[3–6,10–13,16]and the references therein.On the basis of the dual Morse index method in[8]and the index estimate method in[10],we generalize the stability results in[10]in the case where H does not contain the quadratic form.

Our paper proceeds as follows.In Section 2,we present some basic knowledge of Sobolev space and the homological link theorem used in this paper.In Section 3,we prove the existence of a 2τ-periodic solution with Morse index estimate(see[9,14]).In Section 4,we take advantage of this index estimate information to obtain an estimate for the dual Morse index.Finally in Section 5,we introduce the relation between the dual Morse index and the Floquet multipliers from[10],and prove Theorem 1.1.

2 Preliminaries

Next we recall the homologically link theorem in[1].

De fi nition 2.2(see[1]) Let Q be a topologically embedded closed q-dimensional ball on a Hilbert manifold M and let S ? M be a closed subset such that?QTS= ?.We say that?Q and S homologically link if?Q is the support of a non-vanishing homology class in Hq?1(MS).

Recall that the functional f satis fi es the so called Cerami condition((C)condition for short)on J? RS{±∞}if{zm}? M such that f(zm)→ c∈J and(1+kzmk)k?f(zm)k→ 0 as m→+∞has a convergent subsequence.

3 2τ-Periodic Solution with Morse Index Estimate

ProofNote that for z∈Em,odd,we have?fm(z)=Pm?fodd(z)and

where V1(z)is de fi ned in(H2).

Then the proof follows the same procedure as that in[15]. ?

Note that if foddsatis fi es(C)?condition on Eodd,then fmsatis fi es(C)condition on Em,odd.

By Lemma 3.1,we may assume that zm→z∈Eoddwith fodd(z)≥δ and?fodd(z)=0,which implies that f(z)≥ δ and ?f(z)=0.By(H1),we see z is a nonconstant 2τ-periodic solution of system(1.1)and z(t)6=0,t∈R. ?

4 The Dual Morse Index

The statements in this section are similar to those in[8].

Theorem 4.2For the dual Morse index de fi ned above,we have≤ 1.

ProofThe proof follows[8],we omit it.?

5 The Floquet Multipliers and(ω,k,odd)-Index

Consider the following system in the interval[0,τ],that is,?J˙y=ky.Its Floquet multipliers are ω±=exp(±kτi)with multiplicity n respectively,ω+is Krein positive de fi nite and ω?Krein negative de fi nite(see[5]for the de fi nition of Krein de fi nite).

Proposition 5.1(see[10]) The(ω,k,odd)-index jω,k,odd(z)varies only when ω is a Floquet multiplier of γ(τ)or ω±.Moreover if none of the Floquet multipliers equals ω±,then δjω,k,odd(z)=p0? q0,where ω is a Floquet multiplier of γ(τ)with its Krein type(p0,q0)and δjω±,k,odd(z)= ?n.If ω+is also a Floquet multiplier of γ(τ),then δjω±,k,odd(z)=±(p? q?n),where(p,q)is the Krein type of ω+.In addition≤ d,where 2d is the multiplicity of?1 as a Floquet multiplier of γ(τ).

Proposition 5.2(see[10]) jω,k,odd(z)≥ 2n,ω =exp(iθ),θ→ 0.

Proof of Theorem 1.1By Theorem 3.5,z is a 2τ-periodic solution of(1.1).Thus by Theorem 4.2 and Propositions 5.1 and 5.2,if θ→ 0 and ω =exp(iθ),there holds

where n+and n?are total positive and negative multiplicity of the Floquet multipliers lying on the upper unit circle.If ω has the Klein type(p,q),then it has positive multiplicity p and negative multiplicity q.Therefore,we have n?+d≥n?1.Because the Floquet multipliers lying on the unit circle are symmetric and z is degenerate,we obtain 2n Floquet multipliers lying on the unit circle. ?

主站蜘蛛池模板: 久久96热在精品国产高清| 亚洲黄色网站视频| 色欲不卡无码一区二区| 日韩毛片在线播放| 青草视频久久| 这里只有精品在线播放| 欧美日韩在线成人| 亚洲综合精品香蕉久久网| 亚洲欧美国产五月天综合| 丰满的熟女一区二区三区l| 另类专区亚洲| 欧美一级夜夜爽| 久久99精品久久久久久不卡| 国产精品美女免费视频大全| 看看一级毛片| 中文字幕在线视频免费| 日韩无码一二三区| 亚洲成人精品久久| 国产精品成人免费视频99| 99re免费视频| 国产一级毛片在线| 中文字幕亚洲精品2页| 亚洲区视频在线观看| 91久久国产热精品免费| 色妞永久免费视频| 99re视频在线| 国产激情国语对白普通话| 97青草最新免费精品视频| 婷婷久久综合九色综合88| 鲁鲁鲁爽爽爽在线视频观看| 激情国产精品一区| 国产嫩草在线观看| 国产成人1024精品下载| 午夜日本永久乱码免费播放片| 亚洲人成在线精品| 福利一区在线| 日韩欧美网址| 国产h视频在线观看视频| 久久超级碰| 国产xxxxx免费视频| 亚洲成网777777国产精品| 午夜影院a级片| 久久一色本道亚洲| 国产欧美另类| 丰满的少妇人妻无码区| 毛片a级毛片免费观看免下载| 中文字幕色在线| 午夜人性色福利无码视频在线观看| 在线精品亚洲一区二区古装| 中文字幕亚洲另类天堂| 日韩免费毛片| 日韩成人午夜| 99热在线只有精品| 国产欧美日韩资源在线观看| 亚洲VA中文字幕| 国产精品成人啪精品视频| 99视频在线免费观看| 一区二区三区四区精品视频 | 无码精品福利一区二区三区| 人人妻人人澡人人爽欧美一区 | 亚洲自拍另类| 免费高清毛片| 91麻豆精品国产91久久久久| 国产产在线精品亚洲aavv| 91福利免费视频| 亚洲天堂在线免费| a在线观看免费| 色窝窝免费一区二区三区| 免费不卡视频| 亚洲精品无码AⅤ片青青在线观看| 波多野结衣一区二区三区四区| 日韩av电影一区二区三区四区| 中文字幕无码中文字幕有码在线| 成年午夜精品久久精品| 99国产精品免费观看视频| 国产成年女人特黄特色毛片免| 亚洲男人的天堂视频| 欧美午夜视频在线| 亚洲天堂色色人体| 成人久久精品一区二区三区| 久久精品亚洲专区| 熟妇无码人妻|